代码示例 / 结构化数据 / 使用 Wide、Deep 和 Cross 网络进行结构化数据学习

使用 Wide、Deep 和 Cross 网络进行结构化数据学习

作者: Khalid Salama
创建日期 2020/12/31
最后修改日期 2025/01/03
描述: 使用 Wide & Deep 和 Deep & Cross 网络进行结构化数据分类。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源码


简介

本示例演示如何使用以下两种建模技术进行结构化数据分类

  1. Wide & Deep 模型
  2. Deep & Cross 模型

请注意,本示例应在 TensorFlow 2.5 或更高版本上运行。


数据集

本示例使用来自 UCI 机器学习仓库的 Covertype 数据集。任务是从制图变量预测森林覆盖类型。该数据集包含 506,011 个实例,具有 12 个输入特征:10 个数值特征和 2 个类别特征。每个实例被分为 7 个类别之一。


设置

import os

# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"

import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import keras
from keras import layers

准备数据

首先,让我们从 UCI 机器学习仓库将数据集加载到 Pandas DataFrame 中

data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
)
raw_data = pd.read_csv(data_url, header=None)
print(f"Dataset shape: {raw_data.shape}")
raw_data.head()
Dataset shape: (581012, 55)
0 1 2 3 4 5 6 7 8 9 ... 45 46 47 48 49 50 51 52 53 54
0 2596 51 3 258 0 510 221 232 148 6279 ... 0 0 0 0 0 0 0 0 0 5
1 2590 56 2 212 -6 390 220 235 151 6225 ... 0 0 0 0 0 0 0 0 0 5
2 2804 139 9 268 65 3180 234 238 135 6121 ... 0 0 0 0 0 0 0 0 0 2
3 2785 155 18 242 118 3090 238 238 122 6211 ... 0 0 0 0 0 0 0 0 0 2
4 2595 45 2 153 -1 391 220 234 150 6172 ... 0 0 0 0 0 0 0 0 0 5

5 行 × 55 列

数据集中的两个类别特征是二进制编码的。我们将把此数据集表示形式转换为典型的表示形式,其中每个类别特征都表示为单个整数值。

soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)]
wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)]

soil_type = raw_data.loc[:, 14:53].apply(
    lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
wilderness_area = raw_data.loc[:, 10:13].apply(
    lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)

CSV_HEADER = [
    "Elevation",
    "Aspect",
    "Slope",
    "Horizontal_Distance_To_Hydrology",
    "Vertical_Distance_To_Hydrology",
    "Horizontal_Distance_To_Roadways",
    "Hillshade_9am",
    "Hillshade_Noon",
    "Hillshade_3pm",
    "Horizontal_Distance_To_Fire_Points",
    "Wilderness_Area",
    "Soil_Type",
    "Cover_Type",
]

data = pd.concat(
    [raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]],
    axis=1,
    ignore_index=True,
)
data.columns = CSV_HEADER

# Convert the target label indices into a range from 0 to 6 (there are 7 labels in total).
data["Cover_Type"] = data["Cover_Type"] - 1

print(f"Dataset shape: {data.shape}")
data.head().T
Dataset shape: (581012, 13)
0 1 2 3 4
海拔 2596 2590 2804 2785 2595
坡向 51 56 139 155 45
坡度 3 2 9 18 2
到水文设施的水平距离 258 212 268 242 153
到水文设施的垂直距离 0 -6 65 118 -1
到道路的水平距离 510 390 3180 3090 391
9am 山体阴影 221 220 234 238 220
中午山体阴影 232 235 238 238 234
3pm 山体阴影 148 151 135 122 150
到火源点的水平距离 6279 6225 6121 6211 6172
荒野区域 区域类型 1 区域类型 1 区域类型 1 区域类型 1 区域类型 1
土壤类型 土壤类型 29 土壤类型 29 土壤类型 12 土壤类型 30 土壤类型 29
覆盖类型 4 4 1 1 4

DataFrame 的形状显示每个样本有 13 列(12 列用于特征,1 列用于目标标签)。

让我们将数据拆分为训练集 (85%) 和测试集 (15%)。

train_splits = []
test_splits = []

for _, group_data in data.groupby("Cover_Type"):
    random_selection = np.random.rand(len(group_data.index)) <= 0.85
    train_splits.append(group_data[random_selection])
    test_splits.append(group_data[~random_selection])

train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True)
test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True)

print(f"Train split size: {len(train_data.index)}")
print(f"Test split size: {len(test_data.index)}")
Train split size: 494149
Test split size: 86863

接下来,将训练和测试数据存储在单独的 CSV 文件中。

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False)
test_data.to_csv(test_data_file, index=False)

定义数据集元数据

在这里,我们定义数据集的元数据,这将有助于读取和解析数据为输入特征,并根据其类型对输入特征进行编码。

TARGET_FEATURE_NAME = "Cover_Type"

TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"]

NUMERIC_FEATURE_NAMES = [
    "Aspect",
    "Elevation",
    "Hillshade_3pm",
    "Hillshade_9am",
    "Hillshade_Noon",
    "Horizontal_Distance_To_Fire_Points",
    "Horizontal_Distance_To_Hydrology",
    "Horizontal_Distance_To_Roadways",
    "Slope",
    "Vertical_Distance_To_Hydrology",
]

CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "Soil_Type": list(data["Soil_Type"].unique()),
    "Wilderness_Area": list(data["Wilderness_Area"].unique()),
}

CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())

FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES

COLUMN_DEFAULTS = [
    [0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"]
    for feature_name in CSV_HEADER
]

NUM_CLASSES = len(TARGET_FEATURE_LABELS)

实验设置

接下来,让我们定义一个输入函数,该函数读取和解析文件,然后将特征和标签转换为 tf.data.Dataset 以进行训练或评估。

# To convert the datasets elements to from OrderedDict to Dictionary
def process(features, target):
    return dict(features), target


def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False):
    dataset = tf_data.experimental.make_csv_dataset(
        csv_file_path,
        batch_size=batch_size,
        column_names=CSV_HEADER,
        column_defaults=COLUMN_DEFAULTS,
        label_name=TARGET_FEATURE_NAME,
        num_epochs=1,
        header=True,
        shuffle=shuffle,
    ).map(process)
    return dataset.cache()

在这里,我们配置参数并实现给定模型运行训练和评估实验的步骤。

learning_rate = 0.001
dropout_rate = 0.1
batch_size = 265
num_epochs = 1

hidden_units = [32, 32]


def run_experiment(model):
    model.compile(
        optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
        loss=keras.losses.SparseCategoricalCrossentropy(),
        metrics=[keras.metrics.SparseCategoricalAccuracy()],
    )

    train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)

    test_dataset = get_dataset_from_csv(test_data_file, batch_size)

    print("Start training the model...")
    history = model.fit(train_dataset, epochs=num_epochs)
    print("Model training finished")

    _, accuracy = model.evaluate(test_dataset, verbose=0)

    print(f"Test accuracy: {round(accuracy * 100, 2)}%")

创建模型输入

现在,将模型的输入定义为一个字典,其中键是特征名称,值是具有相应特征形状和数据类型的 keras.layers.Input 张量。

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="string"
            )
    return inputs

编码特征

我们创建输入特征的两种表示形式:稀疏和密集:1. 在稀疏表示形式中,类别特征使用 CategoryEncoding 层进行 one-hot 编码。这种表示形式对于模型记忆特定的特征值以进行某些预测可能很有用。 2. 在密集表示形式中,类别特征使用 Embedding 层进行低维嵌入编码。这种表示形式有助于模型很好地泛化到未见过的特征组合。

def encode_inputs(inputs, use_embedding=False):
    encoded_features = []
    for feature_name in inputs:
        if feature_name in CATEGORICAL_FEATURE_NAMES:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert string values to an integer indices.
            # Since we are not using a mask token nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and  num_oov_indices to 0.
            lookup = layers.StringLookup(
                vocabulary=vocabulary,
                mask_token=None,
                num_oov_indices=0,
                output_mode="int" if use_embedding else "binary",
            )
            if use_embedding:
                # Convert the string input values into integer indices.
                encoded_feature = lookup(inputs[feature_name])
                embedding_dims = int(math.sqrt(len(vocabulary)))
                # Create an embedding layer with the specified dimensions.
                embedding = layers.Embedding(
                    input_dim=len(vocabulary), output_dim=embedding_dims
                )
                # Convert the index values to embedding representations.
                encoded_feature = embedding(encoded_feature)
            else:
                # Convert the string input values into a one hot encoding.
                encoded_feature = lookup(
                    keras.ops.expand_dims(inputs[feature_name], -1)
                )
        else:
            # Use the numerical features as-is.
            encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1)

        encoded_features.append(encoded_feature)

    all_features = layers.concatenate(encoded_features)
    return all_features

实验 1:基线模型

在第一个实验中,让我们创建一个多层前馈网络,其中类别特征是 one-hot 编码的。

def create_baseline_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)

    for units in hidden_units:
        features = layers.Dense(units)(features)
        features = layers.BatchNormalization()(features)
        features = layers.ReLU()(features)
        features = layers.Dropout(dropout_rate)(features)

    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


baseline_model = create_baseline_model()
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")

png

让我们运行它

run_experiment(baseline_model)
Start training the model...
  1/Unknown  6s 6s/step - loss: 2.2346 - sparse_categorical_accuracy: 0.1472


