KerasHub:预训练模型 / API 文档 / 模型架构 / CSPNet / CSPNetImageClassifier 模型

CSPNetImageClassifier 模型

[源代码]

CSPNetImageClassifier

keras_hub.models.CSPNetImageClassifier(
    backbone,
    num_classes,
    preprocessor=None,
    pooling="avg",
    activation=None,
    dropout=0.0,
    head_dtype=None,
    **kwargs
)

所有图像分类任务的基础类。

ImageClassifier 任务包装了 keras_hub.models.Backbonekeras_hub.models.Preprocessor,以创建一个可用于图像分类的模型。ImageClassifier 任务接受一个额外的 num_classes 参数,用于控制预测输出类的数量。

要使用 fit() 进行微调,请传入包含 (x, y) 标签元组的数据集,其中 x 是一个字符串,y 是一个 [0, num_classes) 范围内的整数。所有 ImageClassifier 任务都包含一个 from_preset() 构造函数,可用于加载预训练配置和权重。

参数

  • backbone:一个 keras_hub.models.Backbone 实例或一个 keras.Model 实例。
  • num_classes:int。要预测的类别数量。
  • preprocessorNone、一个 keras_hub.models.Preprocessor 实例、一个 keras.Layer 实例或一个可调用对象。如果为 None,则不对输入应用任何预处理。
  • pooling"avg""max"。应用于主干网络输出的池化类型。默认为平均池化。
  • activationNone、str 或可调用对象。应用于 Dense 层的激活函数。将 activation 设置为 None 将返回输出 logits。默认为 "softmax"
  • head_dtypeNone、str 或 keras.mixed_precision.DTypePolicy。用于分类头计算和权重的 dtype。

示例

调用 predict() 运行推理。

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.predict(images)

在单个批次上调用 fit()

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.fit(x=images, y=labels, batch_size=2)

使用自定义损失函数、优化器和主干网络调用 fit()

classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)

自定义主干网络。

images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
backbone = keras_hub.models.ResNetBackbone(
    stackwise_num_filters=[64, 64, 64],
    stackwise_num_blocks=[2, 2, 2],
    stackwise_num_strides=[1, 2, 2],
    block_type="basic_block",
    use_pre_activation=True,
    pooling="avg",
)
classifier = keras_hub.models.ImageClassifier(
    backbone=backbone,
    num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)

[源代码]

from_preset 方法

CSPNetImageClassifier.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是用于保存和加载预训练模型的配置、权重和其他文件资源的目录。preset 可以以下列形式之一传入:

  1. 内置预设标识符,例如 'bert_base_en'
  2. Kaggle Models 句柄,例如 'kaggle://user/bert/keras/bert_base_en'
  3. Hugging Face 句柄,例如 'hf://user/bert_base_en'
  4. 本地预设目录的路径,例如 './bert_base_en'

对于任何 Task 子类,您可以运行 cls.presets.keys() 来列出该类中所有可用的内置预设。

此构造函数可以通过两种方式之一调用。可以从任务特定的基类调用,例如 keras_hub.models.CausalLM.from_preset(),或者从模型类调用,例如 keras_hub.models.BertTextClassifier.from_preset()。如果从基类调用,返回对象的子类将从预设目录中的配置推断。

参数

  • preset:string。内置预设标识符、Kaggle Models 句柄、Hugging Face 句柄或本地目录的路径。
  • load_weights:bool。如果为 True,保存的权重将被加载到模型架构中。如果为 False,所有权重将随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
csp_darknet_53_ra_imagenet 26.65M 一个 CSP-DarkNet(交叉阶段部分)图像分类模型,在随机增强的 ImageNet 1k 数据集上以 224x224 分辨率进行预训练。

backbone 属性

keras_hub.models.CSPNetImageClassifier.backbone

一个带有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.CSPNetImageClassifier.preprocessor

一个用于预处理输入的 keras_hub.models.Preprocessor 层。