EfficientNetImageClassifier 类keras_hub.models.EfficientNetImageClassifier(
backbone,
num_classes,
preprocessor=None,
pooling="avg",
activation=None,
dropout=0.0,
head_dtype=None,
**kwargs
)
所有图像分类任务的基类。
ImageClassifier 任务封装了一个 keras_hub.models.Backbone 和一个 keras_hub.models.Preprocessor 来创建一个可用于图像分类的模型。ImageClassifier 任务接受一个额外的 num_classes 参数,用于控制预测的输出类别数量。
要使用 fit() 进行微调,请传入一个包含 (x, y) 标签元组的数据集,其中 x 是一个字符串,y 是一个介于 [0, num_classes) 之间的整数。所有 ImageClassifier 任务都包含一个 from_preset() 构造函数,可用于加载预训练的配置和权重。
参数
keras_hub.models.Backbone 实例或一个 keras.Model。None、一个 keras_hub.models.Preprocessor 实例、一个 keras.Layer 实例或一个可调用对象。如果为 None,则不对输入应用任何预处理。"avg" 或 "max"。要应用于主干网络输出的池化类型。默认为平均池化。None、str 或可调用对象。用于 Dense 层的激活函数。将 activation 设置为 None 以返回输出 logits。默认为 "softmax"。None、str 或 keras.mixed_precision.DTypePolicy。用于分类头计算和权重的 dtype。示例
调用 predict() 运行推理。
# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.ImageClassifier.from_preset(
"resnet_50_imagenet"
)
classifier.predict(images)
在单个批次上调用 fit()。
# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.ImageClassifier.from_preset(
"resnet_50_imagenet"
)
classifier.fit(x=images, y=labels, batch_size=2)
使用自定义损失、优化器和主干网络调用 fit()。
classifier = keras_hub.models.ImageClassifier.from_preset(
"resnet_50_imagenet"
)
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)
自定义主干网络。
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
backbone = keras_hub.models.ResNetBackbone(
stackwise_num_filters=[64, 64, 64],
stackwise_num_blocks=[2, 2, 2],
stackwise_num_strides=[1, 2, 2],
block_type="basic_block",
use_pre_activation=True,
pooling="avg",
)
classifier = keras_hub.models.ImageClassifier(
backbone=backbone,
num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)
from_preset 方法EfficientNetImageClassifier.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Task。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。
此构造函数可以通过两种方式调用。一种方式是从特定任务的基类(如 keras_hub.models.CausalLM.from_preset())调用,另一种方式是从模型类(如 keras_hub.models.BertTextClassifier.from_preset())调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断出来。
参数
True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。示例
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| 预设 | 参数 | 描述 |
|---|---|---|
| efficientnet_lite0_ra_imagenet | 4.65M | EfficientNet-Lite 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行微调。 |
| efficientnet_b0_ra_imagenet | 5.29M | EfficientNet B0 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。 |
| efficientnet_b0_ra4_e3600_r224_imagenet | 5.29M | EfficientNet B0 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。 |
| efficientnet_es_ra_imagenet | 5.44M | EfficientNet-EdgeTPU Small 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。 |
| efficientnet_em_ra2_imagenet | 6.90M | EfficientNet-EdgeTPU Medium 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
| efficientnet_b1_ft_imagenet | 7.79M | EfficientNet B1 模型在 ImageNet 1k 数据集上进行微调。 |
| efficientnet_b1_ra4_e3600_r240_imagenet | 7.79M | EfficientNet B1 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。 |
| efficientnet_b2_ra_imagenet | 9.11M | EfficientNet B2 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。 |
| efficientnet_el_ra_imagenet | 10.59M | EfficientNet-EdgeTPU Large 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。 |
| efficientnet_b3_ra2_imagenet | 12.23M | EfficientNet B3 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。 |
| efficientnet2_rw_t_ra2_imagenet | 13.65M | EfficientNet-v2 Tiny 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
| efficientnet_b4_ra2_imagenet | 19.34M | EfficientNet B4 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。 |
| efficientnet2_rw_s_ra2_imagenet | 23.94M | EfficientNet-v2 Small 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
| efficientnet_b5_sw_imagenet | 30.39M | EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。 |
| efficientnet_b5_sw_ft_imagenet | 30.39M | EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练,并在 ImageNet-1k 上微调。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。 |
| efficientnet2_rw_m_agc_imagenet | 53.24M | EfficientNet-v2 Medium 模型在 ImageNet 1k 数据集上使用自适应梯度裁剪进行训练。 |
backbone 属性keras_hub.models.EfficientNetImageClassifier.backbone
一个具有核心架构的 keras_hub.models.Backbone 模型。
preprocessor 属性keras_hub.models.EfficientNetImageClassifier.preprocessor
用于预处理输入的 keras_hub.models.Preprocessor 层。