  2/Unknown  6s 263ms/step - loss: 2.2343 - sparse_categorical_accuracy: 0.1519


  3/Unknown  6s 267ms/step - loss: 2.2241 - sparse_categorical_accuracy: 0.1549


  4/Unknown  7s 256ms/step - loss: 2.2228 - sparse_categorical_accuracy: 0.1544


  5/Unknown  7s 256ms/step - loss: 2.2205 - sparse_categorical_accuracy: 0.1546


  6/Unknown  7s 253ms/step - loss: 2.2183 - sparse_categorical_accuracy: 0.1556


  7/Unknown  7s 250ms/step - loss: 2.2135 - sparse_categorical_accuracy: 0.1571


  8/Unknown  8s 247ms/step - loss: 2.2093 - sparse_categorical_accuracy: 0.1584


  9/Unknown  8s 242ms/step - loss: 2.2049 - sparse_categorical_accuracy: 0.1596


 10/Unknown  8s 238ms/step - loss: 2.2003 - sparse_categorical_accuracy: 0.1610


 11/Unknown  8s 236ms/step - loss: 2.1958 - sparse_categorical_accuracy: 0.1626


 12/Unknown  8s 235ms/step - loss: 2.1911 - sparse_categorical_accuracy: 0.1641


 13/Unknown  9s 231ms/step - loss: 2.1862 - sparse_categorical_accuracy: 0.1657


 14/Unknown  9s 228ms/step - loss: 2.1811 - sparse_categorical_accuracy: 0.1676


 15/Unknown  9s 224ms/step - loss: 2.1761 - sparse_categorical_accuracy: 0.1694


 16/Unknown  9s 222ms/step - loss: 2.1707 - sparse_categorical_accuracy: 0.1713


 17/Unknown  9s 220ms/step - loss: 2.1650 - sparse_categorical_accuracy: 0.1734


 18/Unknown  10s 219ms/step - loss: 2.1592 - sparse_categorical_accuracy: 0.1754


 19/Unknown  10s 218ms/step - loss: 2.1535 - sparse_categorical_accuracy: 0.1773


 20/Unknown  10s 218ms/step - loss: 2.1476 - sparse_categorical_accuracy: 0.1792


 21/Unknown  10s 218ms/step - loss: 2.1416 - sparse_categorical_accuracy: 0.1812


 22/Unknown  10s 218ms/step - loss: 2.1355 - sparse_categorical_accuracy: 0.1834


 23/Unknown  11s 218ms/step - loss: 2.1295 - sparse_categorical_accuracy: 0.1855


 24/Unknown  11s 219ms/step - loss: 2.1235 - sparse_categorical_accuracy: 0.1876


 25/Unknown  11s 219ms/step - loss: 2.1174 - sparse_categorical_accuracy: 0.1897


 26/Unknown  11s 219ms/step - loss: 2.1114 - sparse_categorical_accuracy: 0.1918


 27/Unknown  12s 219ms/step - loss: 2.1054 - sparse_categorical_accuracy: 0.1940


 28/Unknown  12s 218ms/step - loss: 2.0995 - sparse_categorical_accuracy: 0.1961


 29/Unknown  12s 218ms/step - loss: 2.0936 - sparse_categorical_accuracy: 0.1982


 30/Unknown  12s 219ms/step - loss: 2.0878 - sparse_categorical_accuracy: 0.2004


 31/Unknown  12s 219ms/step - loss: 2.0819 - sparse_categorical_accuracy: 0.2026


 32/Unknown  13s 219ms/step - loss: 2.0761 - sparse_categorical_accuracy: 0.2049


 33/Unknown  13s 219ms/step - loss: 2.0703 - sparse_categorical_accuracy: 0.2071


 34/Unknown  13s 220ms/step - loss: 2.0645 - sparse_categorical_accuracy: 0.2094


 35/Unknown  13s 220ms/step - loss: 2.0588 - sparse_categorical_accuracy: 0.2117


 36/Unknown  14s 220ms/step - loss: 2.0531 - sparse_categorical_accuracy: 0.2140


 37/Unknown  14s 221ms/step - loss: 2.0475 - sparse_categorical_accuracy: 0.2163


 38/Unknown  14s 220ms/step - loss: 2.0419 - sparse_categorical_accuracy: 0.2186


 39/Unknown  14s 221ms/step - loss: 2.0364 - sparse_categorical_accuracy: 0.2209


 40/Unknown  14s 221ms/step - loss: 2.0308 - sparse_categorical_accuracy: 0.2233


 41/Unknown  15s 220ms/step - loss: 2.0252 - sparse_categorical_accuracy: 0.2256


 42/Unknown  15s 221ms/step - loss: 2.0198 - sparse_categorical_accuracy: 0.2280


 43/Unknown  15s 221ms/step - loss: 2.0143 - sparse_categorical_accuracy: 0.2303


 44/Unknown  15s 221ms/step - loss: 2.0089 - sparse_categorical_accuracy: 0.2326


 45/Unknown  16s 221ms/step - loss: 2.0035 - sparse_categorical_accuracy: 0.2348


 46/Unknown  16s 222ms/step - loss: 1.9982 - sparse_categorical_accuracy: 0.2371


 47/Unknown  16s 221ms/step - loss: 1.9929 - sparse_categorical_accuracy: 0.2393


 48/Unknown  16s 221ms/step - loss: 1.9877 - sparse_categorical_accuracy: 0.2416


 49/Unknown  16s 222ms/step - loss: 1.9824 - sparse_categorical_accuracy: 0.2438


 50/Unknown  17s 222ms/step - loss: 1.9773 - sparse_categorical_accuracy: 0.2460


 51/Unknown  17s 223ms/step - loss: 1.9721 - sparse_categorical_accuracy: 0.2481


 52/Unknown  17s 223ms/step - loss: 1.9670 - sparse_categorical_accuracy: 0.2503


 53/Unknown  17s 224ms/step - loss: 1.9620 - sparse_categorical_accuracy: 0.2525


 54/Unknown  18s 224ms/step - loss: 1.9569 - sparse_categorical_accuracy: 0.2546


 55/Unknown  18s 225ms/step - loss: 1.9519 - sparse_categorical_accuracy: 0.2568


 56/Unknown  18s 226ms/step - loss: 1.9470 - sparse_categorical_accuracy: 0.2589


 57/Unknown  18s 226ms/step - loss: 1.9421 - sparse_categorical_accuracy: 0.2610


 58/Unknown  19s 226ms/step - loss: 1.9373 - sparse_categorical_accuracy: 0.2631


 59/Unknown  19s 226ms/step - loss: 1.9324 - sparse_categorical_accuracy: 0.2652


 60/Unknown  19s 226ms/step - loss: 1.9276 - sparse_categorical_accuracy: 0.2673


 61/Unknown  19s 227ms/step - loss: 1.9229 - sparse_categorical_accuracy: 0.2694


 62/Unknown  20s 227ms/step - loss: 1.9182 - sparse_categorical_accuracy: 0.2714


 63/Unknown  20s 227ms/step - loss: 1.9136 - sparse_categorical_accuracy: 0.2734


 64/Unknown  20s 228ms/step - loss: 1.9090 - sparse_categorical_accuracy: 0.2754


 65/Unknown  20s 228ms/step - loss: 1.9044 - sparse_categorical_accuracy: 0.2774


 66/Unknown  21s 229ms/step - loss: 1.8999 - sparse_categorical_accuracy: 0.2794


 67/Unknown  21s 229ms/step - loss: 1.8954 - sparse_categorical_accuracy: 0.2813


 68/Unknown  21s 229ms/step - loss: 1.8910 - sparse_categorical_accuracy: 0.2832


 69/Unknown  21s 229ms/step - loss: 1.8866 - sparse_categorical_accuracy: 0.2852


 70/Unknown  22s 229ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.2870


 71/Unknown  22s 229ms/step - loss: 1.8779 - sparse_categorical_accuracy: 0.2889


 72/Unknown  22s 230ms/step - loss: 1.8736 - sparse_categorical_accuracy: 0.2908


 73/Unknown  22s 230ms/step - loss: 1.8694 - sparse_categorical_accuracy: 0.2926


 74/Unknown  23s 230ms/step - loss: 1.8652 - sparse_categorical_accuracy: 0.2945


 75/Unknown  23s 230ms/step - loss: 1.8611 - sparse_categorical_accuracy: 0.2963


 76/Unknown  23s 230ms/step - loss: 1.8569 - sparse_categorical_accuracy: 0.2980


 77/Unknown  23s 230ms/step - loss: 1.8529 - sparse_categorical_accuracy: 0.2998


 78/Unknown  23s 229ms/step - loss: 1.8488 - sparse_categorical_accuracy: 0.3015


 79/Unknown  24s 229ms/step - loss: 1.8448 - sparse_categorical_accuracy: 0.3033


 80/Unknown  24s 229ms/step - loss: 1.8408 - sparse_categorical_accuracy: 0.3050


 81/Unknown  24s 228ms/step - loss: 1.8369 - sparse_categorical_accuracy: 0.3067


 82/Unknown  24s 228ms/step - loss: 1.8329 - sparse_categorical_accuracy: 0.3084


 83/Unknown  24s 228ms/step - loss: 1.8290 - sparse_categorical_accuracy: 0.3100


 84/Unknown  25s 227ms/step - loss: 1.8251 - sparse_categorical_accuracy: 0.3117


 85/Unknown  25s 227ms/step - loss: 1.8213 - sparse_categorical_accuracy: 0.3133


 86/Unknown  25s 227ms/step - loss: 1.8175 - sparse_categorical_accuracy: 0.3149


 87/Unknown  25s 227ms/step - loss: 1.8137 - sparse_categorical_accuracy: 0.3165


 88/Unknown  26s 227ms/step - loss: 1.8099 - sparse_categorical_accuracy: 0.3181


 89/Unknown  26s 227ms/step - loss: 1.8062 - sparse_categorical_accuracy: 0.3197


 90/Unknown  26s 226ms/step - loss: 1.8025 - sparse_categorical_accuracy: 0.3213


 91/Unknown  26s 226ms/step - loss: 1.7988 - sparse_categorical_accuracy: 0.3228


 92/Unknown  26s 226ms/step - loss: 1.7952 - sparse_categorical_accuracy: 0.3243


 93/Unknown  27s 226ms/step - loss: 1.7916 - sparse_categorical_accuracy: 0.3258


 94/Unknown  27s 226ms/step - loss: 1.7880 - sparse_categorical_accuracy: 0.3273


 95/Unknown  27s 226ms/step - loss: 1.7845 - sparse_categorical_accuracy: 0.3288


 96/Unknown  27s 226ms/step - loss: 1.7810 - sparse_categorical_accuracy: 0.3303


 97/Unknown  28s 226ms/step - loss: 1.7775 - sparse_categorical_accuracy: 0.3317


 98/Unknown  28s 226ms/step - loss: 1.7741 - sparse_categorical_accuracy: 0.3331


 99/Unknown  28s 227ms/step - loss: 1.7706 - sparse_categorical_accuracy: 0.3345


100/Unknown  28s 227ms/step - loss: 1.7672 - sparse_categorical_accuracy: 0.3359


101/Unknown  29s 227ms/step - loss: 1.7639 - sparse_categorical_accuracy: 0.3373


102/Unknown  29s 228ms/step - loss: 1.7605 - sparse_categorical_accuracy: 0.3387


103/Unknown  29s 228ms/step - loss: 1.7572 - sparse_categorical_accuracy: 0.3401


104/Unknown  29s 228ms/step - loss: 1.7539 - sparse_categorical_accuracy: 0.3414


105/Unknown  30s 228ms/step - loss: 1.7507 - sparse_categorical_accuracy: 0.3428


106/Unknown  30s 229ms/step - loss: 1.7474 - sparse_categorical_accuracy: 0.3441


107/Unknown  30s 228ms/step - loss: 1.7442 - sparse_categorical_accuracy: 0.3454


108/Unknown  30s 228ms/step - loss: 1.7411 - sparse_categorical_accuracy: 0.3467


109/Unknown  30s 228ms/step - loss: 1.7379 - sparse_categorical_accuracy: 0.3480


110/Unknown  31s 228ms/step - loss: 1.7348 - sparse_categorical_accuracy: 0.3493


111/Unknown  31s 228ms/step - loss: 1.7317 - sparse_categorical_accuracy: 0.3505


112/Unknown  31s 228ms/step - loss: 1.7286 - sparse_categorical_accuracy: 0.3518


113/Unknown  31s 228ms/step - loss: 1.7255 - sparse_categorical_accuracy: 0.3530


114/Unknown  32s 228ms/step - loss: 1.7225 - sparse_categorical_accuracy: 0.3543


115/Unknown  32s 228ms/step - loss: 1.7195 - sparse_categorical_accuracy: 0.3555


116/Unknown  32s 228ms/step - loss: 1.7165 - sparse_categorical_accuracy: 0.3567


117/Unknown  32s 229ms/step - loss: 1.7135 - sparse_categorical_accuracy: 0.3579


118/Unknown  33s 229ms/step - loss: 1.7106 - sparse_categorical_accuracy: 0.3591


119/Unknown  33s 229ms/step - loss: 1.7077 - sparse_categorical_accuracy: 0.3602


120/Unknown  33s 229ms/step - loss: 1.7048 - sparse_categorical_accuracy: 0.3614


121/Unknown  33s 230ms/step - loss: 1.7019 - sparse_categorical_accuracy: 0.3626


122/Unknown  34s 229ms/step - loss: 1.6991 - sparse_categorical_accuracy: 0.3637


123/Unknown  34s 229ms/step - loss: 1.6962 - sparse_categorical_accuracy: 0.3648


124/Unknown  34s 229ms/step - loss: 1.6934 - sparse_categorical_accuracy: 0.3660


125/Unknown  34s 229ms/step - loss: 1.6907 - sparse_categorical_accuracy: 0.3671


126/Unknown  34s 229ms/step - loss: 1.6879 - sparse_categorical_accuracy: 0.3682


127/Unknown  35s 229ms/step - loss: 1.6851 - sparse_categorical_accuracy: 0.3693


128/Unknown  35s 229ms/step - loss: 1.6824 - sparse_categorical_accuracy: 0.3704


129/Unknown  35s 229ms/step - loss: 1.6797 - sparse_categorical_accuracy: 0.3715


130/Unknown  35s 228ms/step - loss: 1.6770 - sparse_categorical_accuracy: 0.3725


131/Unknown  35s 228ms/step - loss: 1.6743 - sparse_categorical_accuracy: 0.3736


132/Unknown  36s 228ms/step - loss: 1.6717 - sparse_categorical_accuracy: 0.3746


133/Unknown  36s 227ms/step - loss: 1.6691 - sparse_categorical_accuracy: 0.3757


134/Unknown  36s 227ms/step - loss: 1.6665 - sparse_categorical_accuracy: 0.3767


135/Unknown  36s 227ms/step - loss: 1.6639 - sparse_categorical_accuracy: 0.3777


136/Unknown  36s 227ms/step - loss: 1.6613 - sparse_categorical_accuracy: 0.3788


137/Unknown  37s 227ms/step - loss: 1.6587 - sparse_categorical_accuracy: 0.3798


138/Unknown  37s 227ms/step - loss: 1.6562 - sparse_categorical_accuracy: 0.3808


139/Unknown  37s 227ms/step - loss: 1.6537 - sparse_categorical_accuracy: 0.3818


140/Unknown  37s 227ms/step - loss: 1.6512 - sparse_categorical_accuracy: 0.3828


141/Unknown  38s 227ms/step - loss: 1.6487 - sparse_categorical_accuracy: 0.3837


142/Unknown  38s 227ms/step - loss: 1.6463 - sparse_categorical_accuracy: 0.3847


143/Unknown  38s 227ms/step - loss: 1.6438 - sparse_categorical_accuracy: 0.3857


144/Unknown  38s 227ms/step - loss: 1.6414 - sparse_categorical_accuracy: 0.3866


145/Unknown  39s 227ms/step - loss: 1.6390 - sparse_categorical_accuracy: 0.3876


146/Unknown  39s 227ms/step - loss: 1.6366 - sparse_categorical_accuracy: 0.3885


147/Unknown  39s 227ms/step - loss: 1.6342 - sparse_categorical_accuracy: 0.3894


148/Unknown  39s 227ms/step - loss: 1.6318 - sparse_categorical_accuracy: 0.3904


149/Unknown  39s 228ms/step - loss: 1.6295 - sparse_categorical_accuracy: 0.3913


150/Unknown  40s 228ms/step - loss: 1.6271 - sparse_categorical_accuracy: 0.3922


151/Unknown  40s 228ms/step - loss: 1.6248 - sparse_categorical_accuracy: 0.3931


152/Unknown  40s 228ms/step - loss: 1.6225 - sparse_categorical_accuracy: 0.3940


153/Unknown  40s 228ms/step - loss: 1.6202 - sparse_categorical_accuracy: 0.3949


154/Unknown  41s 228ms/step - loss: 1.6179 - sparse_categorical_accuracy: 0.3958


155/Unknown  41s 228ms/step - loss: 1.6156 - sparse_categorical_accuracy: 0.3967


156/Unknown  41s 228ms/step - loss: 1.6134 - sparse_categorical_accuracy: 0.3975


157/Unknown  41s 229ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.3984


158/Unknown  42s 229ms/step - loss: 1.6089 - sparse_categorical_accuracy: 0.3993


159/Unknown  42s 229ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4001


160/Unknown  42s 229ms/step - loss: 1.6045 - sparse_categorical_accuracy: 0.4010


161/Unknown  42s 229ms/step - loss: 1.6023 - sparse_categorical_accuracy: 0.4018


162/Unknown  43s 229ms/step - loss: 1.6002 - sparse_categorical_accuracy: 0.4027


163/Unknown  43s 229ms/step - loss: 1.5980 - sparse_categorical_accuracy: 0.4035


164/Unknown  43s 229ms/step - loss: 1.5959 - sparse_categorical_accuracy: 0.4043


165/Unknown  43s 229ms/step - loss: 1.5938 - sparse_categorical_accuracy: 0.4051


166/Unknown  44s 230ms/step - loss: 1.5916 - sparse_categorical_accuracy: 0.4060


167/Unknown  44s 230ms/step - loss: 1.5895 - sparse_categorical_accuracy: 0.4068


168/Unknown  44s 230ms/step - loss: 1.5875 - sparse_categorical_accuracy: 0.4076


169/Unknown  44s 230ms/step - loss: 1.5854 - sparse_categorical_accuracy: 0.4084


170/Unknown  45s 230ms/step - loss: 1.5833 - sparse_categorical_accuracy: 0.4092


171/Unknown  45s 230ms/step - loss: 1.5813 - sparse_categorical_accuracy: 0.4099


172/Unknown  45s 230ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4107


173/Unknown  45s 230ms/step - loss: 1.5772 - sparse_categorical_accuracy: 0.4115


174/Unknown  46s 230ms/step - loss: 1.5752 - sparse_categorical_accuracy: 0.4123


175/Unknown  46s 229ms/step - loss: 1.5732 - sparse_categorical_accuracy: 0.4130


176/Unknown  46s 229ms/step - loss: 1.5712 - sparse_categorical_accuracy: 0.4138


177/Unknown  46s 229ms/step - loss: 1.5692 - sparse_categorical_accuracy: 0.4146


178/Unknown  46s 230ms/step - loss: 1.5673 - sparse_categorical_accuracy: 0.4153


179/Unknown  47s 230ms/step - loss: 1.5653 - sparse_categorical_accuracy: 0.4160


180/Unknown  47s 230ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4168


181/Unknown  47s 230ms/step - loss: 1.5615 - sparse_categorical_accuracy: 0.4175


182/Unknown  47s 230ms/step - loss: 1.5596 - sparse_categorical_accuracy: 0.4182


183/Unknown  48s 230ms/step - loss: 1.5577 - sparse_categorical_accuracy: 0.4189


184/Unknown  48s 230ms/step - loss: 1.5558 - sparse_categorical_accuracy: 0.4197


185/Unknown  48s 230ms/step - loss: 1.5539 - sparse_categorical_accuracy: 0.4204


186/Unknown  48s 230ms/step - loss: 1.5520 - sparse_categorical_accuracy: 0.4211


187/Unknown  49s 230ms/step - loss: 1.5502 - sparse_categorical_accuracy: 0.4218


188/Unknown  49s 230ms/step - loss: 1.5483 - sparse_categorical_accuracy: 0.4225


189/Unknown  49s 230ms/step - loss: 1.5465 - sparse_categorical_accuracy: 0.4232


190/Unknown  49s 230ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4239


191/Unknown  50s 231ms/step - loss: 1.5428 - sparse_categorical_accuracy: 0.4245


192/Unknown  50s 231ms/step - loss: 1.5410 - sparse_categorical_accuracy: 0.4252


193/Unknown  50s 231ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4259


194/Unknown  50s 231ms/step - loss: 1.5375 - sparse_categorical_accuracy: 0.4266


195/Unknown  51s 231ms/step - loss: 1.5357 - sparse_categorical_accuracy: 0.4272


196/Unknown  51s 231ms/step - loss: 1.5339 - sparse_categorical_accuracy: 0.4279


197/Unknown  51s 232ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4286


198/Unknown  51s 232ms/step - loss: 1.5304 - sparse_categorical_accuracy: 0.4292


199/Unknown  52s 232ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4299


200/Unknown  52s 232ms/step - loss: 1.5270 - sparse_categorical_accuracy: 0.4305


201/Unknown  52s 232ms/step - loss: 1.5252 - sparse_categorical_accuracy: 0.4312


202/Unknown  52s 232ms/step - loss: 1.5235 - sparse_categorical_accuracy: 0.4318


203/Unknown  53s 232ms/step - loss: 1.5218 - sparse_categorical_accuracy: 0.4324


204/Unknown  53s 232ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4331


205/Unknown  53s 232ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4337


206/Unknown  53s 232ms/step - loss: 1.5168 - sparse_categorical_accuracy: 0.4343


207/Unknown  54s 232ms/step - loss: 1.5151 - sparse_categorical_accuracy: 0.4349


208/Unknown  54s 232ms/step - loss: 1.5135 - sparse_categorical_accuracy: 0.4355


209/Unknown  54s 232ms/step - loss: 1.5118 - sparse_categorical_accuracy: 0.4361


210/Unknown  54s 232ms/step - loss: 1.5102 - sparse_categorical_accuracy: 0.4368


211/Unknown  54s 232ms/step - loss: 1.5086 - sparse_categorical_accuracy: 0.4374


212/Unknown  55s 232ms/step - loss: 1.5069 - sparse_categorical_accuracy: 0.4380


213/Unknown  55s 232ms/step - loss: 1.5053 - sparse_categorical_accuracy: 0.4385


214/Unknown  55s 232ms/step - loss: 1.5037 - sparse_categorical_accuracy: 0.4391


215/Unknown  55s 232ms/step - loss: 1.5021 - sparse_categorical_accuracy: 0.4397


216/Unknown  56s 232ms/step - loss: 1.5005 - sparse_categorical_accuracy: 0.4403


217/Unknown  56s 232ms/step - loss: 1.4990 - sparse_categorical_accuracy: 0.4409


218/Unknown  56s 232ms/step - loss: 1.4974 - sparse_categorical_accuracy: 0.4415


219/Unknown  56s 232ms/step - loss: 1.4958 - sparse_categorical_accuracy: 0.4420


220/Unknown  57s 232ms/step - loss: 1.4943 - sparse_categorical_accuracy: 0.4426


221/Unknown  57s 232ms/step - loss: 1.4927 - sparse_categorical_accuracy: 0.4432


222/Unknown  57s 232ms/step - loss: 1.4912 - sparse_categorical_accuracy: 0.4438


223/Unknown  57s 232ms/step - loss: 1.4896 - sparse_categorical_accuracy: 0.4443


224/Unknown  58s 232ms/step - loss: 1.4881 - sparse_categorical_accuracy: 0.4449


225/Unknown  58s 232ms/step - loss: 1.4866 - sparse_categorical_accuracy: 0.4454


226/Unknown  58s 232ms/step - loss: 1.4851 - sparse_categorical_accuracy: 0.4460


227/Unknown  58s 232ms/step - loss: 1.4836 - sparse_categorical_accuracy: 0.4465


228/Unknown  59s 233ms/step - loss: 1.4821 - sparse_categorical_accuracy: 0.4471


229/Unknown  59s 233ms/step - loss: 1.4806 - sparse_categorical_accuracy: 0.4476


230/Unknown  59s 233ms/step - loss: 1.4791 - sparse_categorical_accuracy: 0.4482


231/Unknown  60s 234ms/step - loss: 1.4776 - sparse_categorical_accuracy: 0.4487


232/Unknown  60s 234ms/step - loss: 1.4761 - sparse_categorical_accuracy: 0.4492


233/Unknown  60s 234ms/step - loss: 1.4747 - sparse_categorical_accuracy: 0.4498


234/Unknown  60s 234ms/step - loss: 1.4732 - sparse_categorical_accuracy: 0.4503


235/Unknown  61s 234ms/step - loss: 1.4718 - sparse_categorical_accuracy: 0.4508


236/Unknown  61s 234ms/step - loss: 1.4703 - sparse_categorical_accuracy: 0.4513


237/Unknown  61s 234ms/step - loss: 1.4689 - sparse_categorical_accuracy: 0.4519


238/Unknown  61s 235ms/step - loss: 1.4675 - sparse_categorical_accuracy: 0.4524


239/Unknown  62s 235ms/step - loss: 1.4661 - sparse_categorical_accuracy: 0.4529


240/Unknown  62s 235ms/step - loss: 1.4646 - sparse_categorical_accuracy: 0.4534


241/Unknown  62s 235ms/step - loss: 1.4632 - sparse_categorical_accuracy: 0.4539


242/Unknown  62s 235ms/step - loss: 1.4618 - sparse_categorical_accuracy: 0.4544


243/Unknown  63s 235ms/step - loss: 1.4604 - sparse_categorical_accuracy: 0.4549


244/Unknown  63s 235ms/step - loss: 1.4591 - sparse_categorical_accuracy: 0.4554


245/Unknown  63s 235ms/step - loss: 1.4577 - sparse_categorical_accuracy: 0.4559


246/Unknown  63s 235ms/step - loss: 1.4563 - sparse_categorical_accuracy: 0.4564


247/Unknown  64s 235ms/step - loss: 1.4549 - sparse_categorical_accuracy: 0.4569


248/Unknown  64s 235ms/step - loss: 1.4536 - sparse_categorical_accuracy: 0.4574


249/Unknown  64s 235ms/step - loss: 1.4522 - sparse_categorical_accuracy: 0.4579


250/Unknown  64s 235ms/step - loss: 1.4509 - sparse_categorical_accuracy: 0.4584


251/Unknown  65s 235ms/step - loss: 1.4495 - sparse_categorical_accuracy: 0.4589


252/Unknown  65s 235ms/step - loss: 1.4482 - sparse_categorical_accuracy: 0.4593


253/Unknown  65s 235ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4598


254/Unknown  65s 235ms/step - loss: 1.4455 - sparse_categorical_accuracy: 0.4603


255/Unknown  65s 235ms/step - loss: 1.4442 - sparse_categorical_accuracy: 0.4608


256/Unknown  66s 235ms/step - loss: 1.4429 - sparse_categorical_accuracy: 0.4612


257/Unknown  66s 235ms/step - loss: 1.4416 - sparse_categorical_accuracy: 0.4617


258/Unknown  66s 235ms/step - loss: 1.4403 - sparse_categorical_accuracy: 0.4622


259/Unknown  66s 235ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4626


260/Unknown  67s 235ms/step - loss: 1.4377 - sparse_categorical_accuracy: 0.4631


261/Unknown  67s 235ms/step - loss: 1.4364 - sparse_categorical_accuracy: 0.4636


262/Unknown  67s 235ms/step - loss: 1.4352 - sparse_categorical_accuracy: 0.4640


263/Unknown  67s 235ms/step - loss: 1.4339 - sparse_categorical_accuracy: 0.4645


264/Unknown  68s 235ms/step - loss: 1.4326 - sparse_categorical_accuracy: 0.4649


265/Unknown  68s 235ms/step - loss: 1.4314 - sparse_categorical_accuracy: 0.4654


266/Unknown  68s 235ms/step - loss: 1.4301 - sparse_categorical_accuracy: 0.4658


267/Unknown  68s 235ms/step - loss: 1.4289 - sparse_categorical_accuracy: 0.4663


268/Unknown  69s 235ms/step - loss: 1.4276 - sparse_categorical_accuracy: 0.4667


269/Unknown  69s 236ms/step - loss: 1.4264 - sparse_categorical_accuracy: 0.4672


270/Unknown  69s 236ms/step - loss: 1.4251 - sparse_categorical_accuracy: 0.4676


271/Unknown  70s 236ms/step - loss: 1.4239 - sparse_categorical_accuracy: 0.4680


272/Unknown  70s 237ms/step - loss: 1.4227 - sparse_categorical_accuracy: 0.4685


273/Unknown  70s 237ms/step - loss: 1.4215 - sparse_categorical_accuracy: 0.4689


274/Unknown  70s 237ms/step - loss: 1.4202 - sparse_categorical_accuracy: 0.4694


275/Unknown  71s 237ms/step - loss: 1.4190 - sparse_categorical_accuracy: 0.4698


276/Unknown  71s 237ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702


277/Unknown  71s 237ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4706


278/Unknown  71s 237ms/step - loss: 1.4154 - sparse_categorical_accuracy: 0.4711


279/Unknown  72s 237ms/step - loss: 1.4142 - sparse_categorical_accuracy: 0.4715


280/Unknown  72s 237ms/step - loss: 1.4131 - sparse_categorical_accuracy: 0.4719


281/Unknown  72s 237ms/step - loss: 1.4119 - sparse_categorical_accuracy: 0.4723


282/Unknown  72s 237ms/step - loss: 1.4107 - sparse_categorical_accuracy: 0.4728


283/Unknown  73s 237ms/step - loss: 1.4095 - sparse_categorical_accuracy: 0.4732


284/Unknown  73s 237ms/step - loss: 1.4084 - sparse_categorical_accuracy: 0.4736


285/Unknown  73s 237ms/step - loss: 1.4072 - sparse_categorical_accuracy: 0.4740


286/Unknown  73s 237ms/step - loss: 1.4061 - sparse_categorical_accuracy: 0.4744


287/Unknown  74s 237ms/step - loss: 1.4049 - sparse_categorical_accuracy: 0.4748


288/Unknown  74s 237ms/step - loss: 1.4038 - sparse_categorical_accuracy: 0.4752


289/Unknown  74s 238ms/step - loss: 1.4026 - sparse_categorical_accuracy: 0.4756


290/Unknown  74s 238ms/step - loss: 1.4015 - sparse_categorical_accuracy: 0.4760


291/Unknown  75s 238ms/step - loss: 1.4003 - sparse_categorical_accuracy: 0.4764


292/Unknown  75s 238ms/step - loss: 1.3992 - sparse_categorical_accuracy: 0.4768


293/Unknown  75s 238ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4772


294/Unknown  75s 238ms/step - loss: 1.3970 - sparse_categorical_accuracy: 0.4776


295/Unknown  76s 238ms/step - loss: 1.3959 - sparse_categorical_accuracy: 0.4780


296/Unknown  76s 238ms/step - loss: 1.3947 - sparse_categorical_accuracy: 0.4784


297/Unknown  76s 238ms/step - loss: 1.3936 - sparse_categorical_accuracy: 0.4788


298/Unknown  77s 238ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4792


299/Unknown  77s 238ms/step - loss: 1.3914 - sparse_categorical_accuracy: 0.4796


300/Unknown  77s 238ms/step - loss: 1.3904 - sparse_categorical_accuracy: 0.4800


301/Unknown  77s 238ms/step - loss: 1.3893 - sparse_categorical_accuracy: 0.4803


302/Unknown  78s 238ms/step - loss: 1.3882 - sparse_categorical_accuracy: 0.4807


303/Unknown  78s 238ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4811


304/Unknown  78s 238ms/step - loss: 1.3860 - sparse_categorical_accuracy: 0.4815


305/Unknown  78s 238ms/step - loss: 1.3850 - sparse_categorical_accuracy: 0.4819


306/Unknown  79s 239ms/step - loss: 1.3839 - sparse_categorical_accuracy: 0.4822


307/Unknown  79s 239ms/step - loss: 1.3828 - sparse_categorical_accuracy: 0.4826


308/Unknown  79s 239ms/step - loss: 1.3818 - sparse_categorical_accuracy: 0.4830


309/Unknown  79s 239ms/step - loss: 1.3807 - sparse_categorical_accuracy: 0.4833


310/Unknown  79s 238ms/step - loss: 1.3797 - sparse_categorical_accuracy: 0.4837


311/Unknown  80s 238ms/step - loss: 1.3786 - sparse_categorical_accuracy: 0.4841


312/Unknown  80s 239ms/step - loss: 1.3776 - sparse_categorical_accuracy: 0.4844


313/Unknown  80s 239ms/step - loss: 1.3766 - sparse_categorical_accuracy: 0.4848


314/Unknown  80s 239ms/step - loss: 1.3755 - sparse_categorical_accuracy: 0.4852


315/Unknown  81s 239ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4855


316/Unknown  81s 239ms/step - loss: 1.3735 - sparse_categorical_accuracy: 0.4859


317/Unknown  81s 239ms/step - loss: 1.3725 - sparse_categorical_accuracy: 0.4862


318/Unknown  81s 239ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4866


319/Unknown  82s 239ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4869


320/Unknown  82s 239ms/step - loss: 1.3694 - sparse_categorical_accuracy: 0.4873


321/Unknown  82s 239ms/step - loss: 1.3684 - sparse_categorical_accuracy: 0.4876


322/Unknown  82s 239ms/step - loss: 1.3674 - sparse_categorical_accuracy: 0.4880


323/Unknown  83s 239ms/step - loss: 1.3664 - sparse_categorical_accuracy: 0.4883


324/Unknown  83s 239ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4887


325/Unknown  83s 239ms/step - loss: 1.3645 - sparse_categorical_accuracy: 0.4890


326/Unknown  83s 239ms/step - loss: 1.3635 - sparse_categorical_accuracy: 0.4894


327/Unknown  84s 239ms/step - loss: 1.3625 - sparse_categorical_accuracy: 0.4897


328/Unknown  84s 239ms/step - loss: 1.3615 - sparse_categorical_accuracy: 0.4901


329/Unknown  84s 239ms/step - loss: 1.3606 - sparse_categorical_accuracy: 0.4904


330/Unknown  85s 239ms/step - loss: 1.3596 - sparse_categorical_accuracy: 0.4907


331/Unknown  85s 240ms/step - loss: 1.3586 - sparse_categorical_accuracy: 0.4911


332/Unknown  85s 240ms/step - loss: 1.3577 - sparse_categorical_accuracy: 0.4914


333/Unknown  85s 240ms/step - loss: 1.3567 - sparse_categorical_accuracy: 0.4917


334/Unknown  86s 240ms/step - loss: 1.3558 - sparse_categorical_accuracy: 0.4921


335/Unknown  86s 240ms/step - loss: 1.3548 - sparse_categorical_accuracy: 0.4924


336/Unknown  86s 240ms/step - loss: 1.3539 - sparse_categorical_accuracy: 0.4927


337/Unknown  86s 240ms/step - loss: 1.3529 - sparse_categorical_accuracy: 0.4931


338/Unknown  87s 240ms/step - loss: 1.3520 - sparse_categorical_accuracy: 0.4934


339/Unknown  87s 240ms/step - loss: 1.3510 - sparse_categorical_accuracy: 0.4937


340/Unknown  87s 240ms/step - loss: 1.3501 - sparse_categorical_accuracy: 0.4940


341/Unknown  87s 240ms/step - loss: 1.3492 - sparse_categorical_accuracy: 0.4944


342/Unknown  88s 240ms/step - loss: 1.3483 - sparse_categorical_accuracy: 0.4947


343/Unknown  88s 240ms/step - loss: 1.3473 - sparse_categorical_accuracy: 0.4950


344/Unknown  88s 240ms/step - loss: 1.3464 - sparse_categorical_accuracy: 0.4953


345/Unknown  89s 240ms/step - loss: 1.3455 - sparse_categorical_accuracy: 0.4956


346/Unknown  89s 241ms/step - loss: 1.3446 - sparse_categorical_accuracy: 0.4959


347/Unknown  89s 241ms/step - loss: 1.3437 - sparse_categorical_accuracy: 0.4963


348/Unknown  89s 241ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4966


349/Unknown  90s 241ms/step - loss: 1.3419 - sparse_categorical_accuracy: 0.4969


350/Unknown  90s 241ms/step - loss: 1.3410 - sparse_categorical_accuracy: 0.4972


351/Unknown  90s 241ms/step - loss: 1.3401 - sparse_categorical_accuracy: 0.4975


352/Unknown  90s 241ms/step - loss: 1.3392 - sparse_categorical_accuracy: 0.4978


353/Unknown  91s 241ms/step - loss: 1.3383 - sparse_categorical_accuracy: 0.4981


354/Unknown  91s 241ms/step - loss: 1.3374 - sparse_categorical_accuracy: 0.4984


355/Unknown  91s 241ms/step - loss: 1.3365 - sparse_categorical_accuracy: 0.4987


356/Unknown  92s 242ms/step - loss: 1.3356 - sparse_categorical_accuracy: 0.4990


357/Unknown  92s 242ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4994


358/Unknown  92s 242ms/step - loss: 1.3339 - sparse_categorical_accuracy: 0.4997


359/Unknown  92s 242ms/step - loss: 1.3330 - sparse_categorical_accuracy: 0.5000


360/Unknown  93s 242ms/step - loss: 1.3321 - sparse_categorical_accuracy: 0.5003


361/Unknown  93s 242ms/step - loss: 1.3313 - sparse_categorical_accuracy: 0.5006


362/Unknown  93s 242ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.5009


363/Unknown  94s 243ms/step - loss: 1.3296 - sparse_categorical_accuracy: 0.5011


364/Unknown  94s 243ms/step - loss: 1.3287 - sparse_categorical_accuracy: 0.5014


365/Unknown  94s 243ms/step - loss: 1.3279 - sparse_categorical_accuracy: 0.5017


366/Unknown  94s 243ms/step - loss: 1.3270 - sparse_categorical_accuracy: 0.5020


367/Unknown  95s 242ms/step - loss: 1.3262 - sparse_categorical_accuracy: 0.5023


368/Unknown  95s 242ms/step - loss: 1.3253 - sparse_categorical_accuracy: 0.5026


369/Unknown  95s 243ms/step - loss: 1.3245 - sparse_categorical_accuracy: 0.5029


370/Unknown  95s 243ms/step - loss: 1.3236 - sparse_categorical_accuracy: 0.5032


371/Unknown  96s 243ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.5035


372/Unknown  96s 243ms/step - loss: 1.3220 - sparse_categorical_accuracy: 0.5038


373/Unknown  96s 243ms/step - loss: 1.3211 - sparse_categorical_accuracy: 0.5041


374/Unknown  96s 243ms/step - loss: 1.3203 - sparse_categorical_accuracy: 0.5043


375/Unknown  97s 243ms/step - loss: 1.3195 - sparse_categorical_accuracy: 0.5046


376/Unknown  97s 243ms/step - loss: 1.3187 - sparse_categorical_accuracy: 0.5049


377/Unknown  97s 243ms/step - loss: 1.3179 - sparse_categorical_accuracy: 0.5052


378/Unknown  97s 243ms/step - loss: 1.3170 - sparse_categorical_accuracy: 0.5055


379/Unknown  98s 243ms/step - loss: 1.3162 - sparse_categorical_accuracy: 0.5057


380/Unknown  98s 243ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5060


381/Unknown  98s 243ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5063


382/Unknown  98s 243ms/step - loss: 1.3138 - sparse_categorical_accuracy: 0.5066


383/Unknown  99s 243ms/step - loss: 1.3130 - sparse_categorical_accuracy: 0.5068


384/Unknown  99s 243ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5071


385/Unknown  99s 243ms/step - loss: 1.3114 - sparse_categorical_accuracy: 0.5074


386/Unknown  99s 243ms/step - loss: 1.3106 - sparse_categorical_accuracy: 0.5077


387/Unknown  100s 243ms/step - loss: 1.3098 - sparse_categorical_accuracy: 0.5079


388/Unknown  100s 243ms/step - loss: 1.3091 - sparse_categorical_accuracy: 0.5082


389/Unknown  100s 243ms/step - loss: 1.3083 - sparse_categorical_accuracy: 0.5085


390/Unknown  101s 243ms/step - loss: 1.3075 - sparse_categorical_accuracy: 0.5087


391/Unknown  101s 244ms/step - loss: 1.3067 - sparse_categorical_accuracy: 0.5090


392/Unknown  101s 244ms/step - loss: 1.3059 - sparse_categorical_accuracy: 0.5093


393/Unknown  101s 244ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5095


394/Unknown  102s 244ms/step - loss: 1.3044 - sparse_categorical_accuracy: 0.5098


395/Unknown  102s 244ms/step - loss: 1.3036 - sparse_categorical_accuracy: 0.5101


396/Unknown  102s 244ms/step - loss: 1.3029 - sparse_categorical_accuracy: 0.5103


397/Unknown  102s 244ms/step - loss: 1.3021 - sparse_categorical_accuracy: 0.5106


398/Unknown  103s 244ms/step - loss: 1.3013 - sparse_categorical_accuracy: 0.5108


399/Unknown  103s 244ms/step - loss: 1.3006 - sparse_categorical_accuracy: 0.5111


400/Unknown  103s 244ms/step - loss: 1.2998 - sparse_categorical_accuracy: 0.5114


401/Unknown  103s 244ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5116


402/Unknown  104s 244ms/step - loss: 1.2983 - sparse_categorical_accuracy: 0.5119


403/Unknown  104s 244ms/step - loss: 1.2976 - sparse_categorical_accuracy: 0.5121


404/Unknown  104s 244ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5124


405/Unknown  104s 244ms/step - loss: 1.2961 - sparse_categorical_accuracy: 0.5126


406/Unknown  105s 244ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5129


407/Unknown  105s 244ms/step - loss: 1.2946 - sparse_categorical_accuracy: 0.5131


408/Unknown  105s 244ms/step - loss: 1.2939 - sparse_categorical_accuracy: 0.5134


409/Unknown  105s 244ms/step - loss: 1.2931 - sparse_categorical_accuracy: 0.5136


410/Unknown  106s 244ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5139


411/Unknown  106s 244ms/step - loss: 1.2917 - sparse_categorical_accuracy: 0.5141


412/Unknown  106s 244ms/step - loss: 1.2909 - sparse_categorical_accuracy: 0.5144


413/Unknown  106s 244ms/step - loss: 1.2902 - sparse_categorical_accuracy: 0.5146


414/Unknown  107s 244ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5149


415/Unknown  107s 244ms/step - loss: 1.2888 - sparse_categorical_accuracy: 0.5151


416/Unknown  107s 244ms/step - loss: 1.2880 - sparse_categorical_accuracy: 0.5154


