BartTokenizer

[源代码]

BartTokenizer

keras_hub.tokenizers.BartTokenizer(vocabulary=None, merges=None, **kwargs)

一个使用字节对编码(Byte-Pair Encoding)子词分割的 BART 分词器。

这个分词器类将原始字符串分词成整数序列,并基于 keras_hub.tokenizers.BytePairTokenizer。与底层分词器不同的是,它会检查 BART 模型所需的所有特殊 token,并提供一个 from_preset() 方法来自动下载 BART 预设的匹配词汇表。

这个分词器不提供输入的截断或填充。它可以与 keras_hub.models.BartPreprocessor 层结合使用,用于输入打包。

如果输入是一批字符串(秩 > 0),该层将输出一个 tf.RaggedTensor,其中输出的最后一个维度是不规则的。

如果输入是标量字符串(秩 == 0),该层将输出一个具有静态形状 [None] 的密集 tf.Tensor

参数

  • vocabulary: 字符串或字典,将词元映射到整数 ID。如果是字符串,则应为 json 文件的路径。
  • merges:字符串或列表,包含合并规则。如果它是字符串,则应为合并规则的文件路径。合并规则文件应每行包含一条合并规则。每条合并规则包含以空格分隔的合并实体。

示例

# Unbatched input.
tokenizer = keras_hub.models.BartTokenizer.from_preset(
    "bart_base_en",
)
tokenizer("The quick brown fox jumped.")

# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])

# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))

# Custom vocabulary.
vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.BartTokenizer(
    vocabulary=vocab,
    merges=merges,
)
tokenizer("The quick brown fox jumped.")

[源代码]

from_preset 方法

BartTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)

从模型预设实例化一个 keras_hub.models.Tokenizer

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Tokenizer 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。可以从基类调用,如 keras_hub.models.Tokenizer.from_preset(),也可以从模型类调用,如 keras_hub.models.GemmaTokenizer.from_preset()。如果从基类调用,返回对象的子类将根据预设目录中的配置推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights:布尔值。如果为 `True`,权重将被加载到模型架构中。如果为 `False`,权重将被随机初始化。

示例

# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")

# Tokenize some input.
tokenizer("The quick brown fox tripped.")

# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设 参数 描述
bart_base_en 139.42M 6 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。
bart_large_en 406.29M 12 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。
bart_large_en_cnn 406.29M 在 CNN+DM 摘要数据集上微调的 bart_large_en 骨干模型。