KerasHub:预训练模型 / API 文档 / 模型架构 / DistilBert / DistilBertMaskedLM 模型

DistilBertMaskedLM 模型

[源代码]

DistilBertMaskedLM

keras_hub.models.DistilBertMaskedLM(backbone, preprocessor=None, **kwargs)

用于掩码语言建模任务的端到端 DistilBERT 模型。

此模型将在掩码语言建模任务上训练 DistilBERT。该模型将预测输入数据中多个被掩码的词元的标签。有关此模型与预训练权重一起使用的信息,请参阅 from_preset() 构造函数。

此模型可以选择配置 preprocessor 层,在这种情况下,在 fit()predict()evaluate() 期间,输入可以是原始字符串特征。在训练和评估期间,输入将被标记化并动态掩码。通过 from_preset() 创建模型时,默认情况下会执行此操作。

免责声明:预训练模型按“原样”提供,不附带任何形式的保证或条件。底层模型由第三方提供,并受单独许可协议的约束,可在此处获取

参数

示例

原始字符串数据。

features = ["The quick brown fox jumped.", "I forgot my homework."]

# Pretrained language model.
masked_lm = keras_hub.models.DistilBertMaskedLM.from_preset(
    "distil_bert_base_en_uncased",
)
masked_lm.fit(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
masked_lm.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
masked_lm.backbone.trainable = False
# Fit again.
masked_lm.fit(x=features, batch_size=2)

预处理的整数数据。

# Create preprocessed batch where 0 is the mask token.
features = {
    "token_ids": np.array([[1, 2, 0, 4, 0, 6, 7, 8]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1]] * 2),
    "mask_positions": np.array([[2, 4]] * 2)
}
# Labels are the original masked values.
labels = [[3, 5]] * 2

masked_lm = keras_hub.models.DistilBertMaskedLM.from_preset(
    "distil_bert_base_en_uncased",
    preprocessor=None,
)
masked_lm.fit(x=features, y=labels, batch_size=2)

[源代码]

from_preset 方法

DistilBertMaskedLM.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。可以从任务特定的基类(如 keras_hub.models.CausalLM.from_preset())调用,也可以从模型类(如 keras_hub.models.BertTextClassifier.from_preset())调用。如果从基类调用,则返回对象的子类将根据预设目录中的配置进行推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
distil_bert_base_en 65.19M 6 层 DistilBERT 模型,大小写保持不变。使用 BERT 作为教师模型,在英文维基百科 + BooksCorpus 上训练。
distil_bert_base_en_uncased 66.36M 6 层 DistilBERT 模型,所有输入均小写。使用 BERT 作为教师模型,在英文维基百科 + BooksCorpus 上训练。
distil_bert_base_multi 134.73M 6 层 DistilBERT 模型,大小写保持不变。在 104 种语言的维基百科上训练。

backbone 属性

keras_hub.models.DistilBertMaskedLM.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.DistilBertMaskedLM.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。