417/Unknown  107s 244ms/step - loss: 1.2873 - sparse_categorical_accuracy: 0.5156


418/Unknown  108s 244ms/step - loss: 1.2866 - sparse_categorical_accuracy: 0.5159


419/Unknown  108s 244ms/step - loss: 1.2859 - sparse_categorical_accuracy: 0.5161


420/Unknown  108s 244ms/step - loss: 1.2852 - sparse_categorical_accuracy: 0.5163


421/Unknown  108s 244ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5166


422/Unknown  109s 244ms/step - loss: 1.2838 - sparse_categorical_accuracy: 0.5168


423/Unknown  109s 244ms/step - loss: 1.2831 - sparse_categorical_accuracy: 0.5171


424/Unknown  109s 244ms/step - loss: 1.2824 - sparse_categorical_accuracy: 0.5173


425/Unknown  109s 244ms/step - loss: 1.2817 - sparse_categorical_accuracy: 0.5175


426/Unknown  110s 245ms/step - loss: 1.2810 - sparse_categorical_accuracy: 0.5178


427/Unknown  110s 245ms/step - loss: 1.2803 - sparse_categorical_accuracy: 0.5180


428/Unknown  110s 245ms/step - loss: 1.2796 - sparse_categorical_accuracy: 0.5182


429/Unknown  110s 245ms/step - loss: 1.2789 - sparse_categorical_accuracy: 0.5185


430/Unknown  111s 245ms/step - loss: 1.2782 - sparse_categorical_accuracy: 0.5187


431/Unknown  111s 245ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5189


432/Unknown  111s 245ms/step - loss: 1.2768 - sparse_categorical_accuracy: 0.5192


433/Unknown  112s 245ms/step - loss: 1.2762 - sparse_categorical_accuracy: 0.5194


434/Unknown  112s 245ms/step - loss: 1.2755 - sparse_categorical_accuracy: 0.5196


435/Unknown  112s 245ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5199


436/Unknown  113s 245ms/step - loss: 1.2741 - sparse_categorical_accuracy: 0.5201


437/Unknown  113s 246ms/step - loss: 1.2735 - sparse_categorical_accuracy: 0.5203


438/Unknown  113s 246ms/step - loss: 1.2728 - sparse_categorical_accuracy: 0.5206


439/Unknown  113s 246ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5208


440/Unknown  114s 246ms/step - loss: 1.2714 - sparse_categorical_accuracy: 0.5210


441/Unknown  114s 246ms/step - loss: 1.2708 - sparse_categorical_accuracy: 0.5212


442/Unknown  114s 246ms/step - loss: 1.2701 - sparse_categorical_accuracy: 0.5215


443/Unknown  115s 246ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5217


444/Unknown  115s 246ms/step - loss: 1.2688 - sparse_categorical_accuracy: 0.5219


445/Unknown  115s 246ms/step - loss: 1.2681 - sparse_categorical_accuracy: 0.5221


446/Unknown  115s 246ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5224


447/Unknown  116s 247ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5226


448/Unknown  116s 247ms/step - loss: 1.2662 - sparse_categorical_accuracy: 0.5228


449/Unknown  116s 247ms/step - loss: 1.2655 - sparse_categorical_accuracy: 0.5230


450/Unknown  117s 247ms/step - loss: 1.2649 - sparse_categorical_accuracy: 0.5232


451/Unknown  117s 247ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5235


452/Unknown  117s 247ms/step - loss: 1.2636 - sparse_categorical_accuracy: 0.5237


453/Unknown  117s 247ms/step - loss: 1.2630 - sparse_categorical_accuracy: 0.5239


454/Unknown  118s 247ms/step - loss: 1.2623 - sparse_categorical_accuracy: 0.5241


455/Unknown  118s 247ms/step - loss: 1.2617 - sparse_categorical_accuracy: 0.5243


456/Unknown  118s 247ms/step - loss: 1.2610 - sparse_categorical_accuracy: 0.5245


457/Unknown  118s 247ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5248


458/Unknown  119s 247ms/step - loss: 1.2598 - sparse_categorical_accuracy: 0.5250


459/Unknown  119s 247ms/step - loss: 1.2591 - sparse_categorical_accuracy: 0.5252


460/Unknown  119s 247ms/step - loss: 1.2585 - sparse_categorical_accuracy: 0.5254


461/Unknown  119s 247ms/step - loss: 1.2579 - sparse_categorical_accuracy: 0.5256


462/Unknown  120s 247ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5258


463/Unknown  120s 247ms/step - loss: 1.2566 - sparse_categorical_accuracy: 0.5260


464/Unknown  120s 247ms/step - loss: 1.2560 - sparse_categorical_accuracy: 0.5262


465/Unknown  121s 247ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5264


466/Unknown  121s 247ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5267


467/Unknown  121s 247ms/step - loss: 1.2541 - sparse_categorical_accuracy: 0.5269


468/Unknown  121s 247ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5271


469/Unknown  122s 247ms/step - loss: 1.2529 - sparse_categorical_accuracy: 0.5273


470/Unknown  122s 248ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5275


471/Unknown  122s 248ms/step - loss: 1.2517 - sparse_categorical_accuracy: 0.5277


472/Unknown  123s 248ms/step - loss: 1.2511 - sparse_categorical_accuracy: 0.5279


473/Unknown  123s 248ms/step - loss: 1.2505 - sparse_categorical_accuracy: 0.5281


474/Unknown  123s 248ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5283


475/Unknown  124s 249ms/step - loss: 1.2493 - sparse_categorical_accuracy: 0.5285


476/Unknown  124s 249ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5287


477/Unknown  124s 249ms/step - loss: 1.2481 - sparse_categorical_accuracy: 0.5289


478/Unknown  124s 249ms/step - loss: 1.2475 - sparse_categorical_accuracy: 0.5291


479/Unknown  125s 249ms/step - loss: 1.2469 - sparse_categorical_accuracy: 0.5293


480/Unknown  125s 249ms/step - loss: 1.2463 - sparse_categorical_accuracy: 0.5295


481/Unknown  125s 249ms/step - loss: 1.2457 - sparse_categorical_accuracy: 0.5297


482/Unknown  125s 248ms/step - loss: 1.2451 - sparse_categorical_accuracy: 0.5299


483/Unknown  126s 248ms/step - loss: 1.2445 - sparse_categorical_accuracy: 0.5301


484/Unknown  126s 249ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5303


485/Unknown  126s 249ms/step - loss: 1.2433 - sparse_categorical_accuracy: 0.5305


486/Unknown  126s 249ms/step - loss: 1.2427 - sparse_categorical_accuracy: 0.5307


487/Unknown  127s 249ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5309


488/Unknown  127s 249ms/step - loss: 1.2416 - sparse_categorical_accuracy: 0.5311


489/Unknown  127s 249ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5313


490/Unknown  127s 249ms/step - loss: 1.2404 - sparse_categorical_accuracy: 0.5315


491/Unknown  128s 249ms/step - loss: 1.2398 - sparse_categorical_accuracy: 0.5317


492/Unknown  128s 249ms/step - loss: 1.2392 - sparse_categorical_accuracy: 0.5319


493/Unknown  128s 249ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5321


494/Unknown  129s 249ms/step - loss: 1.2381 - sparse_categorical_accuracy: 0.5323


495/Unknown  129s 249ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5325


496/Unknown  129s 249ms/step - loss: 1.2369 - sparse_categorical_accuracy: 0.5326


497/Unknown  129s 249ms/step - loss: 1.2364 - sparse_categorical_accuracy: 0.5328


498/Unknown  130s 249ms/step - loss: 1.2358 - sparse_categorical_accuracy: 0.5330


499/Unknown  130s 249ms/step - loss: 1.2352 - sparse_categorical_accuracy: 0.5332


500/Unknown  130s 249ms/step - loss: 1.2347 - sparse_categorical_accuracy: 0.5334


501/Unknown  130s 249ms/step - loss: 1.2341 - sparse_categorical_accuracy: 0.5336


502/Unknown  131s 249ms/step - loss: 1.2336 - sparse_categorical_accuracy: 0.5338


503/Unknown  131s 249ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5340


504/Unknown  131s 249ms/step - loss: 1.2324 - sparse_categorical_accuracy: 0.5342


505/Unknown  131s 249ms/step - loss: 1.2319 - sparse_categorical_accuracy: 0.5343


506/Unknown  132s 249ms/step - loss: 1.2313 - sparse_categorical_accuracy: 0.5345


507/Unknown  132s 250ms/step - loss: 1.2308 - sparse_categorical_accuracy: 0.5347


508/Unknown  133s 250ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5349


509/Unknown  133s 250ms/step - loss: 1.2297 - sparse_categorical_accuracy: 0.5351


510/Unknown  133s 250ms/step - loss: 1.2291 - sparse_categorical_accuracy: 0.5353


511/Unknown  133s 250ms/step - loss: 1.2286 - sparse_categorical_accuracy: 0.5355


512/Unknown  134s 250ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5356


513/Unknown  134s 250ms/step - loss: 1.2275 - sparse_categorical_accuracy: 0.5358


514/Unknown  134s 250ms/step - loss: 1.2269 - sparse_categorical_accuracy: 0.5360


515/Unknown  134s 250ms/step - loss: 1.2264 - sparse_categorical_accuracy: 0.5362


516/Unknown  135s 250ms/step - loss: 1.2258 - sparse_categorical_accuracy: 0.5364


517/Unknown  135s 250ms/step - loss: 1.2253 - sparse_categorical_accuracy: 0.5366


518/Unknown  135s 250ms/step - loss: 1.2248 - sparse_categorical_accuracy: 0.5367


519/Unknown  136s 251ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5369


520/Unknown  136s 251ms/step - loss: 1.2237 - sparse_categorical_accuracy: 0.5371


521/Unknown  136s 251ms/step - loss: 1.2231 - sparse_categorical_accuracy: 0.5373


522/Unknown  136s 251ms/step - loss: 1.2226 - sparse_categorical_accuracy: 0.5375


523/Unknown  137s 251ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5376


524/Unknown  137s 251ms/step - loss: 1.2215 - sparse_categorical_accuracy: 0.5378


525/Unknown  137s 251ms/step - loss: 1.2210 - sparse_categorical_accuracy: 0.5380


526/Unknown  137s 251ms/step - loss: 1.2205 - sparse_categorical_accuracy: 0.5382


527/Unknown  138s 251ms/step - loss: 1.2200 - sparse_categorical_accuracy: 0.5383


528/Unknown  138s 251ms/step - loss: 1.2194 - sparse_categorical_accuracy: 0.5385


529/Unknown  138s 251ms/step - loss: 1.2189 - sparse_categorical_accuracy: 0.5387


530/Unknown  138s 251ms/step - loss: 1.2184 - sparse_categorical_accuracy: 0.5389


531/Unknown  139s 251ms/step - loss: 1.2179 - sparse_categorical_accuracy: 0.5390


532/Unknown  139s 251ms/step - loss: 1.2173 - sparse_categorical_accuracy: 0.5392


533/Unknown  139s 251ms/step - loss: 1.2168 - sparse_categorical_accuracy: 0.5394


534/Unknown  140s 251ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5396


535/Unknown  140s 251ms/step - loss: 1.2158 - sparse_categorical_accuracy: 0.5397


536/Unknown  140s 251ms/step - loss: 1.2153 - sparse_categorical_accuracy: 0.5399


537/Unknown  140s 251ms/step - loss: 1.2148 - sparse_categorical_accuracy: 0.5401


538/Unknown  141s 251ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5402


539/Unknown  141s 251ms/step - loss: 1.2137 - sparse_categorical_accuracy: 0.5404


540/Unknown  141s 251ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5406


541/Unknown  141s 251ms/step - loss: 1.2127 - sparse_categorical_accuracy: 0.5408


542/Unknown  142s 251ms/step - loss: 1.2122 - sparse_categorical_accuracy: 0.5409


543/Unknown  142s 251ms/step - loss: 1.2117 - sparse_categorical_accuracy: 0.5411


544/Unknown  142s 251ms/step - loss: 1.2112 - sparse_categorical_accuracy: 0.5413


545/Unknown  143s 252ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5414


546/Unknown  143s 252ms/step - loss: 1.2102 - sparse_categorical_accuracy: 0.5416


547/Unknown  143s 252ms/step - loss: 1.2097 - sparse_categorical_accuracy: 0.5418


548/Unknown  144s 252ms/step - loss: 1.2092 - sparse_categorical_accuracy: 0.5419


549/Unknown  144s 252ms/step - loss: 1.2087 - sparse_categorical_accuracy: 0.5421


550/Unknown  144s 252ms/step - loss: 1.2082 - sparse_categorical_accuracy: 0.5423


551/Unknown  144s 252ms/step - loss: 1.2077 - sparse_categorical_accuracy: 0.5424


552/Unknown  145s 252ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5426


553/Unknown  145s 252ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5428


554/Unknown  145s 252ms/step - loss: 1.2062 - sparse_categorical_accuracy: 0.5429


555/Unknown  146s 252ms/step - loss: 1.2057 - sparse_categorical_accuracy: 0.5431


556/Unknown  146s 252ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5433


557/Unknown  146s 252ms/step - loss: 1.2047 - sparse_categorical_accuracy: 0.5434


558/Unknown  146s 253ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5436


559/Unknown  147s 253ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5437


560/Unknown  147s 253ms/step - loss: 1.2033 - sparse_categorical_accuracy: 0.5439


561/Unknown  147s 253ms/step - loss: 1.2028 - sparse_categorical_accuracy: 0.5441


562/Unknown  148s 253ms/step - loss: 1.2023 - sparse_categorical_accuracy: 0.5442


563/Unknown  148s 253ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5444


564/Unknown  148s 253ms/step - loss: 1.2013 - sparse_categorical_accuracy: 0.5445


565/Unknown  148s 253ms/step - loss: 1.2009 - sparse_categorical_accuracy: 0.5447


566/Unknown  149s 253ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5449


567/Unknown  149s 253ms/step - loss: 1.1999 - sparse_categorical_accuracy: 0.5450


568/Unknown  149s 253ms/step - loss: 1.1994 - sparse_categorical_accuracy: 0.5452


569/Unknown  149s 253ms/step - loss: 1.1990 - sparse_categorical_accuracy: 0.5453


570/Unknown  150s 253ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5455


571/Unknown  150s 253ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5456


572/Unknown  150s 253ms/step - loss: 1.1975 - sparse_categorical_accuracy: 0.5458


573/Unknown  150s 253ms/step - loss: 1.1971 - sparse_categorical_accuracy: 0.5460


574/Unknown  150s 252ms/step - loss: 1.1966 - sparse_categorical_accuracy: 0.5461


575/Unknown  151s 252ms/step - loss: 1.1961 - sparse_categorical_accuracy: 0.5463


576/Unknown  151s 252ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5464


577/Unknown  151s 252ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5466


578/Unknown  151s 252ms/step - loss: 1.1947 - sparse_categorical_accuracy: 0.5467


579/Unknown  152s 252ms/step - loss: 1.1943 - sparse_categorical_accuracy: 0.5469


580/Unknown  152s 252ms/step - loss: 1.1938 - sparse_categorical_accuracy: 0.5470


581/Unknown  152s 252ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5472


582/Unknown  152s 252ms/step - loss: 1.1929 - sparse_categorical_accuracy: 0.5473


583/Unknown  153s 252ms/step - loss: 1.1924 - sparse_categorical_accuracy: 0.5475


584/Unknown  153s 252ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5476


585/Unknown  153s 252ms/step - loss: 1.1915 - sparse_categorical_accuracy: 0.5478


586/Unknown  153s 252ms/step - loss: 1.1911 - sparse_categorical_accuracy: 0.5479


587/Unknown  153s 252ms/step - loss: 1.1906 - sparse_categorical_accuracy: 0.5481


588/Unknown  154s 252ms/step - loss: 1.1901 - sparse_categorical_accuracy: 0.5482


589/Unknown  154s 252ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5484


590/Unknown  154s 252ms/step - loss: 1.1892 - sparse_categorical_accuracy: 0.5485


591/Unknown  155s 252ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5487


592/Unknown  155s 252ms/step - loss: 1.1883 - sparse_categorical_accuracy: 0.5488


593/Unknown  155s 252ms/step - loss: 1.1879 - sparse_categorical_accuracy: 0.5490


594/Unknown  155s 252ms/step - loss: 1.1874 - sparse_categorical_accuracy: 0.5491


595/Unknown  156s 252ms/step - loss: 1.1870 - sparse_categorical_accuracy: 0.5493


596/Unknown  156s 252ms/step - loss: 1.1865 - sparse_categorical_accuracy: 0.5494


597/Unknown  156s 252ms/step - loss: 1.1861 - sparse_categorical_accuracy: 0.5496


598/Unknown  156s 252ms/step - loss: 1.1857 - sparse_categorical_accuracy: 0.5497


599/Unknown  157s 252ms/step - loss: 1.1852 - sparse_categorical_accuracy: 0.5499


600/Unknown  157s 252ms/step - loss: 1.1848 - sparse_categorical_accuracy: 0.5500


601/Unknown  157s 252ms/step - loss: 1.1843 - sparse_categorical_accuracy: 0.5502


602/Unknown  157s 252ms/step - loss: 1.1839 - sparse_categorical_accuracy: 0.5503


603/Unknown  158s 252ms/step - loss: 1.1834 - sparse_categorical_accuracy: 0.5505


604/Unknown  158s 252ms/step - loss: 1.1830 - sparse_categorical_accuracy: 0.5506


605/Unknown  158s 252ms/step - loss: 1.1826 - sparse_categorical_accuracy: 0.5508


606/Unknown  158s 252ms/step - loss: 1.1821 - sparse_categorical_accuracy: 0.5509


607/Unknown  159s 252ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5510


608/Unknown  159s 252ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5512


609/Unknown  159s 252ms/step - loss: 1.1808 - sparse_categorical_accuracy: 0.5513


610/Unknown  159s 252ms/step - loss: 1.1804 - sparse_categorical_accuracy: 0.5515


611/Unknown  160s 252ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5516


612/Unknown  160s 252ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5518


613/Unknown  160s 252ms/step - loss: 1.1791 - sparse_categorical_accuracy: 0.5519


614/Unknown  160s 252ms/step - loss: 1.1787 - sparse_categorical_accuracy: 0.5520


615/Unknown  161s 252ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5522


616/Unknown  161s 252ms/step - loss: 1.1778 - sparse_categorical_accuracy: 0.5523


617/Unknown  161s 252ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5525


618/Unknown  161s 252ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5526


619/Unknown  162s 252ms/step - loss: 1.1765 - sparse_categorical_accuracy: 0.5527


620/Unknown  162s 252ms/step - loss: 1.1761 - sparse_categorical_accuracy: 0.5529


621/Unknown  162s 252ms/step - loss: 1.1757 - sparse_categorical_accuracy: 0.5530


622/Unknown  163s 252ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5532


623/Unknown  163s 252ms/step - loss: 1.1749 - sparse_categorical_accuracy: 0.5533


624/Unknown  163s 252ms/step - loss: 1.1744 - sparse_categorical_accuracy: 0.5534


625/Unknown  163s 252ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5536


626/Unknown  164s 252ms/step - loss: 1.1736 - sparse_categorical_accuracy: 0.5537


627/Unknown  164s 252ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5538


628/Unknown  164s 253ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5540


629/Unknown  164s 253ms/step - loss: 1.1724 - sparse_categorical_accuracy: 0.5541


630/Unknown  165s 253ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5543


631/Unknown  165s 253ms/step - loss: 1.1715 - sparse_categorical_accuracy: 0.5544


632/Unknown  165s 253ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5545


633/Unknown  166s 253ms/step - loss: 1.1707 - sparse_categorical_accuracy: 0.5547


634/Unknown  166s 253ms/step - loss: 1.1703 - sparse_categorical_accuracy: 0.5548


635/Unknown  166s 253ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5549


636/Unknown  167s 253ms/step - loss: 1.1695 - sparse_categorical_accuracy: 0.5551


637/Unknown  167s 253ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5552


638/Unknown  167s 253ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5553


639/Unknown  167s 253ms/step - loss: 1.1683 - sparse_categorical_accuracy: 0.5555


640/Unknown  168s 253ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5556


641/Unknown  168s 253ms/step - loss: 1.1674 - sparse_categorical_accuracy: 0.5557


642/Unknown  168s 253ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5559


643/Unknown  169s 253ms/step - loss: 1.1666 - sparse_categorical_accuracy: 0.5560


644/Unknown  169s 253ms/step - loss: 1.1662 - sparse_categorical_accuracy: 0.5561


645/Unknown  169s 253ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5563


646/Unknown  169s 253ms/step - loss: 1.1654 - sparse_categorical_accuracy: 0.5564


647/Unknown  170s 253ms/step - loss: 1.1650 - sparse_categorical_accuracy: 0.5565


648/Unknown  170s 253ms/step - loss: 1.1646 - sparse_categorical_accuracy: 0.5567


649/Unknown  170s 253ms/step - loss: 1.1642 - sparse_categorical_accuracy: 0.5568


650/Unknown  170s 253ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5569


651/Unknown  171s 254ms/step - loss: 1.1634 - sparse_categorical_accuracy: 0.5570


652/Unknown  171s 254ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5572


653/Unknown  171s 254ms/step - loss: 1.1627 - sparse_categorical_accuracy: 0.5573


654/Unknown  171s 254ms/step - loss: 1.1623 - sparse_categorical_accuracy: 0.5574


655/Unknown  172s 254ms/step - loss: 1.1619 - sparse_categorical_accuracy: 0.5576


656/Unknown  172s 254ms/step - loss: 1.1615 - sparse_categorical_accuracy: 0.5577


657/Unknown  172s 254ms/step - loss: 1.1611 - sparse_categorical_accuracy: 0.5578


658/Unknown  173s 254ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5579


659/Unknown  173s 254ms/step - loss: 1.1603 - sparse_categorical_accuracy: 0.5581


660/Unknown  173s 254ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5582


661/Unknown  173s 254ms/step - loss: 1.1595 - sparse_categorical_accuracy: 0.5583


662/Unknown  174s 254ms/step - loss: 1.1591 - sparse_categorical_accuracy: 0.5584


663/Unknown  174s 254ms/step - loss: 1.1588 - sparse_categorical_accuracy: 0.5586


664/Unknown  174s 254ms/step - loss: 1.1584 - sparse_categorical_accuracy: 0.5587


665/Unknown  175s 254ms/step - loss: 1.1580 - sparse_categorical_accuracy: 0.5588


666/Unknown  175s 254ms/step - loss: 1.1576 - sparse_categorical_accuracy: 0.5590


667/Unknown  175s 255ms/step - loss: 1.1572 - sparse_categorical_accuracy: 0.5591


668/Unknown  176s 255ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5592


669/Unknown  176s 255ms/step - loss: 1.1565 - sparse_categorical_accuracy: 0.5593


670/Unknown  176s 255ms/step - loss: 1.1561 - sparse_categorical_accuracy: 0.5595


671/Unknown  177s 255ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5596


672/Unknown  177s 255ms/step - loss: 1.1553 - sparse_categorical_accuracy: 0.5597


673/Unknown  177s 255ms/step - loss: 1.1549 - sparse_categorical_accuracy: 0.5598


674/Unknown  177s 255ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5600


675/Unknown  178s 255ms/step - loss: 1.1542 - sparse_categorical_accuracy: 0.5601


676/Unknown  178s 255ms/step - loss: 1.1538 - sparse_categorical_accuracy: 0.5602


677/Unknown  178s 255ms/step - loss: 1.1534 - sparse_categorical_accuracy: 0.5603


678/Unknown  178s 255ms/step - loss: 1.1531 - sparse_categorical_accuracy: 0.5604


679/Unknown  179s 255ms/step - loss: 1.1527 - sparse_categorical_accuracy: 0.5606


680/Unknown  179s 255ms/step - loss: 1.1523 - sparse_categorical_accuracy: 0.5607


681/Unknown  179s 255ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5608


682/Unknown  179s 255ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5609


683/Unknown  180s 255ms/step - loss: 1.1512 - sparse_categorical_accuracy: 0.5611


684/Unknown  180s 255ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5612


685/Unknown  180s 255ms/step - loss: 1.1505 - sparse_categorical_accuracy: 0.5613


686/Unknown  180s 255ms/step - loss: 1.1501 - sparse_categorical_accuracy: 0.5614


687/Unknown  180s 255ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5615


688/Unknown  181s 255ms/step - loss: 1.1494 - sparse_categorical_accuracy: 0.5617


689/Unknown  181s 255ms/step - loss: 1.1490 - sparse_categorical_accuracy: 0.5618


690/Unknown  181s 254ms/step - loss: 1.1486 - sparse_categorical_accuracy: 0.5619


691/Unknown  181s 254ms/step - loss: 1.1483 - sparse_categorical_accuracy: 0.5620


692/Unknown  182s 254ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5621


693/Unknown  182s 254ms/step - loss: 1.1475 - sparse_categorical_accuracy: 0.5623


694/Unknown  182s 254ms/step - loss: 1.1472 - sparse_categorical_accuracy: 0.5624


695/Unknown  182s 254ms/step - loss: 1.1468 - sparse_categorical_accuracy: 0.5625


696/Unknown  183s 254ms/step - loss: 1.1464 - sparse_categorical_accuracy: 0.5626


697/Unknown  183s 254ms/step - loss: 1.1461 - sparse_categorical_accuracy: 0.5627


698/Unknown  183s 254ms/step - loss: 1.1457 - sparse_categorical_accuracy: 0.5628


699/Unknown  183s 255ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5630


700/Unknown  184s 255ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5631


701/Unknown  184s 255ms/step - loss: 1.1447 - sparse_categorical_accuracy: 0.5632


702/Unknown  184s 255ms/step - loss: 1.1443 - sparse_categorical_accuracy: 0.5633


703/Unknown  185s 255ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5634


704/Unknown  185s 255ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5635


705/Unknown  185s 255ms/step - loss: 1.1432 - sparse_categorical_accuracy: 0.5637


706/Unknown  185s 255ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5638


707/Unknown  186s 255ms/step - loss: 1.1425 - sparse_categorical_accuracy: 0.5639


708/Unknown  186s 255ms/step - loss: 1.1422 - sparse_categorical_accuracy: 0.5640


