Gemma3Tokenizer 类keras_hub.tokenizers.Gemma3Tokenizer(proto, **kwargs)
基于 SentencePiece 的 Gemma 分词器层。
此分词器类将原始字符串分词为整数序列,并基于 keras_hub.tokenizers.SentencePieceTokenizer。与底层分词器不同,它将检查 Gemma 模型所需的所有特殊标记,并提供 from_preset() 方法来自动下载 Gemma 预设的匹配词汇表。
如果输入是一批字符串(秩 > 0),该层将输出一个 tf.RaggedTensor,其中输出的最后一个维度是不规则的。
如果输入是标量字符串(秩 == 0),该层将输出一个具有静态形状 [None] 的密集 tf.Tensor。
参数
string 路径,也可以是包含序列化 SentencePiece proto 的 bytes 对象。有关格式的更多详细信息,请参阅 SentencePiece 存储库。示例
# Unbatched input.
tokenizer = keras_hub.models.Gemma3Tokenizer.from_preset(
"gemma_instruct_1b"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.Gemma3Tokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset 方法Gemma3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
从模型预设实例化一个 keras_hub.models.Tokenizer。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'对于任何 Tokenizer 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。
此构造函数可以通过两种方式调用。可以像 keras_hub.models.Tokenizer.from_preset() 那样从基类调用,也可以像 keras_hub.models.GemmaTokenizer.from_preset() 那样从模型类调用。如果从基类调用,返回对象的子类将根据预设目录中的配置推断。
参数
示例
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| 预设 | 参数 | 描述 |
|---|---|---|
| gemma3_1b | 999.89M | 10 亿参数,26 层,仅文本预训练 Gemma3 模型。 |
| gemma3_instruct_1b | 999.89M | 10 亿参数,26 层,仅文本指令微调 Gemma3 模型。 |
| gemma3_4b_text | 3.88B | 40 亿参数,34 层,仅文本预训练 Gemma3 模型。 |
| gemma3_instruct_4b_text | 3.88B | 40 亿参数,34 层,仅文本指令微调 Gemma3 模型。 |
| gemma3_4b | 4.30B | 40 亿参数,34 层,视觉+文本预训练 Gemma3 模型。 |
| gemma3_instruct_4b | 4.30B | 40 亿参数,34 层,视觉+文本指令微调 Gemma3 模型。 |
| gemma3_12b_text | 11.77B | 120 亿参数,48 层,仅文本预训练 Gemma3 模型。 |
| gemma3_instruct_12b_text | 11.77B | 120 亿参数,48 层,仅文本指令微调 Gemma3 模型。 |
| gemma3_12b | 12.19B | 120 亿参数,48 层,视觉+文本预训练 Gemma3 模型。 |
| gemma3_instruct_12b | 12.19B | 120 亿参数,48 层,视觉+文本指令微调 Gemma3 模型。 |
| gemma3_27b_text | 27.01B | 270 亿参数,62 层,仅文本预训练 Gemma3 模型。 |
| gemma3_instruct_27b_text | 27.01B | 270 亿参数,62 层,仅文本指令微调 Gemma3 模型。 |
| gemma3_27b | 27.43B | 270 亿参数,62 层,视觉+文本预训练 Gemma3 模型。 |
| gemma3_instruct_27b | 27.43B | 270 亿参数,62 层,视觉+文本指令微调 Gemma3 模型。 |