BartSeq2SeqLM
类keras_hub.models.BartSeq2SeqLM(backbone, preprocessor=None, **kwargs)
用于序列到序列语言建模的端到端 BART 模型。
序列到序列语言模型 (LM) 是一种编码器-解码器模型,用于条件文本生成。编码器接收“上下文”文本(输入到编码器),解码器根据编码器输入和之前的标记预测下一个标记。您可以微调 BartSeq2SeqLM
以生成任何序列到序列任务(例如,翻译或摘要)的文本。
此模型有一个 generate()
方法,用于根据编码器输入和解码器的可选提示生成文本。所使用的生成策略由传递给 compile()
的附加 sampler
参数控制。您可以重新编译模型,使用不同的 keras_hub.samplers
对象来控制生成。默认情况下,将使用 "top_k"
采样。
此模型可以选择配置一个 preprocessor
层,在这种情况下,它将在 fit()
、predict()
、evaluate()
和 generate()
期间自动对字符串输入应用预处理。这在使用 from_preset()
创建模型时默认完成。
免责声明:预训练模型按“原样”提供,不附带任何类型的担保或条件。底层模型由第三方提供,并受单独许可的约束,可在此处获取。
参数
keras_hub.models.BartBackbone
实例。keras_hub.models.BartSeq2SeqLMPreprocessor
或 None
。如果为 None
,则此模型将不应用预处理,并且在调用模型之前应预处理输入。示例
给定输入上下文,使用 generate()
进行文本生成。
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate("The quick brown fox", max_length=30)
# Generate with batched inputs.
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
使用自定义采样器编译 generate()
函数。
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.compile(sampler="greedy")
bart_lm.generate("The quick brown fox", max_length=30)
使用 generate()
和编码器输入以及不完整的解码器输入(提示)。
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate(
{
"encoder_text": "The quick brown fox",
"decoder_text": "The fast"
}
)
不带预处理使用 generate()
。
# Preprocessed inputs, with encoder inputs corresponding to
# "The quick brown fox", and the decoder inputs to "The fast". Use
# `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
"encoder_padding_mask": np.array(
[[1, 1, 1, 1, 1, 1, 0, 0]]
),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 0, 0]])
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.generate(prompt)
在单个批次上调用 fit()
。
features = {
"encoder_text": ["The quick fox jumped.", "I forgot my homework."],
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.fit(x=features, batch_size=2)
不带预处理调用 fit()
。
x = {
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[0, 133, 1769, 2, 1]] * 2)
sw = np.array([[1, 1, 1, 1, 0]] * 2)
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
自定义骨干和词汇表。
features = {
"encoder_text": [" afternoon sun"],
"decoder_text": ["noon sun"],
}
vocab = {
"<s>": 0,
"<pad>": 1,
"</s>": 2,
"Ġafter": 5,
"noon": 6,
"Ġsun": 7,
}
merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
tokenizer = keras_hub.models.BartTokenizer(
vocabulary=vocab,
merges=merges,
)
preprocessor = keras_hub.models.BartSeq2SeqLMPreprocessor(
tokenizer=tokenizer,
encoder_sequence_length=128,
decoder_sequence_length=128,
)
backbone = keras_hub.models.BartBackbone(
vocabulary_size=50265,
num_layers=6,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=128,
)
bart_lm = keras_hub.models.BartSeq2SeqLM(
backbone=backbone,
preprocessor=preprocessor,
)
bart_lm.fit(x=features, batch_size=2)
from_preset
方法BartSeq2SeqLM.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Task
。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Task
子类,您都可以运行 cls.presets.keys()
来列出该类上所有可用的内置预设。
此构造函数可以通过两种方式调用。一种是从任务特定的基类调用,例如 keras_hub.models.CausalLM.from_preset()
,另一种是从模型类调用,例如 keras_hub.models.BertTextClassifier.from_preset()
。如果从基类调用,则返回对象的子类将根据预设目录中的配置推断。
参数
True
,已保存的权重将被加载到模型架构中。如果为 False
,所有权重将被随机初始化。示例
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
预设 | 参数 | 描述 |
---|---|---|
bart_base_en | 139.42M | 6 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。 |
bart_large_en | 406.29M | 12 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。 |
bart_large_en_cnn | 406.29M | 在 CNN+DM 摘要数据集上微调的 bart_large_en 骨干模型。 |
generate
方法BartSeq2SeqLM.generate(
inputs, max_length=None, stop_token_ids="auto", strip_prompt=False
)
根据提示 inputs
生成文本。
此方法根据给定的 inputs
生成文本。用于生成的采样方法可以通过 compile()
方法设置。
如果 inputs
是一个 tf.data.Dataset
,输出将“逐批”生成并连接起来。否则,所有输入将被视为单个批次处理。
如果模型附加了 preprocessor
,则 inputs
将在 generate()
函数内部进行预处理,并且应与 preprocessor
层期望的结构匹配(通常是原始字符串)。如果未附加 preprocessor
,则输入应与 backbone
期望的结构匹配。请参阅上面的示例用法,了解每种情况的演示。
参数
tf.data.Dataset
。如果模型附加了 preprocessor
,则 inputs
应与 preprocessor
层期望的结构匹配。如果未附加 preprocessor
,则 inputs
应与 backbone
模型期望的结构匹配。preprocessor
配置的最大 sequence_length
。如果 preprocessor
为 None
,则 inputs
应填充到所需的长度,此参数将被忽略。None
、“auto”或标记 ID 元组。默认为“auto”,它使用 preprocessor.tokenizer.end_token_id
。未指定处理器将产生错误。None 在生成 max_length
个标记后停止生成。您还可以指定模型应停止的标记 ID 列表。请注意,每个标记序列都将被解释为停止标记,不支持多标记停止序列。backbone
属性keras_hub.models.BartSeq2SeqLM.backbone
一个具有核心架构的 keras_hub.models.Backbone
模型。
preprocessor
属性keras_hub.models.BartSeq2SeqLM.preprocessor
用于预处理输入的 keras_hub.models.Preprocessor
层。