709/Unknown  186s 255ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5641


710/Unknown  187s 255ms/step - loss: 1.1415 - sparse_categorical_accuracy: 0.5642


711/Unknown  187s 255ms/step - loss: 1.1411 - sparse_categorical_accuracy: 0.5644


712/Unknown  187s 255ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5645


713/Unknown  188s 255ms/step - loss: 1.1404 - sparse_categorical_accuracy: 0.5646


714/Unknown  188s 255ms/step - loss: 1.1401 - sparse_categorical_accuracy: 0.5647


715/Unknown  188s 255ms/step - loss: 1.1397 - sparse_categorical_accuracy: 0.5648


716/Unknown  188s 255ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5649


717/Unknown  189s 255ms/step - loss: 1.1390 - sparse_categorical_accuracy: 0.5650


718/Unknown  189s 256ms/step - loss: 1.1387 - sparse_categorical_accuracy: 0.5651


719/Unknown  189s 256ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5653


720/Unknown  190s 256ms/step - loss: 1.1380 - sparse_categorical_accuracy: 0.5654


721/Unknown  190s 256ms/step - loss: 1.1376 - sparse_categorical_accuracy: 0.5655


722/Unknown  190s 256ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5656


723/Unknown  191s 256ms/step - loss: 1.1370 - sparse_categorical_accuracy: 0.5657


724/Unknown  191s 256ms/step - loss: 1.1366 - sparse_categorical_accuracy: 0.5658


725/Unknown  191s 256ms/step - loss: 1.1363 - sparse_categorical_accuracy: 0.5659


726/Unknown  192s 256ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5660


727/Unknown  192s 256ms/step - loss: 1.1356 - sparse_categorical_accuracy: 0.5662


728/Unknown  192s 256ms/step - loss: 1.1353 - sparse_categorical_accuracy: 0.5663


729/Unknown  192s 256ms/step - loss: 1.1349 - sparse_categorical_accuracy: 0.5664


730/Unknown  193s 256ms/step - loss: 1.1346 - sparse_categorical_accuracy: 0.5665


731/Unknown  193s 256ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5666


732/Unknown  193s 256ms/step - loss: 1.1339 - sparse_categorical_accuracy: 0.5667


733/Unknown  193s 256ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5668


734/Unknown  194s 256ms/step - loss: 1.1332 - sparse_categorical_accuracy: 0.5669


735/Unknown  194s 256ms/step - loss: 1.1329 - sparse_categorical_accuracy: 0.5670


736/Unknown  194s 256ms/step - loss: 1.1326 - sparse_categorical_accuracy: 0.5671


737/Unknown  194s 256ms/step - loss: 1.1322 - sparse_categorical_accuracy: 0.5672


738/Unknown  195s 256ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5674


739/Unknown  195s 256ms/step - loss: 1.1316 - sparse_categorical_accuracy: 0.5675


740/Unknown  195s 256ms/step - loss: 1.1312 - sparse_categorical_accuracy: 0.5676


741/Unknown  195s 256ms/step - loss: 1.1309 - sparse_categorical_accuracy: 0.5677


742/Unknown  196s 256ms/step - loss: 1.1306 - sparse_categorical_accuracy: 0.5678


743/Unknown  196s 256ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5679


744/Unknown  196s 256ms/step - loss: 1.1299 - sparse_categorical_accuracy: 0.5680


745/Unknown  196s 256ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5681


746/Unknown  197s 256ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5682


747/Unknown  197s 256ms/step - loss: 1.1289 - sparse_categorical_accuracy: 0.5683


748/Unknown  197s 257ms/step - loss: 1.1286 - sparse_categorical_accuracy: 0.5684


749/Unknown  198s 257ms/step - loss: 1.1283 - sparse_categorical_accuracy: 0.5685


750/Unknown  198s 257ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5686


751/Unknown  198s 257ms/step - loss: 1.1276 - sparse_categorical_accuracy: 0.5687


752/Unknown  199s 257ms/step - loss: 1.1273 - sparse_categorical_accuracy: 0.5689


753/Unknown  199s 257ms/step - loss: 1.1270 - sparse_categorical_accuracy: 0.5690


754/Unknown  199s 257ms/step - loss: 1.1267 - sparse_categorical_accuracy: 0.5691


755/Unknown  200s 257ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5692


756/Unknown  200s 257ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5693


757/Unknown  200s 257ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5694


758/Unknown  201s 257ms/step - loss: 1.1254 - sparse_categorical_accuracy: 0.5695


759/Unknown  201s 257ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5696


760/Unknown  201s 257ms/step - loss: 1.1247 - sparse_categorical_accuracy: 0.5697


761/Unknown  201s 257ms/step - loss: 1.1244 - sparse_categorical_accuracy: 0.5698


762/Unknown  202s 257ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5699


763/Unknown  202s 257ms/step - loss: 1.1238 - sparse_categorical_accuracy: 0.5700


764/Unknown  202s 257ms/step - loss: 1.1235 - sparse_categorical_accuracy: 0.5701


765/Unknown  202s 257ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5702


766/Unknown  203s 257ms/step - loss: 1.1228 - sparse_categorical_accuracy: 0.5703


767/Unknown  203s 257ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5704


768/Unknown  203s 257ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5705


769/Unknown  203s 257ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5706


770/Unknown  204s 257ms/step - loss: 1.1216 - sparse_categorical_accuracy: 0.5707


771/Unknown  204s 257ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5708


772/Unknown  204s 257ms/step - loss: 1.1209 - sparse_categorical_accuracy: 0.5709


773/Unknown  204s 257ms/step - loss: 1.1206 - sparse_categorical_accuracy: 0.5710


774/Unknown  205s 257ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5711


775/Unknown  205s 257ms/step - loss: 1.1200 - sparse_categorical_accuracy: 0.5712


776/Unknown  205s 257ms/step - loss: 1.1197 - sparse_categorical_accuracy: 0.5713


777/Unknown  205s 257ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5714


778/Unknown  206s 257ms/step - loss: 1.1191 - sparse_categorical_accuracy: 0.5715


779/Unknown  206s 257ms/step - loss: 1.1188 - sparse_categorical_accuracy: 0.5716


780/Unknown  206s 257ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5717


781/Unknown  207s 258ms/step - loss: 1.1181 - sparse_categorical_accuracy: 0.5718


782/Unknown  207s 258ms/step - loss: 1.1178 - sparse_categorical_accuracy: 0.5719


783/Unknown  207s 258ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5720


784/Unknown  208s 258ms/step - loss: 1.1172 - sparse_categorical_accuracy: 0.5721


785/Unknown  208s 258ms/step - loss: 1.1169 - sparse_categorical_accuracy: 0.5722


786/Unknown  208s 258ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5723


787/Unknown  209s 258ms/step - loss: 1.1163 - sparse_categorical_accuracy: 0.5724


788/Unknown  209s 258ms/step - loss: 1.1160 - sparse_categorical_accuracy: 0.5725


789/Unknown  209s 258ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5726


790/Unknown  209s 258ms/step - loss: 1.1154 - sparse_categorical_accuracy: 0.5727


791/Unknown  210s 258ms/step - loss: 1.1151 - sparse_categorical_accuracy: 0.5728


792/Unknown  210s 258ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5729


793/Unknown  210s 258ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5730


794/Unknown  210s 258ms/step - loss: 1.1142 - sparse_categorical_accuracy: 0.5731


795/Unknown  211s 258ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5732


796/Unknown  211s 258ms/step - loss: 1.1136 - sparse_categorical_accuracy: 0.5733


797/Unknown  211s 258ms/step - loss: 1.1133 - sparse_categorical_accuracy: 0.5734


798/Unknown  211s 258ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5735


799/Unknown  212s 258ms/step - loss: 1.1127 - sparse_categorical_accuracy: 0.5736


800/Unknown  212s 258ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5737


801/Unknown  212s 258ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5738


802/Unknown  212s 258ms/step - loss: 1.1118 - sparse_categorical_accuracy: 0.5739


803/Unknown  213s 258ms/step - loss: 1.1115 - sparse_categorical_accuracy: 0.5740


804/Unknown  213s 258ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5741


805/Unknown  213s 258ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5742


806/Unknown  214s 258ms/step - loss: 1.1106 - sparse_categorical_accuracy: 0.5743


807/Unknown  214s 258ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5744


808/Unknown  214s 258ms/step - loss: 1.1100 - sparse_categorical_accuracy: 0.5745


809/Unknown  215s 258ms/step - loss: 1.1097 - sparse_categorical_accuracy: 0.5746


810/Unknown  215s 259ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5747


811/Unknown  215s 259ms/step - loss: 1.1091 - sparse_categorical_accuracy: 0.5747


812/Unknown  215s 259ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5748


813/Unknown  216s 259ms/step - loss: 1.1086 - sparse_categorical_accuracy: 0.5749


814/Unknown  216s 259ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5750


815/Unknown  216s 259ms/step - loss: 1.1080 - sparse_categorical_accuracy: 0.5751


816/Unknown  217s 259ms/step - loss: 1.1077 - sparse_categorical_accuracy: 0.5752


817/Unknown  217s 259ms/step - loss: 1.1074 - sparse_categorical_accuracy: 0.5753


818/Unknown  217s 259ms/step - loss: 1.1071 - sparse_categorical_accuracy: 0.5754


819/Unknown  217s 259ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5755


820/Unknown  218s 259ms/step - loss: 1.1065 - sparse_categorical_accuracy: 0.5756


821/Unknown  218s 259ms/step - loss: 1.1062 - sparse_categorical_accuracy: 0.5757


822/Unknown  218s 259ms/step - loss: 1.1060 - sparse_categorical_accuracy: 0.5758


823/Unknown  219s 259ms/step - loss: 1.1057 - sparse_categorical_accuracy: 0.5759


824/Unknown  219s 259ms/step - loss: 1.1054 - sparse_categorical_accuracy: 0.5760


825/Unknown  219s 259ms/step - loss: 1.1051 - sparse_categorical_accuracy: 0.5761


826/Unknown  219s 259ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5762


827/Unknown  220s 259ms/step - loss: 1.1045 - sparse_categorical_accuracy: 0.5762


828/Unknown  220s 259ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5763


829/Unknown  220s 259ms/step - loss: 1.1039 - sparse_categorical_accuracy: 0.5764


830/Unknown  221s 259ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5765


831/Unknown  221s 259ms/step - loss: 1.1034 - sparse_categorical_accuracy: 0.5766


832/Unknown  221s 259ms/step - loss: 1.1031 - sparse_categorical_accuracy: 0.5767


833/Unknown  222s 259ms/step - loss: 1.1028 - sparse_categorical_accuracy: 0.5768


834/Unknown  222s 259ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5769


835/Unknown  222s 259ms/step - loss: 1.1022 - sparse_categorical_accuracy: 0.5770


836/Unknown  222s 259ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5771


837/Unknown  223s 259ms/step - loss: 1.1017 - sparse_categorical_accuracy: 0.5772


838/Unknown  223s 259ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5773


839/Unknown  223s 259ms/step - loss: 1.1011 - sparse_categorical_accuracy: 0.5773


840/Unknown  223s 259ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5774


841/Unknown  224s 259ms/step - loss: 1.1006 - sparse_categorical_accuracy: 0.5775


842/Unknown  224s 259ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5776


843/Unknown  224s 259ms/step - loss: 1.1000 - sparse_categorical_accuracy: 0.5777


844/Unknown  224s 259ms/step - loss: 1.0997 - sparse_categorical_accuracy: 0.5778


845/Unknown  225s 259ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5779


846/Unknown  225s 259ms/step - loss: 1.0992 - sparse_categorical_accuracy: 0.5780


847/Unknown  225s 259ms/step - loss: 1.0989 - sparse_categorical_accuracy: 0.5781


848/Unknown  225s 259ms/step - loss: 1.0986 - sparse_categorical_accuracy: 0.5782


849/Unknown  226s 259ms/step - loss: 1.0984 - sparse_categorical_accuracy: 0.5782


850/Unknown  226s 259ms/step - loss: 1.0981 - sparse_categorical_accuracy: 0.5783


851/Unknown  226s 259ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5784


852/Unknown  227s 259ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5785


853/Unknown  227s 259ms/step - loss: 1.0973 - sparse_categorical_accuracy: 0.5786


854/Unknown  227s 260ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5787


855/Unknown  228s 260ms/step - loss: 1.0967 - sparse_categorical_accuracy: 0.5788


856/Unknown  228s 260ms/step - loss: 1.0964 - sparse_categorical_accuracy: 0.5789


857/Unknown  228s 260ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5790


858/Unknown  228s 260ms/step - loss: 1.0959 - sparse_categorical_accuracy: 0.5790


859/Unknown  229s 260ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5791


860/Unknown  229s 260ms/step - loss: 1.0954 - sparse_categorical_accuracy: 0.5792


861/Unknown  229s 260ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5793


862/Unknown  229s 260ms/step - loss: 1.0948 - sparse_categorical_accuracy: 0.5794


863/Unknown  230s 260ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5795


864/Unknown  230s 260ms/step - loss: 1.0943 - sparse_categorical_accuracy: 0.5796


865/Unknown  230s 260ms/step - loss: 1.0940 - sparse_categorical_accuracy: 0.5796


866/Unknown  231s 260ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5797


867/Unknown  231s 260ms/step - loss: 1.0935 - sparse_categorical_accuracy: 0.5798


868/Unknown  231s 260ms/step - loss: 1.0932 - sparse_categorical_accuracy: 0.5799


869/Unknown  231s 260ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5800


870/Unknown  232s 260ms/step - loss: 1.0927 - sparse_categorical_accuracy: 0.5801


871/Unknown  232s 260ms/step - loss: 1.0924 - sparse_categorical_accuracy: 0.5802


872/Unknown  232s 260ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5802


873/Unknown  232s 260ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5803


874/Unknown  233s 260ms/step - loss: 1.0916 - sparse_categorical_accuracy: 0.5804


875/Unknown  233s 260ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5805


876/Unknown  233s 260ms/step - loss: 1.0911 - sparse_categorical_accuracy: 0.5806


877/Unknown  233s 260ms/step - loss: 1.0908 - sparse_categorical_accuracy: 0.5807


878/Unknown  234s 260ms/step - loss: 1.0906 - sparse_categorical_accuracy: 0.5808


879/Unknown  234s 260ms/step - loss: 1.0903 - sparse_categorical_accuracy: 0.5808


880/Unknown  234s 260ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5809


881/Unknown  234s 260ms/step - loss: 1.0898 - sparse_categorical_accuracy: 0.5810


882/Unknown  235s 260ms/step - loss: 1.0895 - sparse_categorical_accuracy: 0.5811


883/Unknown  235s 260ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5812


884/Unknown  235s 260ms/step - loss: 1.0890 - sparse_categorical_accuracy: 0.5813


885/Unknown  235s 260ms/step - loss: 1.0887 - sparse_categorical_accuracy: 0.5813


886/Unknown  236s 260ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5814


887/Unknown  236s 260ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5815


888/Unknown  237s 260ms/step - loss: 1.0880 - sparse_categorical_accuracy: 0.5816


889/Unknown  237s 260ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5817


890/Unknown  237s 260ms/step - loss: 1.0874 - sparse_categorical_accuracy: 0.5818


891/Unknown  238s 261ms/step - loss: 1.0872 - sparse_categorical_accuracy: 0.5818


892/Unknown  238s 261ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5819


893/Unknown  238s 261ms/step - loss: 1.0867 - sparse_categorical_accuracy: 0.5820


894/Unknown  239s 261ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5821


895/Unknown  239s 261ms/step - loss: 1.0862 - sparse_categorical_accuracy: 0.5822


896/Unknown  239s 261ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5823


897/Unknown  239s 261ms/step - loss: 1.0856 - sparse_categorical_accuracy: 0.5823


898/Unknown  240s 261ms/step - loss: 1.0854 - sparse_categorical_accuracy: 0.5824


899/Unknown  240s 261ms/step - loss: 1.0851 - sparse_categorical_accuracy: 0.5825


900/Unknown  240s 261ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5826


901/Unknown  240s 261ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5827


902/Unknown  241s 261ms/step - loss: 1.0844 - sparse_categorical_accuracy: 0.5827


903/Unknown  241s 261ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5828


904/Unknown  241s 261ms/step - loss: 1.0839 - sparse_categorical_accuracy: 0.5829


905/Unknown  241s 261ms/step - loss: 1.0836 - sparse_categorical_accuracy: 0.5830


906/Unknown  242s 261ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5831


907/Unknown  242s 261ms/step - loss: 1.0831 - sparse_categorical_accuracy: 0.5832


908/Unknown  242s 261ms/step - loss: 1.0829 - sparse_categorical_accuracy: 0.5832


909/Unknown  243s 261ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5833


910/Unknown  243s 261ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5834


911/Unknown  243s 261ms/step - loss: 1.0821 - sparse_categorical_accuracy: 0.5835


912/Unknown  243s 261ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5836


913/Unknown  244s 261ms/step - loss: 1.0816 - sparse_categorical_accuracy: 0.5836


914/Unknown  244s 261ms/step - loss: 1.0814 - sparse_categorical_accuracy: 0.5837


915/Unknown  244s 261ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5838


916/Unknown  244s 261ms/step - loss: 1.0809 - sparse_categorical_accuracy: 0.5839


917/Unknown  245s 261ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5839


918/Unknown  245s 261ms/step - loss: 1.0804 - sparse_categorical_accuracy: 0.5840


919/Unknown  245s 261ms/step - loss: 1.0801 - sparse_categorical_accuracy: 0.5841


920/Unknown  246s 261ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5842


921/Unknown  246s 261ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5843


922/Unknown  246s 261ms/step - loss: 1.0794 - sparse_categorical_accuracy: 0.5843


923/Unknown  247s 261ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5844


924/Unknown  247s 261ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5845


925/Unknown  247s 261ms/step - loss: 1.0787 - sparse_categorical_accuracy: 0.5846


926/Unknown  248s 261ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5847


927/Unknown  248s 261ms/step - loss: 1.0782 - sparse_categorical_accuracy: 0.5847


928/Unknown  248s 261ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5848


929/Unknown  248s 261ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5849


930/Unknown  249s 261ms/step - loss: 1.0775 - sparse_categorical_accuracy: 0.5850


931/Unknown  249s 261ms/step - loss: 1.0772 - sparse_categorical_accuracy: 0.5850


932/Unknown  249s 261ms/step - loss: 1.0770 - sparse_categorical_accuracy: 0.5851


933/Unknown  250s 262ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5852


934/Unknown  250s 262ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5853


935/Unknown  250s 262ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5854


936/Unknown  250s 262ms/step - loss: 1.0760 - sparse_categorical_accuracy: 0.5854


937/Unknown  251s 262ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5855


938/Unknown  251s 262ms/step - loss: 1.0755 - sparse_categorical_accuracy: 0.5856


939/Unknown  251s 262ms/step - loss: 1.0753 - sparse_categorical_accuracy: 0.5857


940/Unknown  252s 262ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5857


941/Unknown  252s 262ms/step - loss: 1.0748 - sparse_categorical_accuracy: 0.5858


942/Unknown  252s 262ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5859


943/Unknown  252s 262ms/step - loss: 1.0744 - sparse_categorical_accuracy: 0.5860


944/Unknown  253s 262ms/step - loss: 1.0741 - sparse_categorical_accuracy: 0.5860


945/Unknown  253s 262ms/step - loss: 1.0739 - sparse_categorical_accuracy: 0.5861


946/Unknown  253s 262ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5862


947/Unknown  253s 262ms/step - loss: 1.0734 - sparse_categorical_accuracy: 0.5863


948/Unknown  254s 262ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5863


949/Unknown  254s 262ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5864


950/Unknown  254s 262ms/step - loss: 1.0727 - sparse_categorical_accuracy: 0.5865


951/Unknown  254s 262ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5866


952/Unknown  255s 262ms/step - loss: 1.0722 - sparse_categorical_accuracy: 0.5866


953/Unknown  255s 262ms/step - loss: 1.0720 - sparse_categorical_accuracy: 0.5867


954/Unknown  255s 262ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5868


955/Unknown  255s 262ms/step - loss: 1.0715 - sparse_categorical_accuracy: 0.5869


956/Unknown  256s 262ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5869


957/Unknown  256s 262ms/step - loss: 1.0711 - sparse_categorical_accuracy: 0.5870


958/Unknown  256s 262ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5871


959/Unknown  256s 262ms/step - loss: 1.0706 - sparse_categorical_accuracy: 0.5872


960/Unknown  257s 262ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5872


961/Unknown  257s 262ms/step - loss: 1.0702 - sparse_categorical_accuracy: 0.5873


962/Unknown  257s 262ms/step - loss: 1.0699 - sparse_categorical_accuracy: 0.5874


963/Unknown  258s 262ms/step - loss: 1.0697 - sparse_categorical_accuracy: 0.5875


964/Unknown  258s 262ms/step - loss: 1.0695 - sparse_categorical_accuracy: 0.5875


965/Unknown  258s 262ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5876


966/Unknown  259s 262ms/step - loss: 1.0690 - sparse_categorical_accuracy: 0.5877


967/Unknown  259s 262ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5878


968/Unknown  259s 262ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5878


969/Unknown  259s 262ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5879


970/Unknown  260s 262ms/step - loss: 1.0681 - sparse_categorical_accuracy: 0.5880


971/Unknown  260s 262ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5880


972/Unknown  260s 262ms/step - loss: 1.0676 - sparse_categorical_accuracy: 0.5881


973/Unknown  261s 262ms/step - loss: 1.0674 - sparse_categorical_accuracy: 0.5882


974/Unknown  261s 262ms/step - loss: 1.0672 - sparse_categorical_accuracy: 0.5883


975/Unknown  261s 262ms/step - loss: 1.0670 - sparse_categorical_accuracy: 0.5883


976/Unknown  261s 262ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5884


977/Unknown  262s 262ms/step - loss: 1.0665 - sparse_categorical_accuracy: 0.5885


978/Unknown  262s 262ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5886


979/Unknown  262s 262ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5886


980/Unknown  263s 262ms/step - loss: 1.0658 - sparse_categorical_accuracy: 0.5887


981/Unknown  263s 262ms/step - loss: 1.0656 - sparse_categorical_accuracy: 0.5888


982/Unknown  263s 262ms/step - loss: 1.0654 - sparse_categorical_accuracy: 0.5888


983/Unknown  263s 262ms/step - loss: 1.0652 - sparse_categorical_accuracy: 0.5889


984/Unknown  264s 262ms/step - loss: 1.0649 - sparse_categorical_accuracy: 0.5890


985/Unknown  264s 262ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5891


986/Unknown  264s 262ms/step - loss: 1.0645 - sparse_categorical_accuracy: 0.5891


987/Unknown  264s 262ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5892


988/Unknown  265s 262ms/step - loss: 1.0641 - sparse_categorical_accuracy: 0.5893


989/Unknown  265s 262ms/step - loss: 1.0638 - sparse_categorical_accuracy: 0.5893


990/Unknown  265s 262ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5894


991/Unknown  265s 262ms/step - loss: 1.0634 - sparse_categorical_accuracy: 0.5895


992/Unknown  266s 262ms/step - loss: 1.0632 - sparse_categorical_accuracy: 0.5896


993/Unknown  266s 262ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5896


994/Unknown  266s 262ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5897


995/Unknown  266s 262ms/step - loss: 1.0625 - sparse_categorical_accuracy: 0.5898


996/Unknown  267s 262ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5898


997/Unknown  267s 262ms/step - loss: 1.0621 - sparse_categorical_accuracy: 0.5899


998/Unknown  267s 262ms/step - loss: 1.0618 - sparse_categorical_accuracy: 0.5900


999/Unknown  267s 262ms/step - loss: 1.0616 - sparse_categorical_accuracy: 0.5900



