AlbertTokenizer
类keras_hub.tokenizers.AlbertTokenizer(proto, **kwargs)
基于 SentencePiece 的 ALBERT 分词器层。
此分词器类会将原始字符串分词为整数序列,并且基于 keras_hub.tokenizers.SentencePieceTokenizer
。 与底层分词器不同,它将检查 ALBERT 模型所需的所有特殊标记,并提供 from_preset()
方法来自动下载与 ALBERT 预设匹配的词汇表。
如果输入是字符串批次(秩 > 0),该层将输出一个 tf.RaggedTensor
,其中输出的最后一个维度是不规则的。
如果输入是标量字符串(秩 == 0),该层将输出一个具有静态形状 [None]
的密集 tf.Tensor
。
参数
string
路径,或者包含序列化 SentencePiece proto 的 bytes
对象。 有关格式的更多详细信息,请参阅 SentencePiece 仓库。示例
# Unbatched input.
tokenizer = keras_hub.models.AlbertTokenizer.from_preset(
"albert_base_en_uncased",
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=10,
model_type="WORD",
pad_id=0,
unk_id=1,
bos_id=2,
eos_id=3,
pad_piece="<pad>",
unk_piece="<unk>",
bos_piece="[CLS]",
eos_piece="[SEP]",
user_defined_symbols="[MASK]",
)
tokenizer = keras_hub.models.AlbertTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
方法AlbertTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
从模型预设实例化 keras_hub.models.Tokenizer
。
预设是配置、权重和其他文件资产的目录,用于保存和加载预训练模型。 preset
可以作为以下之一传递
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Tokenizer
子类,您可以运行 cls.presets.keys()
以列出该类上所有可用的内置预设。
此构造函数可以通过两种方式之一调用。 可以从基类调用,例如 keras_hub.models.Tokenizer.from_preset()
,也可以从模型类调用,例如 keras_hub.models.GemmaTokenizer.from_preset()
。 如果从基类调用,则返回对象的子类将从预设目录中的配置中推断出来。
参数
True
,权重将加载到模型架构中。 如果为 False
,权重将被随机初始化。示例
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设 | 参数 | 描述 |
---|---|---|
albert_base_en_uncased | 11.68M | 12 层 ALBERT 模型,其中所有输入均为小写。 在英文维基百科 + BooksCorpus 上训练。 |
albert_large_en_uncased | 17.68M | 24 层 ALBERT 模型,其中所有输入均为小写。 在英文维基百科 + BooksCorpus 上训练。 |
albert_extra_large_en_uncased | 58.72M | 24 层 ALBERT 模型,其中所有输入均为小写。 在英文维基百科 + BooksCorpus 上训练。 |
albert_extra_extra_large_en_uncased | 222.60M | 12 层 ALBERT 模型,其中所有输入均为小写。 在英文维基百科 + BooksCorpus 上训练。 |