1000/未知 268 秒 262 毫秒/步 - 损失:1.0614 - sparse_categorical_accuracy: 0.5901



1001/未知 268 秒 262 毫秒/步 - 损失:1.0612 - sparse_categorical_accuracy: 0.5902



1002/未知 268 秒 262 毫秒/步 - 损失:1.0610 - sparse_categorical_accuracy: 0.5903



1003/未知 269 秒 262 毫秒/步 - 损失:1.0608 - sparse_categorical_accuracy: 0.5903



1004/未知 269 秒 262 毫秒/步 - 损失:1.0605 - sparse_categorical_accuracy: 0.5904



1005/未知 269 秒 262 毫秒/步 - 损失:1.0603 - sparse_categorical_accuracy: 0.5905



1006/未知 270 秒 263 毫秒/步 - 损失:1.0601 - sparse_categorical_accuracy: 0.5905



1007/未知 270 秒 263 毫秒/步 - 损失:1.0599 - sparse_categorical_accuracy: 0.5906



1008/未知 270 秒 263 毫秒/步 - 损失:1.0597 - sparse_categorical_accuracy: 0.5907



1009/未知 271 秒 263 毫秒/步 - 损失:1.0595 - sparse_categorical_accuracy: 0.5907



1010/未知 271 秒 263 毫秒/步 - 损失:1.0592 - sparse_categorical_accuracy: 0.5908



1011/未知 271 秒 263 毫秒/步 - 损失:1.0590 - sparse_categorical_accuracy: 0.5909



1012/未知 271 秒 263 毫秒/步 - 损失:1.0588 - sparse_categorical_accuracy: 0.5909



1013/未知 272 秒 263 毫秒/步 - 损失:1.0586 - sparse_categorical_accuracy: 0.5910



1014/未知 272 秒 263 毫秒/步 - 损失:1.0584 - sparse_categorical_accuracy: 0.5911



1015/未知 272 秒 263 毫秒/步 - 损失:1.0582 - sparse_categorical_accuracy: 0.5912



1016/未知 272 秒 263 毫秒/步 - 损失:1.0580 - sparse_categorical_accuracy: 0.5912



1017/未知 273 秒 263 毫秒/步 - 损失:1.0578 - sparse_categorical_accuracy: 0.5913



1018/未知 273 秒 263 毫秒/步 - 损失:1.0575 - sparse_categorical_accuracy: 0.5914



1019/未知 273 秒 263 毫秒/步 - 损失:1.0573 - sparse_categorical_accuracy: 0.5914



1020/未知 273 秒 263 毫秒/步 - 损失:1.0571 - sparse_categorical_accuracy: 0.5915



1021/未知 274 秒 263 毫秒/步 - 损失:1.0569 - sparse_categorical_accuracy: 0.5916



1022/未知 274 秒 263 毫秒/步 - 损失:1.0567 - sparse_categorical_accuracy: 0.5916



1023/未知 274 秒 263 毫秒/步 - 损失:1.0565 - sparse_categorical_accuracy: 0.5917



1024/未知 275 秒 263 毫秒/步 - 损失:1.0563 - sparse_categorical_accuracy: 0.5918



1025/未知 275 秒 263 毫秒/步 - 损失:1.0561 - sparse_categorical_accuracy: 0.5918



1026/未知 275 秒 263 毫秒/步 - 损失:1.0559 - sparse_categorical_accuracy: 0.5919



1027/未知 275 秒 263 毫秒/步 - 损失:1.0556 - sparse_categorical_accuracy: 0.5920



1028/未知 276 秒 263 毫秒/步 - 损失:1.0554 - sparse_categorical_accuracy: 0.5920



1029/未知 276 秒 263 毫秒/步 - 损失:1.0552 - sparse_categorical_accuracy: 0.5921



1030/未知 276 秒 263 毫秒/步 - 损失:1.0550 - sparse_categorical_accuracy: 0.5922



1031/未知 276 秒 263 毫秒/步 - 损失:1.0548 - sparse_categorical_accuracy: 0.5922



1032/未知 277 秒 263 毫秒/步 - 损失:1.0546 - sparse_categorical_accuracy: 0.5923



1033/未知 277 秒 263 毫秒/步 - 损失:1.0544 - sparse_categorical_accuracy: 0.5924



1034/未知 277 秒 263 毫秒/步 - 损失:1.0542 - sparse_categorical_accuracy: 0.5924



1035/未知 278 秒 263 毫秒/步 - 损失:1.0540 - sparse_categorical_accuracy: 0.5925



1036/未知 278 秒 263 毫秒/步 - 损失:1.0538 - sparse_categorical_accuracy: 0.5926



1037/未知 278 秒 263 毫秒/步 - 损失:1.0536 - sparse_categorical_accuracy: 0.5926



1038/未知 278 秒 263 毫秒/步 - 损失:1.0533 - sparse_categorical_accuracy: 0.5927



1039/未知 279 秒 263 毫秒/步 - 损失:1.0531 - sparse_categorical_accuracy: 0.5928



1040/未知 279 秒 263 毫秒/步 - 损失:1.0529 - sparse_categorical_accuracy: 0.5928



1041/未知 279 秒 263 毫秒/步 - 损失:1.0527 - sparse_categorical_accuracy: 0.5929



1042/未知 280 秒 263 毫秒/步 - 损失:1.0525 - sparse_categorical_accuracy: 0.5930



1043/未知 280 秒 263 毫秒/步 - 损失:1.0523 - sparse_categorical_accuracy: 0.5930



1044/未知 280 秒 263 毫秒/步 - 损失:1.0521 - sparse_categorical_accuracy: 0.5931



1045/未知 280 秒 263 毫秒/步 - 损失:1.0519 - sparse_categorical_accuracy: 0.5932



1046/未知 281 秒 263 毫秒/步 - 损失:1.0517 - sparse_categorical_accuracy: 0.5932



1047/未知 281 秒 263 毫秒/步 - 损失:1.0515 - sparse_categorical_accuracy: 0.5933



1048/未知 281 秒 263 毫秒/步 - 损失:1.0513 - sparse_categorical_accuracy: 0.5934



1049/未知 282 秒 263 毫秒/步 - 损失:1.0511 - sparse_categorical_accuracy: 0.5934



1050/未知 282 秒 263 毫秒/步 - 损失:1.0509 - sparse_categorical_accuracy: 0.5935



1051/未知 282 秒 263 毫秒/步 - 损失:1.0507 - sparse_categorical_accuracy: 0.5935



1052/未知 283 秒 263 毫秒/步 - 损失:1.0505 - sparse_categorical_accuracy: 0.5936



1053/未知 283 秒 263 毫秒/步 - 损失:1.0503 - sparse_categorical_accuracy: 0.5937



1054/未知 283 秒 263 毫秒/步 - 损失:1.0501 - sparse_categorical_accuracy: 0.5937



1055/未知 283 秒 263 毫秒/步 - 损失:1.0499 - sparse_categorical_accuracy: 0.5938



1056/未知 284 秒 263 毫秒/步 - 损失:1.0497 - sparse_categorical_accuracy: 0.5939



1057/未知 284 秒 263 毫秒/步 - 损失:1.0495 - sparse_categorical_accuracy: 0.5939



1058/未知 284 秒 263 毫秒/步 - 损失:1.0493 - sparse_categorical_accuracy: 0.5940



1059/未知 285 秒 263 毫秒/步 - 损失:1.0491 - sparse_categorical_accuracy: 0.5941



1060/未知 285 秒 263 毫秒/步 - 损失:1.0489 - sparse_categorical_accuracy: 0.5941



1061/未知 285 秒 263 毫秒/步 - 损失:1.0487 - sparse_categorical_accuracy: 0.5942



1062/未知 285 秒 263 毫秒/步 - 损失:1.0485 - sparse_categorical_accuracy: 0.5943



1063/未知 285 秒 263 毫秒/步 - 损失:1.0483 - sparse_categorical_accuracy: 0.5943



1064/未知 286 秒 263 毫秒/步 - 损失:1.0481 - sparse_categorical_accuracy: 0.5944



1065/未知 286 秒 263 毫秒/步 - 损失:1.0479 - sparse_categorical_accuracy: 0.5944



1066/未知 286 秒 263 毫秒/步 - 损失:1.0477 - sparse_categorical_accuracy: 0.5945



1067/未知 286 秒 263 毫秒/步 - 损失:1.0475 - sparse_categorical_accuracy: 0.5946



1068/未知 287 秒 263 毫秒/步 - 损失:1.0473 - sparse_categorical_accuracy: 0.5946



1069/未知 287 秒 263 毫秒/步 - 损失:1.0471 - sparse_categorical_accuracy: 0.5947



1070/未知 287 秒 263 毫秒/步 - 损失:1.0469 - sparse_categorical_accuracy: 0.5948



1071/未知 287 秒 263 毫秒/步 - 损失:1.0467 - sparse_categorical_accuracy: 0.5948



1072/未知 288 秒 263 毫秒/步 - 损失:1.0465 - sparse_categorical_accuracy: 0.5949



1073/未知 288 秒 263 毫秒/步 - 损失:1.0463 - sparse_categorical_accuracy: 0.5949



1074/未知 288 秒 263 毫秒/步 - 损失:1.0461 - sparse_categorical_accuracy: 0.5950



1075/未知 289 秒 263 毫秒/步 - 损失:1.0459 - sparse_categorical_accuracy: 0.5951



1076/未知 289 秒 263 毫秒/步 - 损失:1.0457 - sparse_categorical_accuracy: 0.5951



1077/未知 289 秒 263 毫秒/步 - 损失:1.0455 - sparse_categorical_accuracy: 0.5952



1078/未知 290 秒 264 毫秒/步 - 损失:1.0453 - sparse_categorical_accuracy: 0.5953



1079/未知 290 秒 264 毫秒/步 - 损失:1.0451 - sparse_categorical_accuracy: 0.5953



1080/未知 290 秒 264 毫秒/步 - 损失:1.0449 - sparse_categorical_accuracy: 0.5954



1081/未知 291 秒 264 毫秒/步 - 损失:1.0447 - sparse_categorical_accuracy: 0.5954



1082/未知 291 秒 264 毫秒/步 - 损失:1.0445 - sparse_categorical_accuracy: 0.5955



1083/未知 291 秒 264 毫秒/步 - 损失:1.0443 - sparse_categorical_accuracy: 0.5956



1084/未知 291 秒 264 毫秒/步 - 损失:1.0441 - sparse_categorical_accuracy: 0.5956



1085/未知 292 秒 264 毫秒/步 - 损失:1.0439 - sparse_categorical_accuracy: 0.5957



1086/未知 292 秒 264 毫秒/步 - 损失:1.0437 - sparse_categorical_accuracy: 0.5957



1087/未知 292 秒 264 毫秒/步 - 损失:1.0436 - sparse_categorical_accuracy: 0.5958



1088/未知 293 秒 264 毫秒/步 - 损失:1.0434 - sparse_categorical_accuracy: 0.5959



1089/未知 293 秒 264 毫秒/步 - 损失:1.0432 - sparse_categorical_accuracy: 0.5959



1090/未知 293 秒 264 毫秒/步 - 损失:1.0430 - sparse_categorical_accuracy: 0.5960



1091/未知 293 秒 264 毫秒/步 - 损失:1.0428 - sparse_categorical_accuracy: 0.5961



1092/未知 294 秒 264 毫秒/步 - 损失:1.0426 - sparse_categorical_accuracy: 0.5961



1093/未知 294 秒 264 毫秒/步 - 损失:1.0424 - sparse_categorical_accuracy: 0.5962



1094/未知 294 秒 264 毫秒/步 - 损失:1.0422 - sparse_categorical_accuracy: 0.5962



1095/未知 294 秒 264 毫秒/步 - 损失:1.0420 - sparse_categorical_accuracy: 0.5963



1096/未知 295 秒 264 毫秒/步 - 损失:1.0418 - sparse_categorical_accuracy: 0.5964



1097/未知 295 秒 264 毫秒/步 - 损失:1.0416 - sparse_categorical_accuracy: 0.5964



1098/未知 295 秒 264 毫秒/步 - 损失:1.0414 - sparse_categorical_accuracy: 0.5965



1099/未知 295 秒 264 毫秒/步 - 损失:1.0413 - sparse_categorical_accuracy: 0.5965



1100/未知 296 秒 264 毫秒/步 - 损失:1.0411 - sparse_categorical_accuracy: 0.5966



1101/未知 296 秒 264 毫秒/步 - 损失:1.0409 - sparse_categorical_accuracy: 0.5967



1102/未知 296 秒 264 毫秒/步 - 损失:1.0407 - sparse_categorical_accuracy: 0.5967



1103/未知 296 秒 264 毫秒/步 - 损失:1.0405 - sparse_categorical_accuracy: 0.5968



1104/未知 297 秒 264 毫秒/步 - 损失:1.0403 - sparse_categorical_accuracy: 0.5968



1105/未知 297 秒 264 毫秒/步 - 损失:1.0401 - sparse_categorical_accuracy: 0.5969



1106/未知 297 秒 264 毫秒/步 - 损失:1.0399 - sparse_categorical_accuracy: 0.5970



1107/未知 298 秒 264 毫秒/步 - 损失:1.0397 - sparse_categorical_accuracy: 0.5970



1108/未知 298 秒 264 毫秒/步 - 损失:1.0396 - sparse_categorical_accuracy: 0.5971



1109/未知 298 秒 264 毫秒/步 - 损失:1.0394 - sparse_categorical_accuracy: 0.5971



1110/未知 299 秒 264 毫秒/步 - 损失:1.0392 - sparse_categorical_accuracy: 0.5972



1111/未知 299 秒 264 毫秒/步 - 损失:1.0390 - sparse_categorical_accuracy: 0.5973



1112/未知 299 秒 264 毫秒/步 - 损失:1.0388 - sparse_categorical_accuracy: 0.5973



1113/未知 299 秒 264 毫秒/步 - 损失:1.0386 - sparse_categorical_accuracy: 0.5974



1114/未知 300 秒 264 毫秒/步 - 损失:1.0384 - sparse_categorical_accuracy: 0.5974



1115/未知 300 秒 264 毫秒/步 - 损失:1.0382 - sparse_categorical_accuracy: 0.5975



1116/未知 300 秒 264 毫秒/步 - 损失:1.0381 - sparse_categorical_accuracy: 0.5976



1117/未知 300 秒 264 毫秒/步 - 损失:1.0379 - sparse_categorical_accuracy: 0.5976



1118/未知 301 秒 264 毫秒/步 - 损失:1.0377 - sparse_categorical_accuracy: 0.5977



1119/未知 301 秒 264 毫秒/步 - 损失:1.0375 - sparse_categorical_accuracy: 0.5977



1120/未知 301 秒 264 毫秒/步 - 损失:1.0373 - sparse_categorical_accuracy: 0.5978



1121/未知 301 秒 264 毫秒/步 - 损失:1.0371 - sparse_categorical_accuracy: 0.5978



1122/未知 302 秒 264 毫秒/步 - 损失:1.0369 - sparse_categorical_accuracy: 0.5979



1123/未知 302 秒 264 毫秒/步 - 损失:1.0368 - sparse_categorical_accuracy: 0.5980



1124/未知 302 秒 264 毫秒/步 - 损失:1.0366 - sparse_categorical_accuracy: 0.5980



1125/未知 302 秒 264 毫秒/步 - 损失:1.0364 - sparse_categorical_accuracy: 0.5981



1126/未知 303 秒 264 毫秒/步 - 损失:1.0362 - sparse_categorical_accuracy: 0.5981



1127/未知 303 秒 264 毫秒/步 - 损失:1.0360 - sparse_categorical_accuracy: 0.5982



1128/未知 303 秒 264 毫秒/步 - 损失:1.0358 - sparse_categorical_accuracy: 0.5983



1129/未知 303 秒 264 毫秒/步 - 损失:1.0357 - sparse_categorical_accuracy: 0.5983



1130/未知 304 秒 264 毫秒/步 - 损失:1.0355 - sparse_categorical_accuracy: 0.5984



1131/未知 304 秒 264 毫秒/步 - 损失:1.0353 - sparse_categorical_accuracy: 0.5984



1132/未知 304 秒 264 毫秒/步 - 损失:1.0351 - sparse_categorical_accuracy: 0.5985



1133/未知 305 秒 264 毫秒/步 - 损失:1.0349 - sparse_categorical_accuracy: 0.5985



1134/未知 305 秒 264 毫秒/步 - 损失:1.0347 - sparse_categorical_accuracy: 0.5986



1135/未知 305 秒 264 毫秒/步 - 损失:1.0346 - sparse_categorical_accuracy: 0.5987



1136/未知 306 秒 264 毫秒/步 - 损失:1.0344 - sparse_categorical_accuracy: 0.5987



1137/未知 306 秒 264 毫秒/步 - 损失:1.0342 - sparse_categorical_accuracy: 0.5988



1138/未知 306 秒 264 毫秒/步 - 损失:1.0340 - sparse_categorical_accuracy: 0.5988



1139/未知 306 秒 264 毫秒/步 - 损失:1.0338 - sparse_categorical_accuracy: 0.5989



1140/未知 307 秒 264 毫秒/步 - 损失:1.0337 - sparse_categorical_accuracy: 0.5990



1141/未知 307 秒 264 毫秒/步 - 损失:1.0335 - sparse_categorical_accuracy: 0.5990



1142/未知 307 秒 264 毫秒/步 - 损失:1.0333 - sparse_categorical_accuracy: 0.5991



1143/未知 308 秒 264 毫秒/步 - 损失:1.0331 - sparse_categorical_accuracy: 0.5991



1144/未知 308 秒 264 毫秒/步 - 损失:1.0329 - sparse_categorical_accuracy: 0.5992



1145/未知 308 秒 264 毫秒/步 - 损失:1.0328 - sparse_categorical_accuracy: 0.5992



1146/未知 308 秒 264 毫秒/步 - 损失:1.0326 - sparse_categorical_accuracy: 0.5993



1147/未知 309 秒 264 毫秒/步 - 损失:1.0324 - sparse_categorical_accuracy: 0.5993



1148/未知 309 秒 264 毫秒/步 - 损失:1.0322 - sparse_categorical_accuracy: 0.5994



1149/未知 309 秒 264 毫秒/步 - 损失:1.0320 - sparse_categorical_accuracy: 0.5995



1150/未知 310 秒 264 毫秒/步 - 损失:1.0319 - sparse_categorical_accuracy: 0.5995



1151/未知 310 秒 264 毫秒/步 - 损失:1.0317 - sparse_categorical_accuracy: 0.5996



1152/未知 310 秒 264 毫秒/步 - 损失:1.0315 - sparse_categorical_accuracy: 0.5996



1153/未知 310 秒 264 毫秒/步 - 损失:1.0313 - sparse_categorical_accuracy: 0.5997



1154/未知 311 秒 264 毫秒/步 - 损失:1.0311 - sparse_categorical_accuracy: 0.5997



1155/未知 311 秒 264 毫秒/步 - 损失:1.0310 - sparse_categorical_accuracy: 0.5998



1156/未知 311 秒 264 毫秒/步 - 损失:1.0308 - sparse_categorical_accuracy: 0.5999



1157/未知 312 秒 265 毫秒/步 - 损失:1.0306 - sparse_categorical_accuracy: 0.5999



1158/未知 312 秒 265 毫秒/步 - 损失:1.0304 - sparse_categorical_accuracy: 0.6000



1159/未知 312 秒 265 毫秒/步 - 损失:1.0303 - sparse_categorical_accuracy: 0.6000



1160/未知 312 秒 265 毫秒/步 - 损失:1.0301 - sparse_categorical_accuracy: 0.6001



1161/未知 313 秒 265 毫秒/步 - 损失:1.0299 - sparse_categorical_accuracy: 0.6001



1162/未知 313 秒 265 毫秒/步 - 损失:1.0297 - sparse_categorical_accuracy: 0.6002



1163/未知 313 秒 265 毫秒/步 - 损失:1.0296 - sparse_categorical_accuracy: 0.6003



1164/未知 314 秒 265 毫秒/步 - 损失:1.0294 - sparse_categorical_accuracy: 0.6003



1165/未知 314 秒 265 毫秒/步 - 损失:1.0292 - sparse_categorical_accuracy: 0.6004



1166/未知 314 秒 265 毫秒/步 - 损失:1.0290 - sparse_categorical_accuracy: 0.6004



1167/未知 314 秒 265 毫秒/步 - 损失:1.0289 - sparse_categorical_accuracy: 0.6005



1168/未知 315 秒 265 毫秒/步 - 损失:1.0287 - sparse_categorical_accuracy: 0.6005



1169/未知 315 秒 265 毫秒/步 - 损失:1.0285 - sparse_categorical_accuracy: 0.6006



1170/未知 315 秒 265 毫秒/步 - 损失:1.0283 - sparse_categorical_accuracy: 0.6006



1171/未知 315 秒 265 毫秒/步 - 损失:1.0282 - sparse_categorical_accuracy: 0.6007



1172/未知 316 秒 264 毫秒/步 - 损失:1.0280 - sparse_categorical_accuracy: 0.6008



1173/未知 316 秒 264 毫秒/步 - 损失:1.0278 - sparse_categorical_accuracy: 0.6008



1174/未知 316 秒 264 毫秒/步 - 损失:1.0276 - sparse_categorical_accuracy: 0.6009



1175/未知 316 秒 264 毫秒/步 - 损失:1.0275 - sparse_categorical_accuracy: 0.6009



1176/未知 316 秒 264 毫秒/步 - 损失:1.0273 - sparse_categorical_accuracy: 0.6010



1177/未知 317 秒 264 毫秒/步 - 损失:1.0271 - sparse_categorical_accuracy: 0.6010



1178/未知 317 秒 264 毫秒/步 - 损失:1.0269 - sparse_categorical_accuracy: 0.6011



1179/未知 317 秒 264 毫秒/步 - 损失:1.0268 - sparse_categorical_accuracy: 0.6011



1180/未知 317 秒 264 毫秒/步 - 损失:1.0266 - sparse_categorical_accuracy: 0.6012



1181/未知 318 秒 264 毫秒/步 - 损失:1.0264 - sparse_categorical_accuracy: 0.6012



1182/未知 318 秒 264 毫秒/步 - 损失:1.0263 - sparse_categorical_accuracy: 0.6013



1183/未知 318 秒 264 毫秒/步 - 损失:1.0261 - sparse_categorical_accuracy: 0.6014



1184/未知 318 秒 264 毫秒/步 - 损失:1.0259 - sparse_categorical_accuracy: 0.6014



1185/未知 319 秒 264 毫秒/步 - 损失:1.0257 - sparse_categorical_accuracy: 0.6015



1186/未知 319 秒 264 毫秒/步 - 损失:1.0256 - sparse_categorical_accuracy: 0.6015



1187/未知 319 秒 264 毫秒/步 - 损失:1.0254 - sparse_categorical_accuracy: 0.6016



1188/未知 319 秒 264 毫秒/步 - 损失:1.0252 - sparse_categorical_accuracy: 0.6016



1189/未知 320 秒 264 毫秒/步 - 损失:1.0251 - sparse_categorical_accuracy: 0.6017



1190/未知 320 秒 264 毫秒/步 - 损失:1.0249 - sparse_categorical_accuracy: 0.6017



1191/未知 320 秒 264 毫秒/步 - 损失:1.0247 - sparse_categorical_accuracy: 0.6018



1192/未知 320 秒 264 毫秒/步 - 损失:1.0245 - sparse_categorical_accuracy: 0.6018



1193/未知 321 秒 264 毫秒/步 - 损失:1.0244 - sparse_categorical_accuracy: 0.6019



1194/未知 321 秒 264 毫秒/步 - 损失:1.0242 - sparse_categorical_accuracy: 0.6019



1195/未知 321 秒 264 毫秒/步 - 损失:1.0240 - sparse_categorical_accuracy: 0.6020



1196/未知 321 秒 264 毫秒/步 - 损失:1.0239 - sparse_categorical_accuracy: 0.6021



1197/未知 322 秒 264 毫秒/步 - 损失:1.0237 - sparse_categorical_accuracy: 0.6021



1198/未知 322 秒 264 毫秒/步 - 损失:1.0235 - sparse_categorical_accuracy: 0.6022



1199/未知 322 秒 264 毫秒/步 - 损失:1.0234 - sparse_categorical_accuracy: 0.6022



1200/未知 322 秒 264 毫秒/步 - 损失:1.0232 - sparse_categorical_accuracy: 0.6023



1201/未知 323 秒 264 毫秒/步 - 损失:1.0230 - sparse_categorical_accuracy: 0.6023



1202/未知 323 秒 264 毫秒/步 - 损失:1.0229 - sparse_categorical_accuracy: 0.6024



1203/未知 323 秒 264 毫秒/步 - 损失:1.0227 - sparse_categorical_accuracy: 0.6024



1204/未知 323 秒 264 毫秒/步 - 损失:1.0225 - sparse_categorical_accuracy: 0.6025



1205/未知 324 秒 264 毫秒/步 - 损失:1.0224 - sparse_categorical_accuracy: 0.6025



1206/未知 324 秒 264 毫秒/步 - 损失:1.0222 - sparse_categorical_accuracy: 0.6026



1207/未知 324 秒 264 毫秒/步 - 损失:1.0220 - sparse_categorical_accuracy: 0.6026



1208/未知 324 秒 264 毫秒/步 - 损失:1.0219 - sparse_categorical_accuracy: 0.6027



1209/未知 325 秒 264 毫秒/步 - 损失:1.0217 - sparse_categorical_accuracy: 0.6027



1210/未知 325 秒 264 毫秒/步 - 损失:1.0215 - sparse_categorical_accuracy: 0.6028



1211/未知 325 秒 264 毫秒/步 - 损失:1.0214 - sparse_categorical_accuracy: 0.6029



1212/未知 326 秒 264 毫秒/步 - 损失:1.0212 - sparse_categorical_accuracy: 0.6029



1213/未知 326 秒 264 毫秒/步 - 损失:1.0210 - sparse_categorical_accuracy: 0.6030



1214/未知 326 秒 264 毫秒/步 - 损失:1.0209 - sparse_categorical_accuracy: 0.6030



1215/未知 327 秒 264 毫秒/步 - 损失:1.0207 - sparse_categorical_accuracy: 0.6031



1216/未知 327 秒 264 毫秒/步 - 损失:1.0205 - sparse_categorical_accuracy: 0.6031



1217/未知 327 秒 264 毫秒/步 - 损失:1.0204 - sparse_categorical_accuracy: 0.6032



1218/未知 327 秒 264 毫秒/步 - 损失:1.0202 - sparse_categorical_accuracy: 0.6032



1219/未知 328 秒 264 毫秒/步 - 损失:1.0200 - sparse_categorical_accuracy: 0.6033



1220/未知 328 秒 264 毫秒/步 - 损失:1.0199 - sparse_categorical_accuracy: 0.6033



1221/未知 328 秒 264 毫秒/步 - 损失:1.0197 - sparse_categorical_accuracy: 0.6034



1222/未知 328 秒 264 毫秒/步 - 损失:1.0196 - sparse_categorical_accuracy: 0.6034



1223/未知 329 秒 264 毫秒/步 - 损失:1.0194 - sparse_categorical_accuracy: 0.6035



1224/未知 329 秒 264 毫秒/步 - 损失:1.0192 - sparse_categorical_accuracy: 0.6035



1225/未知 329 秒 264 毫秒/步 - 损失:1.0191 - sparse_categorical_accuracy: 0.6036



1226/未知 329 秒 264 毫秒/步 - 损失:1.0189 - sparse_categorical_accuracy: 0.6036



1227/未知 330 秒 264 毫秒/步 - 损失:1.0187 - sparse_categorical_accuracy: 0.6037



1228/未知 330 秒 264 毫秒/步 - 损失:1.0186 - sparse_categorical_accuracy: 0.6037



1229/未知 330 秒 264 毫秒/步 - 损失:1.0184 - sparse_categorical_accuracy: 0.6038



1230/未知 330 秒 264 毫秒/步 - 损失:1.0183 - sparse_categorical_accuracy: 0.6038



1231/未知 331 秒 264 毫秒/步 - 损失:1.0181 - sparse_categorical_accuracy: 0.6039



1232/未知 331 秒 264 毫秒/步 - 损失:1.0179 - sparse_categorical_accuracy: 0.6039



1233/未知 331 秒 264 毫秒/步 - 损失:1.0178 - sparse_categorical_accuracy: 0.6040



1234/未知 331 秒 264 毫秒/步 - 损失:1.0176 - sparse_categorical_accuracy: 0.6040



1235/未知 332 秒 264 毫秒/步 - 损失:1.0174 - sparse_categorical_accuracy: 0.6041



1236/未知 332 秒 264 毫秒/步 - 损失:1.0173 - sparse_categorical_accuracy: 0.6041



1237/未知 332 秒 264 毫秒/步 - 损失:1.0171 - sparse_categorical_accuracy: 0.6042



1238/未知 332 秒 264 毫秒/步 - 损失:1.0170 - sparse_categorical_accuracy: 0.6042



1239/未知 333 秒 264 毫秒/步 - 损失:1.0168 - sparse_categorical_accuracy: 0.6043



1240/未知 333 秒 264 毫秒/步 - 损失:1.0166 - sparse_categorical_accuracy: 0.6043



1241/未知 334 秒 264 毫秒/步 - 损失:1.0165 - sparse_categorical_accuracy: 0.6044



1242/未知 334 秒 264 毫秒/步 - 损失:1.0163 - sparse_categorical_accuracy: 0.6044



1243/未知 334 秒 264 毫秒/步 - 损失:1.0162 - sparse_categorical_accuracy: 0.6045



1244/未知 335 秒 265 毫秒/步 - 损失:1.0160 - sparse_categorical_accuracy: 0.6045



1245/未知 335 秒 265 毫秒/步 - 损失:1.0158 - sparse_categorical_accuracy: 0.6046



1246/未知 335 秒 265 毫秒/步 - 损失:1.0157 - sparse_categorical_accuracy: 0.6046



1247/未知 335 秒 265 毫秒/步 - 损失:1.0155 - sparse_categorical_accuracy: 0.6047



1248/未知 336 秒 265 毫秒/步 - 损失:1.0154 - sparse_categorical_accuracy: 0.6048



1249/未知 336 秒 265 毫秒/步 - 损失:1.0152 - sparse_categorical_accuracy: 0.6048



1250/未知 336 秒 265 毫秒/步 - 损失:1.0150 - sparse_categorical_accuracy: 0.6049



1251/未知 337 秒 265 毫秒/步 - 损失:1.0149 - sparse_categorical_accuracy: 0.6049



1252/未知 337 秒 265 毫秒/步 - 损失:1.0147 - sparse_categorical_accuracy: 0.6050



1253/未知 337 秒 265 毫秒/步 - 损失:1.0146 - sparse_categorical_accuracy: 0.6050



1254/未知 337 秒 265 毫秒/步 - 损失:1.0144 - sparse_categorical_accuracy: 0.6051



1255/未知 338 秒 265 毫秒/步 - 损失:1.0143 - sparse_categorical_accuracy: 0.6051



1256/未知 338 秒 265 毫秒/步 - 损失:1.0141 - sparse_categorical_accuracy: 0.6052



1257/未知 338 秒 264 毫秒/步 - 损失:1.0139 - sparse_categorical_accuracy: 0.6052



1258/未知 338 秒 264 毫秒/步 - 损失:1.0138 - sparse_categorical_accuracy: 0.6053



1259/未知 338 秒 264 毫秒/步 - 损失:1.0136 - sparse_categorical_accuracy: 0.6053



1260/未知 339 秒 264 毫秒/步 - 损失:1.0135 - sparse_categorical_accuracy: 0.6054



1261/未知 339 秒 264 毫秒/步 - 损失:1.0133 - sparse_categorical_accuracy: 0.6054



1262/未知 339 秒 264 毫秒/步 - 损失:1.0132 - sparse_categorical_accuracy: 0.6055



1263/未知 339 秒 264 毫秒/步 - 损失:1.0130 - sparse_categorical_accuracy: 0.6055



1264/未知 340 秒 264 毫秒/步 - 损失:1.0128 - sparse_categorical_accuracy: 0.6055



1265/未知 340 秒 264 毫秒/步 - 损失:1.0127 - sparse_categorical_accuracy: 0.6056



1266/未知 340 秒 264 毫秒/步 - 损失:1.0125 - sparse_categorical_accuracy: 0.6056



1267/未知 340 秒 264 毫秒/步 - 损失:1.0124 - sparse_categorical_accuracy: 0.6057



1268/未知 341 秒 264 毫秒/步 - 损失:1.0122 - sparse_categorical_accuracy: 0.6057



1269/未知 341 秒 264 毫秒/步 - 损失:1.0121 - sparse_categorical_accuracy: 0.6058



1270/未知 341 秒 264 毫秒/步 - 损失:1.0119 - sparse_categorical_accuracy: 0.6058



1271/未知 341 秒 264 毫秒/步 - 损失:1.0118 - sparse_categorical_accuracy: 0.6059



1272/未知 342 秒 264 毫秒/步 - 损失:1.0116 - sparse_categorical_accuracy: 0.6059



1273/未知 342 秒 264 毫秒/步 - 损失:1.0114 - sparse_categorical_accuracy: 0.6060



1274/未知 342 秒 264 毫秒/步 - 损失:1.0113 - sparse_categorical_accuracy: 0.6060



1275/未知 342 秒 264 毫秒/步 - 损失:1.0111 - sparse_categorical_accuracy: 0.6061



1276/未知 343 秒 264 毫秒/步 - 损失:1.0110 - sparse_categorical_accuracy: 0.6061



1277/未知 343 秒 264 毫秒/步 - 损失:1.0108 - sparse_categorical_accuracy: 0.6062



1278/未知 343 秒 264 毫秒/步 - 损失:1.0107 - sparse_categorical_accuracy: 0.6062



1279/未知 344 秒 264 毫秒/步 - 损失:1.0105 - sparse_categorical_accuracy: 0.6063



1280/未知 344 秒 264 毫秒/步 - 损失:1.0104 - sparse_categorical_accuracy: 0.6063



1281/未知 344 秒 264 毫秒/步 - 损失:1.0102 - sparse_categorical_accuracy: 0.6064



1282/未知 345 秒 264 毫秒/步 - 损失:1.0101 - sparse_categorical_accuracy: 0.6064



1283/未知 345 秒 265 毫秒/步 - 损失:1.0099 - sparse_categorical_accuracy: 0.6065



1284/未知 345 秒 265 毫秒/步 - 损失:1.0098 - sparse_categorical_accuracy: 0.6065



1285/未知 345 秒 265 毫秒/步 - 损失:1.0096 - sparse_categorical_accuracy: 0.6066



1286/未知 346 秒 265 毫秒/步 - 损失:1.0095 - sparse_categorical_accuracy: 0.6066



1287/未知 346 秒 265 毫秒/步 - 损失:1.0093 - sparse_categorical_accuracy: 0.6067



1288/未知 346 秒 265 毫秒/步 - 损失:1.0092 - sparse_categorical_accuracy: 0.6067



1289/未知 347 秒 265 毫秒/步 - 损失:1.0090 - sparse_categorical_accuracy: 0.6068



1290/未知 347 秒 265 毫秒/步 - 损失:1.0088 - sparse_categorical_accuracy: 0.6068



1291/未知 347 秒 265 毫秒/步 - 损失:1.0087 - sparse_categorical_accuracy: 0.6069



1292/未知 347 秒 265 毫秒/步 - 损失:1.0085 - sparse_categorical_accuracy: 0.6069



1293/未知 348 秒 265 毫秒/步 - 损失:1.0084 - sparse_categorical_accuracy: 0.6070



1294/未知 348 秒 265 毫秒/步 - 损失:1.0082 - sparse_categorical_accuracy: 0.6070



1295/未知 348 秒 265 毫秒/步 - 损失:1.0081 - sparse_categorical_accuracy: 0.6071



1296/未知 349 秒 265 毫秒/步 - 损失:1.0079 - sparse_categorical_accuracy: 0.6071



1297/未知 349 秒 265 毫秒/步 - 损失:1.0078 - sparse_categorical_accuracy: 0.6071



1298/未知 349 秒 265 毫秒/步 - 损失:1.0076 - sparse_categorical_accuracy: 0.6072



1299/未知 350 秒 265 毫秒/步 - 损失:1.0075 - sparse_categorical_accuracy: 0.6072



1300/未知 350 秒 265 毫秒/步 - 损失:1.0073 - sparse_categorical_accuracy: 0.6073



1301/未知 350秒 265毫秒/步 - 损失: 1.0072 - 稀疏分类准确率: 0.6073



1302/未知 350秒 265毫秒/步 - 损失: 1.0070 - 稀疏分类准确率: 0.6074



1303/未知 351秒 265毫秒/步 - 损失: 1.0069 - 稀疏分类准确率: 0.6074



1304/未知 351秒 265毫秒/步 - 损失: 1.0067 - 稀疏分类准确率: 0.6075



1305/未知 351秒 265毫秒/步 - 损失: 1.0066 - 稀疏分类准确率: 0.6075



1306/未知 351秒 265毫秒/步 - 损失: 1.0064 - 稀疏分类准确率: 0.6076



1307/未知 352秒 265毫秒/步 - 损失: 1.0063 - 稀疏分类准确率: 0.6076



1308/未知 352秒 265毫秒/步 - 损失: 1.0061 - 稀疏分类准确率: 0.6077



1309/未知 352秒 265毫秒/步 - 损失: 1.0060 - 稀疏分类准确率: 0.6077



1310/未知 353秒 265毫秒/步 - 损失: 1.0059 - 稀疏分类准确率: 0.6078



1311/未知 353秒 265毫秒/步 - 损失: 1.0057 - 稀疏分类准确率: 0.6078



1312/未知 353秒 265毫秒/步 - 损失: 1.0056 - 稀疏分类准确率: 0.6079



1313/未知 354秒 265毫秒/步 - 损失: 1.0054 - 稀疏分类准确率: 0.6079



1314/未知 354秒 265毫秒/步 - 损失: 1.0053 - 稀疏分类准确率: 0.6079



1315/未知 354秒 265毫秒/步 - 损失: 1.0051 - 稀疏分类准确率: 0.6080



1316/未知 354秒 265毫秒/步 - 损失: 1.0050 - 稀疏分类准确率: 0.6080



1317/未知 355秒 265毫秒/步 - 损失: 1.0048 - 稀疏分类准确率: 0.6081



1318/未知 355秒 265毫秒/步 - 损失: 1.0047 - 稀疏分类准确率: 0.6081



1319/未知 355秒 265毫秒/步 - 损失: 1.0045 - 稀疏分类准确率: 0.6082



1320/未知 356秒 265毫秒/步 - 损失: 1.0044 - 稀疏分类准确率: 0.6082



1321/未知 356秒 265毫秒/步 - 损失: 1.0042 - 稀疏分类准确率: 0.6083



1322/未知 356秒 265毫秒/步 - 损失: 1.0041 - 稀疏分类准确率: 0.6083



1323/未知 356秒 265毫秒/步 - 损失: 1.0039 - 稀疏分类准确率: 0.6084



1324/未知 357秒 265毫秒/步 - 损失: 1.0038 - 稀疏分类准确率: 0.6084



1325/未知 357秒 265毫秒/步 - 损失: 1.0036 - 稀疏分类准确率: 0.6085



1326/未知 357秒 265毫秒/步 - 损失: 1.0035 - 稀疏分类准确率: 0.6085



1327/未知 358秒 265毫秒/步 - 损失: 1.0034 - 稀疏分类准确率: 0.6086



1328/未知 358秒 265毫秒/步 - 损失: 1.0032 - 稀疏分类准确率: 0.6086



1329/未知 358秒 265毫秒/步 - 损失: 1.0031 - 稀疏分类准确率: 0.6086



1330/未知 358秒 265毫秒/步 - 损失: 1.0029 - 稀疏分类准确率: 0.6087



1331/未知 359秒 265毫秒/步 - 损失: 1.0028 - 稀疏分类准确率: 0.6087



1332/未知 359秒 265毫秒/步 - 损失: 1.0026 - 稀疏分类准确率: 0.6088



1333/未知 359秒 265毫秒/步 - 损失: 1.0025 - 稀疏分类准确率: 0.6088



1334/未知 359秒 265毫秒/步 - 损失: 1.0023 - 稀疏分类准确率: 0.6089



1335/未知 360秒 265毫秒/步 - 损失: 1.0022 - 稀疏分类准确率: 0.6089



1336/未知 360秒 265毫秒/步 - 损失: 1.0021 - 稀疏分类准确率: 0.6090



1337/未知 360秒 265毫秒/步 - 损失: 1.0019 - 稀疏分类准确率: 0.6090



1338/未知 360秒 265毫秒/步 - 损失: 1.0018 - 稀疏分类准确率: 0.6091



1339/未知 361秒 265毫秒/步 - 损失: 1.0016 - 稀疏分类准确率: 0.6091



1340/未知 361秒 265毫秒/步 - 损失: 1.0015 - 稀疏分类准确率: 0.6091



1341/未知 361秒 265毫秒/步 - 损失: 1.0013 - 稀疏分类准确率: 0.6092



1342/未知 361秒 265毫秒/步 - 损失: 1.0012 - 稀疏分类准确率: 0.6092



1343/未知 362秒 265毫秒/步 - 损失: 1.0010 - 稀疏分类准确率: 0.6093



1344/未知 362秒 265毫秒/步 - 损失: 1.0009 - 稀疏分类准确率: 0.6093



1345/未知 362秒 265毫秒/步 - 损失: 1.0008 - 稀疏分类准确率: 0.6094



1346/未知 363秒 265毫秒/步 - 损失: 1.0006 - 稀疏分类准确率: 0.6094



1347/未知 363秒 265毫秒/步 - 损失: 1.0005 - 稀疏分类准确率: 0.6095



1348/未知 363秒 265毫秒/步 - 损失: 1.0003 - 稀疏分类准确率: 0.6095



1349/未知 364秒 265毫秒/步 - 损失: 1.0002 - 稀疏分类准确率: 0.6096



1350/未知 364秒 265毫秒/步 - 损失: 1.0000 - 稀疏分类准确率: 0.6096



1351/未知 364秒 265毫秒/步 - 损失: 0.9999 - 稀疏分类准确率: 0.6096



1352/未知 364秒 265毫秒/步 - 损失: 0.9998 - 稀疏分类准确率: 0.6097



1353/未知 365秒 265毫秒/步 - 损失: 0.9996 - 稀疏分类准确率: 0.6097



1354/未知 365秒 265毫秒/步 - 损失: 0.9995 - 稀疏分类准确率: 0.6098



1355/未知 365秒 265毫秒/步 - 损失: 0.9993 - 稀疏分类准确率: 0.6098



1356/未知 366秒 265毫秒/步 - 损失: 0.9992 - 稀疏分类准确率: 0.6099



1357/未知 366秒 266毫秒/步 - 损失: 0.9991 - 稀疏分类准确率: 0.6099



1358/未知 366秒 266毫秒/步 - 损失: 0.9989 - 稀疏分类准确率: 0.6100



1359/未知 366秒 266毫秒/步 - 损失: 0.9988 - 稀疏分类准确率: 0.6100



1360/未知 367秒 266毫秒/步 - 损失: 0.9986 - 稀疏分类准确率: 0.6100



1361/未知 367秒 266毫秒/步 - 损失: 0.9985 - 稀疏分类准确率: 0.6101



1362/未知 367秒 265毫秒/步 - 损失: 0.9984 - 稀疏分类准确率: 0.6101



1363/未知 367秒 265毫秒/步 - 损失: 0.9982 - 稀疏分类准确率: 0.6102



1364/未知 368秒 266毫秒/步 - 损失: 0.9981 - 稀疏分类准确率: 0.6102



1365/未知 368秒 266毫秒/步 - 损失: 0.9979 - 稀疏分类准确率: 0.6103



1366/未知 368秒 266毫秒/步 - 损失: 0.9978 - 稀疏分类准确率: 0.6103



1367/未知 369秒 266毫秒/步 - 损失: 0.9977 - 稀疏分类准确率: 0.6104



1368/未知 369秒 266毫秒/步 - 损失: 0.9975 - 稀疏分类准确率: 0.6104



1369/未知 369秒 266毫秒/步 - 损失: 0.9974 - 稀疏分类准确率: 0.6104



1370/未知 369秒 266毫秒/步 - 损失: 0.9972 - 稀疏分类准确率: 0.6105



1371/未知 370秒 266毫秒/步 - 损失: 0.9971 - 稀疏分类准确率: 0.6105



1372/未知 370秒 266毫秒/步 - 损失: 0.9970 - 稀疏分类准确率: 0.6106



1373/未知 370秒 266毫秒/步 - 损失: 0.9968 - 稀疏分类准确率: 0.6106



1374/未知 371秒 266毫秒/步 - 损失: 0.9967 - 稀疏分类准确率: 0.6107



1375/未知 371秒 266毫秒/步 - 损失: 0.9965 - 稀疏分类准确率: 0.6107



1376/未知 371秒 266毫秒/步 - 损失: 0.9964 - 稀疏分类准确率: 0.6107



1377/未知 372秒 266毫秒/步 - 损失: 0.9963 - 稀疏分类准确率: 0.6108



1378/未知 372秒 266毫秒/步 - 损失: 0.9961 - 稀疏分类准确率: 0.6108



1379/未知 372秒 266毫秒/步 - 损失: 0.9960 - 稀疏分类准确率: 0.6109



1380/未知 372秒 266毫秒/步 - 损失: 0.9959 - 稀疏分类准确率: 0.6109



1381/未知 373秒 266毫秒/步 - 损失: 0.9957 - 稀疏分类准确率: 0.6110



1382/未知 373秒 266毫秒/步 - 损失: 0.9956 - 稀疏分类准确率: 0.6110



1383/未知 373秒 266毫秒/步 - 损失: 0.9954 - 稀疏分类准确率: 0.6111



1384/未知 374秒 266毫秒/步 - 损失: 0.9953 - 稀疏分类准确率: 0.6111



1385/未知 374秒 266毫秒/步 - 损失: 0.9952 - 稀疏分类准确率: 0.6111



1386/未知 374秒 266毫秒/步 - 损失: 0.9950 - 稀疏分类准确率: 0.6112



1387/未知 374秒 266毫秒/步 - 损失: 0.9949 - 稀疏分类准确率: 0.6112



1388/未知 375秒 266毫秒/步 - 损失: 0.9948 - 稀疏分类准确率: 0.6113



1389/未知 375秒 266毫秒/步 - 损失: 0.9946 - 稀疏分类准确率: 0.6113



1390/未知 375秒 266毫秒/步 - 损失: 0.9945 - 稀疏分类准确率: 0.6114



1391/未知 376秒 266毫秒/步 - 损失: 0.9943 - 稀疏分类准确率: 0.6114



1392/未知 376秒 266毫秒/步 - 损失: 0.9942 - 稀疏分类准确率: 0.6114



1393/未知 376秒 266毫秒/步 - 损失: 0.9941 - 稀疏分类准确率: 0.6115



1394/未知 377秒 266毫秒/步 - 损失: 0.9939 - 稀疏分类准确率: 0.6115



1395/未知 377秒 266毫秒/步 - 损失: 0.9938 - 稀疏分类准确率: 0.6116



1396/未知 377秒 266毫秒/步 - 损失: 0.9937 - 稀疏分类准确率: 0.6116



1397/未知 378秒 266毫秒/步 - 损失: 0.9935 - 稀疏分类准确率: 0.6117



1398/未知 378秒 266毫秒/步 - 损失: 0.9934 - 稀疏分类准确率: 0.6117



1399/未知 378秒 266毫秒/步 - 损失: 0.9933 - 稀疏分类准确率: 0.6117



1400/未知 378秒 266毫秒/步 - 损失: 0.9931 - 稀疏分类准确率: 0.6118



1401/未知 379秒 266毫秒/步 - 损失: 0.9930 - 稀疏分类准确率: 0.6118



1402/未知 379秒 266毫秒/步 - 损失: 0.9929 - 稀疏分类准确率: 0.6119



1403/未知 379秒 266毫秒/步 - 损失: 0.9927 - 稀疏分类准确率: 0.6119



1404/未知 379秒 266毫秒/步 - 损失: 0.9926 - 稀疏分类准确率: 0.6120



1405/未知 380秒 266毫秒/步 - 损失: 0.9925 - 稀疏分类准确率: 0.6120



1406/未知 380秒 266毫秒/步 - 损失: 0.9923 - 稀疏分类准确率: 0.6120



1407/未知 380秒 266毫秒/步 - 损失: 0.9922 - 稀疏分类准确率: 0.6121



1408/未知 380秒 266毫秒/步 - 损失: 0.9921 - 稀疏分类准确率: 0.6121



1409/未知 381秒 266毫秒/步 - 损失: 0.9919 - 稀疏分类准确率: 0.6122



1410/未知 381秒 266毫秒/步 - 损失: 0.9918 - 稀疏分类准确率: 0.6122



1411/未知 381秒 266毫秒/步 - 损失: 0.9917 - 稀疏分类准确率: 0.6122



1412/未知 382秒 266毫秒/步 - 损失: 0.9915 - 稀疏分类准确率: 0.6123



1413/未知 382秒 266毫秒/步 - 损失: 0.9914 - 稀疏分类准确率: 0.6123



1414/未知 382秒 266毫秒/步 - 损失: 0.9913 - 稀疏分类准确率: 0.6124



1415/未知 382秒 266毫秒/步 - 损失: 0.9911 - 稀疏分类准确率: 0.6124



1416/未知 383秒 266毫秒/步 - 损失: 0.9910 - 稀疏分类准确率: 0.6125



1417/未知 383秒 266毫秒/步 - 损失: 0.9909 - 稀疏分类准确率: 0.6125



1418/未知 383秒 266毫秒/步 - 损失: 0.9907 - 稀疏分类准确率: 0.6125



1419/未知 384秒 266毫秒/步 - 损失: 0.9906 - 稀疏分类准确率: 0.6126



1420/未知 384秒 267毫秒/步 - 损失: 0.9905 - 稀疏分类准确率: 0.6126



1421/未知 384秒 267毫秒/步 - 损失: 0.9903 - 稀疏分类准确率: 0.6127



1422/未知 385秒 267毫秒/步 - 损失: 0.9902 - 稀疏分类准确率: 0.6127



1423/未知 385秒 267毫秒/步 - 损失: 0.9901 - 稀疏分类准确率: 0.6127



1424/未知 386秒 267毫秒/步 - 损失: 0.9899 - 稀疏分类准确率: 0.6128



1425/未知 386秒 267毫秒/步 - 损失: 0.9898 - 稀疏分类准确率: 0.6128



1426/未知 386秒 267毫秒/步 - 损失: 0.9897 - 稀疏分类准确率: 0.6129



1427/未知 386秒 267毫秒/步 - 损失: 0.9895 - 稀疏分类准确率: 0.6129



1428/未知 387秒 267毫秒/步 - 损失: 0.9894 - 稀疏分类准确率: 0.6130



1429/未知 387秒 267毫秒/步 - 损失: 0.9893 - 稀疏分类准确率: 0.6130



1430/未知 387秒 267毫秒/步 - 损失: 0.9891 - 稀疏分类准确率: 0.6130



1431/未知 388秒 267毫秒/步 - 损失: 0.9890 - 稀疏分类准确率: 0.6131



1432/未知 388秒 267毫秒/步 - 损失: 0.9889 - 稀疏分类准确率: 0.6131



1433/未知 388秒 267毫秒/步 - 损失: 0.9888 - 稀疏分类准确率: 0.6132



1434/未知 388秒 267毫秒/步 - 损失: 0.9886 - 稀疏分类准确率: 0.6132



1435/未知 389秒 267毫秒/步 - 损失: 0.9885 - 稀疏分类准确率: 0.6132



1436/未知 389秒 267毫秒/步 - 损失: 0.9884 - 稀疏分类准确率: 0.6133



1437/未知 389秒 267毫秒/步 - 损失: 0.9882 - 稀疏分类准确率: 0.6133



1438/未知 390秒 267毫秒/步 - 损失: 0.9881 - 稀疏分类准确率: 0.6134



1439/未知 390秒 267毫秒/步 - 损失: 0.9880 - 稀疏分类准确率: 0.6134



1440/未知 390秒 267毫秒/步 - 损失: 0.9878 - 稀疏分类准确率: 0.6134



1441/未知 391秒 267毫秒/步 - 损失: 0.9877 - 稀疏分类准确率: 0.6135



1442/未知 391秒 267毫秒/步 - 损失: 0.9876 - 稀疏分类准确率: 0.6135



1443/未知 391秒 267毫秒/步 - 损失: 0.9875 - 稀疏分类准确率: 0.6136



1444/未知 391秒 267毫秒/步 - 损失: 0.9873 - 稀疏分类准确率: 0.6136



1445/未知 392秒 267毫秒/步 - 损失: 0.9872 - 稀疏分类准确率: 0.6137



1446/未知 392秒 267毫秒/步 - 损失: 0.9871 - 稀疏分类准确率: 0.6137



1447/未知 392秒 267毫秒/步 - 损失: 0.9869 - 稀疏分类准确率: 0.6137



1448/未知 393秒 267毫秒/步 - 损失: 0.9868 - 稀疏分类准确率: 0.6138



1449/未知 393秒 268毫秒/步 - 损失: 0.9867 - 稀疏分类准确率: 0.6138



1450/未知 394秒 268毫秒/步 - 损失: 0.9866 - 稀疏分类准确率: 0.6139



1451/未知 394秒 268毫秒/步 - 损失: 0.9864 - 稀疏分类准确率: 0.6139



1452/未知 394秒 268毫秒/步 - 损失: 0.9863 - 稀疏分类准确率: 0.6139



1453/未知 395秒 268毫秒/步 - 损失: 0.9862 - 稀疏分类准确率: 0.6140



1454/未知 395秒 268毫秒/步 - 损失: 0.9861 - 稀疏分类准确率: 0.6140



1455/未知 395秒 268毫秒/步 - 损失: 0.9859 - 稀疏分类准确率: 0.6141



1456/未知 396秒 268毫秒/步 - 损失: 0.9858 - 稀疏分类准确率: 0.6141



1457/未知 396秒 268毫秒/步 - 损失: 0.9857 - 稀疏分类准确率: 0.6141



1458/未知 396秒 268毫秒/步 - 损失: 0.9855 - 稀疏分类准确率: 0.6142



1459/未知 396秒 268毫秒/步 - 损失: 0.9854 - 稀疏分类准确率: 0.6142



1460/未知 397秒 268毫秒/步 - 损失: 0.9853 - 稀疏分类准确率: 0.6143



1461/未知 397秒 268毫秒/步 - 损失: 0.9852 - 稀疏分类准确率: 0.6143



1462/未知 397秒 268毫秒/步 - 损失: 0.9850 - 稀疏分类准确率: 0.6143



1463/未知 397秒 268毫秒/步 - 损失: 0.9849 - 稀疏分类准确率: 0.6144



1464/未知 398秒 268毫秒/步 - 损失: 0.9848 - 稀疏分类准确率: 0.6144



1465/未知 398秒 268毫秒/步 - 损失: 0.9847 - 稀疏分类准确率: 0.6145



1466/未知 398秒 268毫秒/步 - 损失: 0.9845 - 稀疏分类准确率: 0.6145



1467/未知 399秒 268毫秒/步 - 损失: 0.9844 - 稀疏分类准确率: 0.6145



1468/未知 399秒 268毫秒/步 - 损失: 0.9843 - 稀疏分类准确率: 0.6146



1469/未知 399秒 268毫秒/步 - 损失: 0.9842 - 稀疏分类准确率: 0.6146



1470/未知 399秒 268毫秒/步 - 损失: 0.9840 - 稀疏分类准确率: 0.6147



1471/未知 400秒 268毫秒/步 - 损失: 0.9839 - 稀疏分类准确率: 0.6147



1472/未知 400秒 268毫秒/步 - 损失: 0.9838 - 稀疏分类准确率: 0.6147



1473/未知 400秒 268毫秒/步 - 损失: 0.9837 - 稀疏分类准确率: 0.6148



1474/未知 401秒 268毫秒/步 - 损失: 0.9835 - 稀疏分类准确率: 0.6148



1475/未知 401秒 268毫秒/步 - 损失: 0.9834 - 稀疏分类准确率: 0.6149



1476/未知 401秒 268毫秒/步 - 损失: 0.9833 - 稀疏分类准确率: 0.6149



1477/未知 401秒 268毫秒/步 - 损失: 0.9832 - 稀疏分类准确率: 0.6149



1478/未知 402秒 268毫秒/步 - 损失: 0.9830 - 稀疏分类准确率: 0.6150



1479/未知 402秒 268毫秒/步 - 损失: 0.9829 - 稀疏分类准确率: 0.6150



1480/未知 402秒 268毫秒/步 - 损失: 0.9828 - 稀疏分类准确率: 0.6150



1481/未知 403秒 268毫秒/步 - 损失: 0.9827 - 稀疏分类准确率: 0.6151



1482/未知 403秒 268毫秒/步 - 损失: 0.9825 - 稀疏分类准确率: 0.6151



1483/未知 403秒 268毫秒/步 - 损失: 0.9824 - 稀疏分类准确率: 0.6152



1484/未知 404秒 268毫秒/步 - 损失: 0.9823 - 稀疏分类准确率: 0.6152



1485/未知 404秒 268毫秒/步 - 损失: 0.9822 - 稀疏分类准确率: 0.6152



1486/未知 404秒 268毫秒/步 - 损失: 0.9820 - 稀疏分类准确率: 0.6153



1487/未知 404秒 268毫秒/步 - 损失: 0.9819 - 稀疏分类准确率: 0.6153



1488/未知 405秒 268毫秒/步 - 损失: 0.9818 - 稀疏分类准确率: 0.6154



1489/未知 405秒 268毫秒/步 - 损失: 0.9817 - 稀疏分类准确率: 0.6154



1490/未知 405秒 268毫秒/步 - 损失: 0.9815 - 稀疏分类准确率: 0.6154



1491/未知 406秒 268毫秒/步 - 损失: 0.9814 - 稀疏分类准确率: 0.6155



1492/未知 406秒 268毫秒/步 - 损失: 0.9813 - 稀疏分类准确率: 0.6155



1493/未知 406秒 268毫秒/步 - 损失: 0.9812 - 稀疏分类准确率: 0.6156



1494/未知 406秒 268毫秒/步 - 损失: 0.9810 - 稀疏分类准确率: 0.6156



1495/未知 407秒 268毫秒/步 - 损失: 0.9809 - 稀疏分类准确率: 0.6156



1496/未知 407秒 268毫秒/步 - 损失: 0.9808 - 稀疏分类准确率: 0.6157



1497/未知 407秒 268毫秒/步 - 损失: 0.9807 - 稀疏分类准确率: 0.6157



1498/未知 408秒 268毫秒/步 - 损失: 0.9806 - 稀疏分类准确率: 0.6157



1499/未知 408秒 268毫秒/步 - 损失: 0.9804 - 稀疏分类准确率: 0.6158



1500/未知 408秒 268毫秒/步 - 损失: 0.9803 - 稀疏分类准确率: 0.6158



1501/未知 408秒 268毫秒/步 - 损失: 0.9802 - 稀疏分类准确率: 0.6159



1502/未知 409秒 268毫秒/步 - 损失: 0.9801 - 稀疏分类准确率: 0.6159



1503/未知 409秒 268毫秒/步 - 损失: 0.9800 - 稀疏分类准确率: 0.6159



1504/未知 409秒 268毫秒/步 - 损失: 0.9798 - 稀疏分类准确率: 0.6160



1505/未知 410秒 268毫秒/步 - 损失: 0.9797 - 稀疏分类准确率: 0.6160



1506/未知 410秒 269毫秒/步 - 损失: 0.9796 - 稀疏分类准确率: 0.6161



1507/未知 410秒 269毫秒/步 - 损失: 0.9795 - 稀疏分类准确率: 0.6161



1508/未知 411秒 269毫秒/步 - 损失: 0.9793 - 稀疏分类准确率: 0.6161



1509/未知 411秒 269毫秒/步 - 损失: 0.9792 - 稀疏分类准确率: 0.6162



1510/未知 411秒 269毫秒/步 - 损失: 0.9791 - 稀疏分类准确率: 0.6162



1511/未知 411秒 269毫秒/步 - 损失: 0.9790 - 稀疏分类准确率: 0.6162



1512/未知 412秒 269毫秒/步 - 损失: 0.9789 - 稀疏分类准确率: 0.6163



1513/未知 412秒 269毫秒/步 - 损失: 0.9787 - 稀疏分类准确率: 0.6163



1514/未知 412秒 269毫秒/步 - 损失: 0.9786 - 稀疏分类准确率: 0.6164



1515/未知 413秒 269毫秒/步 - 损失: 0.9785 - 稀疏分类准确率: 0.6164



1516/未知 413秒 269毫秒/步 - 损失: 0.9784 - 稀疏分类准确率: 0.6164



1517/未知 413秒 269毫秒/步 - 损失: 0.9783 - 稀疏分类准确率: 0.6165



1518/未知 413秒 269毫秒/步 - 损失: 0.9781 - 稀疏分类准确率: 0.6165



1519/未知 414秒 269毫秒/步 - 损失: 0.9780 - 稀疏分类准确率: 0.6166



1520/未知 414秒 269毫秒/步 - 损失: 0.9779 - 稀疏分类准确率: 0.6166



1521/未知 414秒 269毫秒/步 - 损失: 0.9778 - 稀疏分类准确率: 0.6166



1522/未知 415秒 269毫秒/步 - 损失: 0.9777 - 稀疏分类准确率: 0.6167



1523/未知 415秒 269毫秒/步 - 损失: 0.9775 - 稀疏分类准确率: 0.6167



1524/未知 415秒 269毫秒/步 - 损失: 0.9774 - 稀疏分类准确率: 0.6167



1525/未知 415秒 269毫秒/步 - 损失: 0.9773 - 稀疏分类准确率: 0.6168



1526/未知 416秒 269毫秒/步 - 损失: 0.9772 - 稀疏分类准确率: 0.6168



1527/未知 416秒 269毫秒/步 - 损失: 0.9771 - 稀疏分类准确率: 0.6169



1528/未知 416秒 269毫秒/步 - 损失: 0.9769 - 稀疏分类准确率: 0.6169



1529/未知 417秒 269毫秒/步 - 损失: 0.9768 - 稀疏分类准确率: 0.6169



1530/未知 417秒 269毫秒/步 - 损失: 0.9767 - 稀疏分类准确率: 0.6170



1531/未知 417秒 269毫秒/步 - 损失: 0.9766 - 稀疏分类准确率: 0.6170



1532/未知 417秒 269毫秒/步 - 损失: 0.9765 - 稀疏分类准确率: 0.6170



1533/未知 418秒 269毫秒/步 - 损失: 0.9764 - 稀疏分类准确率: 0.6171



1534/未知 418秒 269毫秒/步 - 损失: 0.9762 - 稀疏分类准确率: 0.6171



1535/未知 418秒 269毫秒/步 - 损失: 0.9761 - 稀疏分类准确率: 0.6172



1536/未知 418秒 269毫秒/步 - 损失: 0.9760 - 稀疏分类准确率: 0.6172



1537/未知 419秒 269毫秒/步 - 损失: 0.9759 - 稀疏分类准确率: 0.6172



1538/未知 419秒 269毫秒/步 - 损失: 0.9758 - 稀疏分类准确率: 0.6173



1539/未知 419秒 269毫秒/步 - 损失: 0.9756 - 稀疏分类准确率: 0.6173



1540/未知 420秒 269毫秒/步 - 损失: 0.9755 - 稀疏分类准确率: 0.6173



1541/未知 420秒 269毫秒/步 - 损失: 0.9754 - 稀疏分类准确率: 0.6174



1542/未知 420秒 269毫秒/步 - 损失: 0.9753 - 稀疏分类准确率: 0.6174



1543/未知 420秒 269毫秒/步 - 损失: 0.9752 - 稀疏分类准确率: 0.6174



1544/未知 421秒 269毫秒/步 - 损失: 0.9751 - 稀疏分类准确率: 0.6175



1545/未知 421秒 269毫秒/步 - 损失: 0.9749 - 稀疏分类准确率: 0.6175



1546/未知 421秒 269毫秒/步 - 损失: 0.9748 - 稀疏分类准确率: 0.6176



1547/未知 422秒 269毫秒/步 - 损失: 0.9747 - 稀疏分类准确率: 0.6176



1548/未知 422秒 269毫秒/步 - 损失: 0.9746 - 稀疏分类准确率: 0.6176



1549/未知 422秒 269毫秒/步 - 损失: 0.9745 - 稀疏分类准确率: 0.6177



1550/未知 422秒 269毫秒/步 - 损失: 0.9744 - 稀疏分类准确率: 0.6177



1551/未知 423秒 269毫秒/步 - 损失: 0.9742 - 稀疏分类准确率: 0.6177



1552/未知 423秒 269毫秒/步 - 损失: 0.9741 - 稀疏分类准确率: 0.6178



1553/未知 423秒 269毫秒/步 - 损失: 0.9740 - 稀疏分类准确率: 0.6178



1554/未知 424秒 269毫秒/步 - 损失: 0.9739 - 稀疏分类准确率: 0.6179



1555/未知 424秒 269毫秒/步 - 损失: 0.9738 - 稀疏分类准确率: 0.6179



1556/未知 424秒 269毫秒/步 - 损失: 0.9737 - 稀疏分类准确率: 0.6179



1557/未知 424秒 269毫秒/步 - 损失: 0.9736 - 稀疏分类准确率: 0.6180



1558/未知 425秒 269毫秒/步 - 损失: 0.9734 - 稀疏分类准确率: 0.6180



1559/未知 425秒 269毫秒/步 - 损失: 0.9733 - 稀疏分类准确率: 0.6180



1560/未知 425秒 269毫秒/步 - 损失: 0.9732 - 稀疏分类准确率: 0.6181



1561/未知 426秒 269毫秒/步 - 损失: 0.9731 - 稀疏分类准确率: 0.6181



1562/未知 426秒 269毫秒/步 - 损失: 0.9730 - 稀疏分类准确率: 0.6181



1563/未知 426秒 269毫秒/步 - 损失: 0.9729 - 稀疏分类准确率: 0.6182



1564/未知 427秒 269毫秒/步 - 损失: 0.9727 - 稀疏分类准确率: 0.6182



1565/未知 427秒 269毫秒/步 - 损失: 0.9726 - 稀疏分类准确率: 0.6182



1566/未知 427秒 269毫秒/步 - 损失: 0.9725 - 稀疏分类准确率: 0.6183



1567/未知 427秒 269毫秒/步 - 损失: 0.9724 - 稀疏分类准确率: 0.6183



1568/未知 428秒 269毫秒/步 - 损失: 0.9723 - 稀疏分类准确率: 0.6184



1569/未知 428秒 269毫秒/步 - 损失: 0.9722 - 稀疏分类准确率: 0.6184



1570/未知 428秒 269毫秒/步 - 损失: 0.9721 - 稀疏分类准确率: 0.6184



1571/未知 428秒 269毫秒/步 - 损失: 0.9719 - 稀疏分类准确率: 0.6185



1572/未知 429秒 269毫秒/步 - 损失: 0.9718 - 稀疏分类准确率: 0.6185



1573/未知 429秒 269毫秒/步 - 损失: 0.9717 - 稀疏分类准确率: 0.6185



1574/未知 429秒 269毫秒/步 - 损失: 0.9716 - 稀疏分类准确率: 0.6186



1575/未知 430秒 269毫秒/步 - 损失: 0.9715 - 稀疏分类准确率: 0.6186



1576/未知 430秒 269毫秒/步 - 损失: 0.9714 - 稀疏分类准确率: 0.6186



1577/未知 430秒 269毫秒/步 - 损失: 0.9713 - 稀疏分类准确率: 0.6187



1578/未知 430秒 269毫秒/步 - 损失: 0.9712 - 稀疏分类准确率: 0.6187



1579/未知 431秒 269毫秒/步 - 损失: 0.9710 - 稀疏分类准确率: 0.6188



1580/未知 431秒 269毫秒/步 - 损失: 0.9709 - 稀疏分类准确率: 0.6188



1581/未知 431秒 269毫秒/步 - 损失: 0.9708 - 稀疏分类准确率: 0.6188



1582/未知 432秒 269毫秒/步 - 损失: 0.9707 - 稀疏分类准确率: 0.6189



1583/未知 432秒 269毫秒/步 - 损失: 0.9706 - 稀疏分类准确率: 0.6189



1584/未知 432秒 269毫秒/步 - 损失: 0.9705 - 稀疏分类准确率: 0.6189



1585/未知 433秒 269毫秒/步 - 损失: 0.9704 - 稀疏分类准确率: 0.6190



1586/未知 433秒 269毫秒/步 - 损失: 0.9702 - 稀疏分类准确率: 0.6190



1587/未知 433秒 269毫秒/步 - 损失: 0.9701 - 稀疏分类准确率: 0.6190



1588/未知 433秒 269毫秒/步 - 损失: 0.9700 - 稀疏分类准确率: 0.6191



1589/未知 434秒 269毫秒/步 - 损失: 0.9699 - 稀疏分类准确率: 0.6191



1590/未知 434秒 269毫秒/步 - 损失: 0.9698 - 稀疏分类准确率: 0.6191



1591/未知 434秒 269毫秒/步 - 损失: 0.9697 - 稀疏分类准确率: 0.6192



1592/未知 435秒 270毫秒/步 - 损失: 0.9696 - 稀疏分类准确率: 0.6192



1593/未知 435秒 270毫秒/步 - 损失: 0.9695 - 稀疏分类准确率: 0.6192



1594/未知 435秒 270毫秒/步 - 损失: 0.9694 - 稀疏分类准确率: 0.6193



1595/未知 435秒 270毫秒/步 - 损失: 0.9692 - 稀疏分类准确率: 0.6193



1596/未知 436秒 270毫秒/步 - 损失: 0.9691 - 稀疏分类准确率: 0.6194



1597/未知 436秒 270毫秒/步 - 损失: 0.9690 - 稀疏分类准确率: 0.6194



1598/未知 436秒 270毫秒/步 - 损失: 0.9689 - 稀疏分类准确率: 0.6194



1599/未知 437秒 270毫秒/步 - 损失: 0.9688 - 稀疏分类准确率: 0.6195



1600/未知 437秒 270毫秒/步 - 损失: 0.9687 - 稀疏分类准确率: 0.6195



1601/未知 437秒 270毫秒/步 - 损失: 0.9686 - 稀疏分类准确率: 0.6195



1602/未知 437秒 270毫秒/步 - 损失: 0.9685 - 稀疏分类准确率: 0.6196



1603/未知 438秒 270毫秒/步 - 损失: 0.9684 - 稀疏分类准确率: 0.6196



1604/未知 438秒 270毫秒/步 - 损失: 0.9682 - 稀疏分类准确率: 0.6196



1605/未知 438秒 270毫秒/步 - 损失: 0.9681 - 稀疏分类准确率: 0.6197



1606/未知 439秒 270毫秒/步 - 损失: 0.9680 - 稀疏分类准确率: 0.6197



1607/未知 439秒 270毫秒/步 - 损失: 0.9679 - 稀疏分类准确率: 0.6197



1608/未知 439秒 270毫秒/步 - 损失: 0.9678 - 稀疏分类准确率: 0.6198



1609/未知 439秒 270毫秒/步 - 损失: 0.9677 - 稀疏分类准确率: 0.6198



1610/未知 440秒 270毫秒/步 - 损失: 0.9676 - 稀疏分类准确率: 0.6198



1611/未知 440秒 270毫秒/步 - 损失: 0.9675 - 稀疏分类准确率: 0.6199



1612/未知 440秒 270毫秒/步 - 损失: 0.9674 - 稀疏分类准确率: 0.6199



1613/未知 441秒 270毫秒/步 - 损失: 0.9673 - 稀疏分类准确率: 0.6199



1614/未知 441秒 270毫秒/步 - 损失: 0.9671 - 稀疏分类准确率: 0.6200



1615/未知 441秒 270毫秒/步 - 损失: 0.9670 - 稀疏分类准确率: 0.6200



1616/未知 442秒 270毫秒/步 - 损失: 0.9669 - 稀疏分类准确率: 0.6200



1617/未知 442秒 270毫秒/步 - 损失: 0.9668 - 稀疏分类准确率: 0.6201



1618/未知 442秒 270毫秒/步 - 损失: 0.9667 - 稀疏分类准确率: 0.6201



1619/未知 442秒 270毫秒/步 - 损失: 0.9666 - 稀疏分类准确率: 0.6202



1620/未知 443秒 270毫秒/步 - 损失: 0.9665 - 稀疏分类准确率: 0.6202



1621/未知 443秒 270毫秒/步 - 损失: 0.9664 - 稀疏分类准确率: 0.6202



1622/未知 443秒 270毫秒/步 - 损失: 0.9663 - 稀疏分类准确率: 0.6203



1623/未知 444秒 270毫秒/步 - 损失: 0.9662 - 稀疏分类准确率: 0.6203



1624/未知 444秒 270毫秒/步 - 损失: 0.9661 - 稀疏分类准确率: 0.6203



1625/未知 444秒 270毫秒/步 - 损失: 0.9659 - 稀疏分类准确率: 0.6204



1626/未知 445秒 270毫秒/步 - 损失: 0.9658 - 稀疏分类准确率: 0.6204



1627/未知 445秒 270毫秒/步 - 损失: 0.9657 - 稀疏分类准确率: 0.6204



1628/未知 445秒 270毫秒/步 - 损失: 0.9656 - 稀疏分类准确率: 0.6205



1629/未知 446秒 270毫秒/步 - 损失: 0.9655 - 稀疏分类准确率: 0.6205



1630/未知 446秒 270毫秒/步 - 损失: 0.9654 - 稀疏分类准确率: 0.6205



1631/未知 446秒 270毫秒/步 - 损失: 0.9653 - 稀疏分类准确率: 0.6206



1632/未知 447秒 270毫秒/步 - 损失: 0.9652 - 稀疏分类准确率: 0.6206



1633/未知 447秒 270毫秒/步 - 损失: 0.9651 - 稀疏分类准确率: 0.6206



1634/未知 447秒 270毫秒/步 - 损失: 0.9650 - 稀疏分类准确率: 0.6207



1635/未知 448秒 271毫秒/步 - 损失: 0.9649 - 稀疏分类准确率: 0.6207



1636/未知 448秒 271毫秒/步 - 损失: 0.9648 - 稀疏分类准确率: 0.6207



1637/未知 448秒 271毫秒/步 - 损失: 0.9646 - 稀疏分类准确率: 0.6208



1638/未知 449秒 271毫秒/步 - 损失: 0.9645 - 稀疏分类准确率: 0.6208



1639/未知 449秒 271毫秒/步 - 损失: 0.9644 - 稀疏分类准确率: 0.6208



1640/未知 449秒 271毫秒/步 - 损失: 0.9643 - 稀疏分类准确率: 0.6209



1641/未知 450秒 271毫秒/步 - 损失: 0.9642 - 稀疏分类准确率: 0.6209



1642/未知 450秒 271毫秒/步 - 损失: 0.9641 - 稀疏分类准确率: 0.6209



1643/未知 450秒 271毫秒/步 - 损失: 0.9640 - 稀疏分类准确率: 0.6210



1644/未知 450秒 271毫秒/步 - 损失: 0.9639 - 稀疏分类准确率: 0.6210



1645/未知 451秒 271毫秒/步 - 损失: 0.9638 - 稀疏分类准确率: 0.6210



1646/未知 451秒 271毫秒/步 - 损失: 0.9637 - 稀疏分类准确率: 0.6211



1647/未知 451秒 271毫秒/步 - 损失: 0.9636 - 稀疏分类准确率: 0.6211



1648/未知 452秒 271毫秒/步 - 损失: 0.9635 - 稀疏分类准确率: 0.6211



1649/未知 452秒 271毫秒/步 - 损失: 0.9634 - 稀疏分类准确率: 0.6212



1650/未知 452秒 271毫秒/步 - 损失: 0.9633 - 稀疏分类准确率: 0.6212



1651/未知 452秒 271毫秒/步 - 损失: 0.9632 - 稀疏分类准确率: 0.6212



1652/未知 453秒 271毫秒/步 - 损失: 0.9631 - 稀疏分类准确率: 0.6213



1653/未知 453秒 271毫秒/步 - 损失: 0.9629 - 稀疏分类准确率: 0.6213



1654/未知 453秒 271毫秒/步 - 损失: 0.9628 - 稀疏分类准确率: 0.6213



1655/未知 454秒 271毫秒/步 - 损失: 0.9627 - 稀疏分类准确率: 0.6214



1656/未知 454秒 271毫秒/步 - 损失: 0.9626 - 稀疏分类准确率: 0.6214



1657/未知 454秒 271毫秒/步 - 损失: 0.9625 - 稀疏分类准确率: 0.6214



1658/未知 455秒 271毫秒/步 - 损失: 0.9624 - 稀疏分类准确率: 0.6215



1659/未知 455秒 271毫秒/步 - 损失: 0.9623 - 稀疏分类准确率: 0.6215



1660/未知 455秒 271毫秒/步 - 损失: 0.9622 - 稀疏分类准确率: 0.6215



1661/未知 455秒 271毫秒/步 - 损失: 0.9621 - 稀疏分类准确率: 0.6216



1662/未知 456秒 271毫秒/步 - 损失: 0.9620 - 稀疏分类准确率: 0.6216



1663/未知 456秒 271毫秒/步 - 损失: 0.9619 - 稀疏分类准确率: 0.6216



1664/未知 456秒 271毫秒/步 - 损失: 0.9618 - 稀疏分类准确率: 0.6217



1665/未知 457秒 271毫秒/步 - 损失: 0.9617 - 稀疏分类准确率: 0.6217



1666/未知 457秒 271毫秒/步 - 损失: 0.9616 - 稀疏分类准确率: 0.6217



1667/未知 457秒 271毫秒/步 - 损失: 0.9615 - 稀疏分类准确率: 0.6218



1668/未知 457秒 271毫秒/步 - 损失: 0.9614 - 稀疏分类准确率: 0.6218



1669/未知 458秒 271毫秒/步 - 损失: 0.9613 - 稀疏分类准确率: 0.6218



1670/未知 458秒 271毫秒/步 - 损失: 0.9612 - 稀疏分类准确率: 0.6219



1671/未知 458秒 271毫秒/步 - 损失: 0.9611 - 稀疏分类准确率: 0.6219



1672/未知 459秒 271毫秒/步 - 损失: 0.9610 - 稀疏分类准确率: 0.6219



1673/未知 459秒 271毫秒/步 - 损失: 0.9609 - 稀疏分类准确率: 0.6220



1674/未知 459秒 271毫秒/步 - 损失: 0.9607 - 稀疏分类准确率: 0.6220



1675/未知 460秒 271毫秒/步 - 损失: 0.9606 - 稀疏分类准确率: 0.6220



1676/未知 460秒 271毫秒/步 - 损失: 0.9605 - 稀疏分类准确率: 0.6221



1677/未知 460秒 271毫秒/步 - 损失: 0.9604 - 稀疏分类准确率: 0.6221



1678/未知 460秒 271毫秒/步 - 损失: 0.9603 - 稀疏分类准确率: 0.6221



1679/未知 461秒 271毫秒/步 - 损失: 0.9602 - 稀疏分类准确率: 0.6222



1680/未知 461秒 271毫秒/步 - 损失: 0.9601 - 稀疏分类准确率: 0.6222



1681/未知 461秒 271毫秒/步 - 损失: 0.9600 - 稀疏分类准确率: 0.6222



1682/未知 462秒 271毫秒/步 - 损失: 0.9599 - 稀疏分类准确率: 0.6223



1683/未知 462秒 271毫秒/步 - 损失: 0.9598 - 稀疏分类准确率: 0.6223



1684/未知 462秒 271毫秒/步 - 损失: 0.9597 - 稀疏分类准确率: 0.6223



1685/未知 462秒 271毫秒/步 - 损失: 0.9596 - 稀疏分类准确率: 0.6224



1686/未知 463秒 271毫秒/步 - 损失: 0.9595 - 稀疏分类准确率: 0.6224



1687/未知 463秒 271毫秒/步 - 损失: 0.9594 - 稀疏分类准确率: 0.6224



1688/未知 463秒 271毫秒/步 - 损失: 0.9593 - 稀疏分类准确率: 0.6224



1689/未知 463秒 271毫秒/步 - 损失: 0.9592 - 稀疏分类准确率: 0.6225



1690/未知 464秒 271毫秒/步 - 损失: 0.9591 - 稀疏分类准确率: 0.6225



1691/未知 464秒 271毫秒/步 - 损失: 0.9590 - 稀疏分类准确率: 0.6225



1692/未知 464秒 271毫秒/步 - 损失: 0.9589 - 稀疏分类准确率: 0.6226



1693/未知 464秒 271毫秒/步 - 损失: 0.9588 - 稀疏分类准确率: 0.6226



1694/未知 465秒 271毫秒/步 - 损失: 0.9587 - 稀疏分类准确率: 0.6226



1695/未知 465秒 271毫秒/步 - 损失: 0.9586 - 稀疏分类准确率: 0.6227



1696/未知 465秒 271毫秒/步 - 损失: 0.9585 - 稀疏分类准确率: 0.6227



1697/未知 465秒 271毫秒/步 - 损失: 0.9584 - 稀疏分类准确率: 0.6227



1698/未知 466秒 271毫秒/步 - 损失: 0.9583 - 稀疏分类准确率: 0.6228



1699/未知 466秒 271毫秒/步 - 损失: 0.9582 - 稀疏分类准确率: 0.6228



1700/未知 466秒 271毫秒/步 - 损失: 0.9581 - 稀疏分类准确率: 0.6228



1701/未知 466秒 271毫秒/步 - 损失: 0.9580 - 稀疏分类准确率: 0.6229



1702/未知 467秒 271毫秒/步 - 损失: 0.9579 - 稀疏分类准确率: 0.6229



1703/未知 467秒 271毫秒/步 - 损失: 0.9578 - 稀疏分类准确率: 0.6229



1704/未知 467秒 271毫秒/步 - 损失: 0.9577 - 稀疏分类准确率: 0.6230



1705/未知 468秒 271毫秒/步 - 损失: 0.9576 - 稀疏分类准确率: 0.6230



1706/未知 468秒 271毫秒/步 - 损失: 0.9575 - 稀疏分类准确率: 0.6230



1707/未知 468秒 271毫秒/步 - 损失: 0.9574 - 稀疏分类准确率: 0.6231



1708/未知 469秒 271毫秒/步 - 损失: 0.9573 - 稀疏分类准确率: 0.6231



1709/未知 469秒 271毫秒/步 - 损失: 0.9572 - 稀疏分类准确率: 0.6231



1710/未知 469秒 271毫秒/步 - 损失: 0.9571 - 稀疏分类准确率: 0.6232



1711/未知 470秒 271毫秒/步 - 损失: 0.9570 - 稀疏分类准确率: 0.6232



1712/未知 470秒 271毫秒/步 - 损失: 0.9569 - 稀疏分类准确率: 0.6232



1713/未知 470秒 271毫秒/步 - 损失: 0.9568 - 稀疏分类准确率: 0.6232



1714/未知 470秒 271毫秒/步 - 损失: 0.9567 - 稀疏分类准确率: 0.6233



1715/未知 471秒 271毫秒/步 - 损失: 0.9566 - 稀疏分类准确率: 0.6233



1716/未知 471秒 271毫秒/步 - 损失: 0.9565 - 稀疏分类准确率: 0.6233



1717/未知 471秒 271毫秒/步 - 损失: 0.9564 - 稀疏分类准确率: 0.6234



1718/未知 471秒 271毫秒/步 - 损失: 0.9563 - 稀疏分类准确率: 0.6234



1719/未知 472秒 271毫秒/步 - 损失: 0.9562 - 稀疏分类准确率: 0.6234



1720/未知 472秒 271毫秒/步 - 损失: 0.9561 - 稀疏分类准确率: 0.6235



1721/未知 472秒 271毫秒/步 - loss: 0.9560 - sparse_categorical_accuracy: 0.6235



1722/未知 472秒 271毫秒/步 - loss: 0.9559 - sparse_categorical_accuracy: 0.6235



1723/未知 473秒 271毫秒/步 - loss: 0.9558 - sparse_categorical_accuracy: 0.6236



1724/未知 473秒 271毫秒/步 - loss: 0.9557 - sparse_categorical_accuracy: 0.6236



1725/未知 473秒 271毫秒/步 - loss: 0.9556 - sparse_categorical_accuracy: 0.6236



1726/未知 473秒 271毫秒/步 - loss: 0.9555 - sparse_categorical_accuracy: 0.6237



1727/未知 474秒 271毫秒/步 - loss: 0.9554 - sparse_categorical_accuracy: 0.6237



1728/未知 474秒 271毫秒/步 - loss: 0.9553 - sparse_categorical_accuracy: 0.6237



1729/未知 474秒 271毫秒/步 - loss: 0.9552 - sparse_categorical_accuracy: 0.6237



1730/未知 474秒 271毫秒/步 - loss: 0.9551 - sparse_categorical_accuracy: 0.6238



1731/未知 475秒 271毫秒/步 - loss: 0.9550 - sparse_categorical_accuracy: 0.6238



1732/未知 475秒 271毫秒/步 - loss: 0.9549 - sparse_categorical_accuracy: 0.6238



1733/未知 476秒 271毫秒/步 - loss: 0.9548 - sparse_categorical_accuracy: 0.6239



1734/未知 476秒 271毫秒/步 - loss: 0.9547 - sparse_categorical_accuracy: 0.6239



1735/未知 476秒 271毫秒/步 - loss: 0.9546 - sparse_categorical_accuracy: 0.6239



1736/未知 477秒 271毫秒/步 - loss: 0.9545 - sparse_categorical_accuracy: 0.6240



1737/未知 477秒 271毫秒/步 - loss: 0.9544 - sparse_categorical_accuracy: 0.6240



1738/未知 477秒 271毫秒/步 - loss: 0.9543 - sparse_categorical_accuracy: 0.6240



1739/未知 478秒 272毫秒/步 - loss: 0.9542 - sparse_categorical_accuracy: 0.6241



1740/未知 478秒 272毫秒/步 - loss: 0.9541 - sparse_categorical_accuracy: 0.6241



1741/未知 478秒 272毫秒/步 - loss: 0.9540 - sparse_categorical_accuracy: 0.6241



1742/未知 479秒 272毫秒/步 - loss: 0.9539 - sparse_categorical_accuracy: 0.6242



1743/未知 479秒 272毫秒/步 - loss: 0.9538 - sparse_categorical_accuracy: 0.6242



1744/未知 479秒 272毫秒/步 - loss: 0.9537 - sparse_categorical_accuracy: 0.6242



1745/未知 480秒 272毫秒/步 - loss: 0.9536 - sparse_categorical_accuracy: 0.6242



1746/未知 480秒 272毫秒/步 - loss: 0.9535 - sparse_categorical_accuracy: 0.6243



1747/未知 480秒 272毫秒/步 - loss: 0.9534 - sparse_categorical_accuracy: 0.6243



1748/未知 481秒 272毫秒/步 - loss: 0.9533 - sparse_categorical_accuracy: 0.6243



1749/未知 481秒 272毫秒/步 - loss: 0.9532 - sparse_categorical_accuracy: 0.6244



1750/未知 481秒 272毫秒/步 - loss: 0.9531 - sparse_categorical_accuracy: 0.6244



1751/未知 481秒 272毫秒/步 - loss: 0.9530 - sparse_categorical_accuracy: 0.6244



1752/未知 482秒 272毫秒/步 - loss: 0.9529 - sparse_categorical_accuracy: 0.6245



1753/未知 482秒 272毫秒/步 - loss: 0.9528 - sparse_categorical_accuracy: 0.6245



1754/未知 482秒 272毫秒/步 - loss: 0.9527 - sparse_categorical_accuracy: 0.6245



1755/未知 483秒 272毫秒/步 - loss: 0.9526 - sparse_categorical_accuracy: 0.6246



1756/未知 483秒 272毫秒/步 - loss: 0.9525 - sparse_categorical_accuracy: 0.6246



1757/未知 483秒 272毫秒/步 - loss: 0.9524 - sparse_categorical_accuracy: 0.6246



1758/未知 484秒 272毫秒/步 - loss: 0.9523 - sparse_categorical_accuracy: 0.6246



1759/未知 484秒 272毫秒/步 - loss: 0.9522 - sparse_categorical_accuracy: 0.6247



1760/未知 484秒 272毫秒/步 - loss: 0.9521 - sparse_categorical_accuracy: 0.6247



1761/未知 484秒 272毫秒/步 - loss: 0.9520 - sparse_categorical_accuracy: 0.6247



1762/未知 485秒 272毫秒/步 - loss: 0.9519 - sparse_categorical_accuracy: 0.6248



1763/未知 485秒 272毫秒/步 - loss: 0.9519 - sparse_categorical_accuracy: 0.6248



1764/未知 485秒 272毫秒/步 - loss: 0.9518 - sparse_categorical_accuracy: 0.6248



1765/未知 486秒 272毫秒/步 - loss: 0.9517 - sparse_categorical_accuracy: 0.6249



1766/未知 486秒 272毫秒/步 - loss: 0.9516 - sparse_categorical_accuracy: 0.6249



1767/未知 486秒 272毫秒/步 - loss: 0.9515 - sparse_categorical_accuracy: 0.6249



1768/未知 487秒 272毫秒/步 - loss: 0.9514 - sparse_categorical_accuracy: 0.6249



1769/未知 487秒 272毫秒/步 - loss: 0.9513 - sparse_categorical_accuracy: 0.6250



1770/未知 488秒 272毫秒/步 - loss: 0.9512 - sparse_categorical_accuracy: 0.6250



1771/未知 488秒 272毫秒/步 - loss: 0.9511 - sparse_categorical_accuracy: 0.6250



1772/未知 488秒 272毫秒/步 - loss: 0.9510 - sparse_categorical_accuracy: 0.6251



1773/未知 489秒 272毫秒/步 - loss: 0.9509 - sparse_categorical_accuracy: 0.6251



1774/未知 489秒 273毫秒/步 - loss: 0.9508 - sparse_categorical_accuracy: 0.6251



1775/未知 489秒 273毫秒/步 - loss: 0.9507 - sparse_categorical_accuracy: 0.6252



1776/未知 490秒 273毫秒/步 - loss: 0.9506 - sparse_categorical_accuracy: 0.6252



1777/未知 490秒 273毫秒/步 - loss: 0.9505 - sparse_categorical_accuracy: 0.6252



1778/未知 490秒 273毫秒/步 - loss: 0.9504 - sparse_categorical_accuracy: 0.6252



1779/未知 491秒 273毫秒/步 - loss: 0.9503 - sparse_categorical_accuracy: 0.6253



1780/未知 491秒 273毫秒/步 - loss: 0.9502 - sparse_categorical_accuracy: 0.6253



1781/未知 492秒 273毫秒/步 - loss: 0.9501 - sparse_categorical_accuracy: 0.6253



1782/未知 492秒 273毫秒/步 - loss: 0.9500 - sparse_categorical_accuracy: 0.6254



1783/未知 492秒 273毫秒/步 - loss: 0.9499 - sparse_categorical_accuracy: 0.6254



1784/未知 493秒 273毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6254



1785/未知 493秒 273毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6255



1786/未知 493秒 273毫秒/步 - loss: 0.9497 - sparse_categorical_accuracy: 0.6255



1787/未知 494秒 273毫秒/步 - loss: 0.9496 - sparse_categorical_accuracy: 0.6255



1788/未知 494秒 273毫秒/步 - loss: 0.9495 - sparse_categorical_accuracy: 0.6255



1789/未知 494秒 273毫秒/步 - loss: 0.9494 - sparse_categorical_accuracy: 0.6256



1790/未知 495秒 273毫秒/步 - loss: 0.9493 - sparse_categorical_accuracy: 0.6256



1791/未知 495秒 273毫秒/步 - loss: 0.9492 - sparse_categorical_accuracy: 0.6256



1792/未知 495秒 273毫秒/步 - loss: 0.9491 - sparse_categorical_accuracy: 0.6257



1793/未知 496秒 273毫秒/步 - loss: 0.9490 - sparse_categorical_accuracy: 0.6257



1794/未知 496秒 273毫秒/步 - loss: 0.9489 - sparse_categorical_accuracy: 0.6257



1795/未知 496秒 273毫秒/步 - loss: 0.9488 - sparse_categorical_accuracy: 0.6258



1796/未知 497秒 273毫秒/步 - loss: 0.9487 - sparse_categorical_accuracy: 0.6258



1797/未知 497秒 274毫秒/步 - loss: 0.9486 - sparse_categorical_accuracy: 0.6258



1798/未知 497秒 274毫秒/步 - loss: 0.9485 - sparse_categorical_accuracy: 0.6258



1799/未知 498秒 274毫秒/步 - loss: 0.9484 - sparse_categorical_accuracy: 0.6259



1800/未知 498秒 274毫秒/步 - loss: 0.9483 - sparse_categorical_accuracy: 0.6259



1801/未知 498秒 274毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6259



1802/未知 499秒 274毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6260



1803/未知 499秒 274毫秒/步 - loss: 0.9481 - sparse_categorical_accuracy: 0.6260



1804/未知 499秒 274毫秒/步 - loss: 0.9480 - sparse_categorical_accuracy: 0.6260



1805/未知 500秒 274毫秒/步 - loss: 0.9479 - sparse_categorical_accuracy: 0.6260



1806/未知 500秒 274毫秒/步 - loss: 0.9478 - sparse_categorical_accuracy: 0.6261



1807/未知 500秒 274毫秒/步 - loss: 0.9477 - sparse_categorical_accuracy: 0.6261



1808/未知 501秒 274毫秒/步 - loss: 0.9476 - sparse_categorical_accuracy: 0.6261



1809/未知 501秒 274毫秒/步 - loss: 0.9475 - sparse_categorical_accuracy: 0.6262



1810/未知 501秒 274毫秒/步 - loss: 0.9474 - sparse_categorical_accuracy: 0.6262



1811/未知 502秒 274毫秒/步 - loss: 0.9473 - sparse_categorical_accuracy: 0.6262



1812/未知 502秒 274毫秒/步 - loss: 0.9472 - sparse_categorical_accuracy: 0.6263



1813/未知 502秒 274毫秒/步 - loss: 0.9471 - sparse_categorical_accuracy: 0.6263



1814/未知 503秒 274毫秒/步 - loss: 0.9470 - sparse_categorical_accuracy: 0.6263



1815/未知 503秒 274毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6263



1816/未知 503秒 274毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6264



1817/未知 504秒 274毫秒/步 - loss: 0.9468 - sparse_categorical_accuracy: 0.6264



1818/未知 504秒 274毫秒/步 - loss: 0.9467 - sparse_categorical_accuracy: 0.6264



1819/未知 504秒 274毫秒/步 - loss: 0.9466 - sparse_categorical_accuracy: 0.6265



1820/未知 505秒 274毫秒/步 - loss: 0.9465 - sparse_categorical_accuracy: 0.6265



1821/未知 505秒 274毫秒/步 - loss: 0.9464 - sparse_categorical_accuracy: 0.6265



1822/未知 505秒 274毫秒/步 - loss: 0.9463 - sparse_categorical_accuracy: 0.6265



1823/未知 505秒 274毫秒/步 - loss: 0.9462 - sparse_categorical_accuracy: 0.6266



1824/未知 506秒 274毫秒/步 - loss: 0.9461 - sparse_categorical_accuracy: 0.6266



1825/未知 506秒 274毫秒/步 - loss: 0.9460 - sparse_categorical_accuracy: 0.6266



1826/未知 506秒 274毫秒/步 - loss: 0.9459 - sparse_categorical_accuracy: 0.6267



1827/未知 507秒 274毫秒/步 - loss: 0.9458 - sparse_categorical_accuracy: 0.6267



1828/未知 507秒 274毫秒/步 - loss: 0.9458 - sparse_categorical_accuracy: 0.6267



1829/未知 507秒 274毫秒/步 - loss: 0.9457 - sparse_categorical_accuracy: 0.6267



1830/未知 508秒 274毫秒/步 - loss: 0.9456 - sparse_categorical_accuracy: 0.6268



1831/未知 508秒 274毫秒/步 - loss: 0.9455 - sparse_categorical_accuracy: 0.6268



1832/未知 508秒 274毫秒/步 - loss: 0.9454 - sparse_categorical_accuracy: 0.6268



1833/未知 509秒 274毫秒/步 - loss: 0.9453 - sparse_categorical_accuracy: 0.6269



1834/未知 509秒 274毫秒/步 - loss: 0.9452 - sparse_categorical_accuracy: 0.6269



1835/未知 509秒 275毫秒/步 - loss: 0.9451 - sparse_categorical_accuracy: 0.6269



1836/未知 510秒 275毫秒/步 - loss: 0.9450 - sparse_categorical_accuracy: 0.6269



1837/未知 510秒 275毫秒/步 - loss: 0.9449 - sparse_categorical_accuracy: 0.6270



1838/未知 510秒 275毫秒/步 - loss: 0.9448 - sparse_categorical_accuracy: 0.6270



1839/未知 511秒 275毫秒/步 - loss: 0.9448 - sparse_categorical_accuracy: 0.6270



1840/未知 511秒 275毫秒/步 - loss: 0.9447 - sparse_categorical_accuracy: 0.6271



1841/未知 511秒 275毫秒/步 - loss: 0.9446 - sparse_categorical_accuracy: 0.6271



1842/未知 512秒 275毫秒/步 - loss: 0.9445 - sparse_categorical_accuracy: 0.6271



1843/未知 512秒 275毫秒/步 - loss: 0.9444 - sparse_categorical_accuracy: 0.6271



1844/未知 513秒 275毫秒/步 - loss: 0.9443 - sparse_categorical_accuracy: 0.6272



1845/未知 513秒 275毫秒/步 - loss: 0.9442 - sparse_categorical_accuracy: 0.6272



1846/未知 513秒 275毫秒/步 - loss: 0.9441 - sparse_categorical_accuracy: 0.6272



1847/未知 513秒 275毫秒/步 - loss: 0.9440 - sparse_categorical_accuracy: 0.6273



1848/未知 514秒 275毫秒/步 - loss: 0.9439 - sparse_categorical_accuracy: 0.6273



1849/未知 514秒 275毫秒/步 - loss: 0.9439 - sparse_categorical_accuracy: 0.6273



1850/未知 514秒 275毫秒/步 - loss: 0.9438 - sparse_categorical_accuracy: 0.6273



1851/未知 514秒 275毫秒/步 - loss: 0.9437 - sparse_categorical_accuracy: 0.6274



1852/未知 515秒 275毫秒/步 - loss: 0.9436 - sparse_categorical_accuracy: 0.6274



1853/未知 515秒 275毫秒/步 - loss: 0.9435 - sparse_categorical_accuracy: 0.6274



1854/未知 515秒 275毫秒/步 - loss: 0.9434 - sparse_categorical_accuracy: 0.6275



1855/未知 516秒 275毫秒/步 - loss: 0.9433 - sparse_categorical_accuracy: 0.6275



1856/未知 516秒 275毫秒/步 - loss: 0.9432 - sparse_categorical_accuracy: 0.6275



1857/未知 516秒 275毫秒/步 - loss: 0.9431 - sparse_categorical_accuracy: 0.6275



1858/未知 517秒 275毫秒/步 - loss: 0.9431 - sparse_categorical_accuracy: 0.6276



1859/未知 517秒 275毫秒/步 - loss: 0.9430 - sparse_categorical_accuracy: 0.6276



1860/未知 517秒 275毫秒/步 - loss: 0.9429 - sparse_categorical_accuracy: 0.6276



1861/未知 517秒 275毫秒/步 - loss: 0.9428 - sparse_categorical_accuracy: 0.6277



1862/未知 518秒 275毫秒/步 - loss: 0.9427 - sparse_categorical_accuracy: 0.6277



1863/未知 518秒 275毫秒/步 - loss: 0.9426 - sparse_categorical_accuracy: 0.6277



1864/未知 518秒 275毫秒/步 - loss: 0.9425 - sparse_categorical_accuracy: 0.6277



1865/未知 519秒 275毫秒/步 - loss: 0.9424 - sparse_categorical_accuracy: 0.6278



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 519秒 275毫秒/步 - loss: 0.9423 - sparse_categorical_accuracy: 0.6278

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 71.32%

基线线性模型达到约 76% 的测试准确率。


实验 2: Wide & Deep 模型

在第二个实验中,我们创建了一个 Wide & Deep 模型。模型的宽部是一个线性模型,而模型的深部是一个多层前馈网络。

在模型的宽部使用输入特征的稀疏表示,在模型的深部使用输入特征的密集表示。

请注意,每个输入特征都以不同的表示形式贡献于模型的两个部分。

def create_wide_and_deep_model():
    inputs = create_model_inputs()
    wide = encode_inputs(inputs)
    wide = layers.BatchNormalization()(wide)

    deep = encode_inputs(inputs, use_embedding=True)
    for units in hidden_units:
        deep = layers.Dense(units)(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(dropout_rate)(deep)

    merged = layers.concatenate([wide, deep])
    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


wide_and_deep_model = create_wide_and_deep_model()
keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR")

png

让我们运行它

run_experiment(wide_and_deep_model)
Start training the model...
  1/Unknown  3s 3s/step - loss: 2.0684 - sparse_categorical_accuracy: 0.2566


  2/Unknown  4s 453ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2575


  3/Unknown  4s 434ms/step - loss: 2.1031 - sparse_categorical_accuracy: 0.2618


  4/Unknown  5s 456ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2648


  5/Unknown  5s 455ms/step - loss: 2.0994 - sparse_categorical_accuracy: 0.2678


  6/Unknown  5s 452ms/step - loss: 2.0958 - sparse_categorical_accuracy: 0.2694


  7/Unknown  6s 455ms/step - loss: 2.0920 - sparse_categorical_accuracy: 0.2710


  8/Unknown  6s 470ms/step - loss: 2.0869 - sparse_categorical_accuracy: 0.2727


  9/Unknown  7s 479ms/step - loss: 2.0817 - sparse_categorical_accuracy: 0.2742


 10/Unknown  7s 481ms/step - loss: 2.0759 - sparse_categorical_accuracy: 0.2760


 11/Unknown  8s 477ms/step - loss: 2.0698 - sparse_categorical_accuracy: 0.2781


 12/Unknown  8s 481ms/step - loss: 2.0635 - sparse_categorical_accuracy: 0.2802


 13/Unknown  9s 476ms/step - loss: 2.0573 - sparse_categorical_accuracy: 0.2821


 14/Unknown  9s 479ms/step - loss: 2.0513 - sparse_categorical_accuracy: 0.2839


 15/Unknown  10s 480ms/step - loss: 2.0452 - sparse_categorical_accuracy: 0.2858


 16/Unknown  10s 481ms/step - loss: 2.0389 - sparse_categorical_accuracy: 0.2877


 17/Unknown  11s 477ms/step - loss: 2.0326 - sparse_categorical_accuracy: 0.2897


 18/Unknown  11s 478ms/step - loss: 2.0264 - sparse_categorical_accuracy: 0.2918


 19/Unknown  12s 477ms/step - loss: 2.0203 - sparse_categorical_accuracy: 0.2938


 20/Unknown  12s 477ms/step - loss: 2.0141 - sparse_categorical_accuracy: 0.2959


 21/Unknown  13s 476ms/step - loss: 2.0081 - sparse_categorical_accuracy: 0.2979


 22/Unknown  13s 473ms/step - loss: 2.0020 - sparse_categorical_accuracy: 0.2998


 23/Unknown  14s 475ms/step - loss: 1.9961 - sparse_categorical_accuracy: 0.3018


 24/Unknown  14s 476ms/step - loss: 1.9903 - sparse_categorical_accuracy: 0.3037


 25/Unknown  15s 477ms/step - loss: 1.9846 - sparse_categorical_accuracy: 0.3054


 26/Unknown  15s 478ms/step - loss: 1.9790 - sparse_categorical_accuracy: 0.3071


 27/Unknown  16s 478ms/step - loss: 1.9735 - sparse_categorical_accuracy: 0.3088


 28/Unknown  16s 477ms/step - loss: 1.9682 - sparse_categorical_accuracy: 0.3103


 29/Unknown  16s 477ms/step - loss: 1.9629 - sparse_categorical_accuracy: 0.3119


 30/Unknown  17s 478ms/step - loss: 1.9575 - sparse_categorical_accuracy: 0.3136


 31/Unknown  17s 478ms/step - loss: 1.9522 - sparse_categorical_accuracy: 0.3152


 32/Unknown  18s 479ms/step - loss: 1.9469 - sparse_categorical_accuracy: 0.3168


 33/Unknown  18s 478ms/step - loss: 1.9417 - sparse_categorical_accuracy: 0.3183


 34/Unknown  19s 479ms/step - loss: 1.9365 - sparse_categorical_accuracy: 0.3199


 35/Unknown  19s 478ms/step - loss: 1.9313 - sparse_categorical_accuracy: 0.3215


 36/Unknown  20s 478ms/step - loss: 1.9262 - sparse_categorical_accuracy: 0.3230


 37/Unknown  20s 476ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.3246


 38/Unknown  21s 473ms/step - loss: 1.9160 - sparse_categorical_accuracy: 0.3261


 39/Unknown  21s 469ms/step - loss: 1.9111 - sparse_categorical_accuracy: 0.3275


 40/Unknown  21s 466ms/step - loss: 1.9062 - sparse_categorical_accuracy: 0.3290


 41/Unknown  22s 464ms/step - loss: 1.9013 - sparse_categorical_accuracy: 0.3304


 42/Unknown  22s 463ms/step - loss: 1.8965 - sparse_categorical_accuracy: 0.3318


 43/Unknown  23s 461ms/step - loss: 1.8917 - sparse_categorical_accuracy: 0.3332


 44/Unknown  23s 460ms/step - loss: 1.8869 - sparse_categorical_accuracy: 0.3346


 45/Unknown  23s 458ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.3360


 46/Unknown  24s 457ms/step - loss: 1.8775 - sparse_categorical_accuracy: 0.3373


 47/Unknown  24s 457ms/step - loss: 1.8728 - sparse_categorical_accuracy: 0.3386


 48/Unknown  25s 455ms/step - loss: 1.8682 - sparse_categorical_accuracy: 0.3399


 49/Unknown  25s 455ms/step - loss: 1.8636 - sparse_categorical_accuracy: 0.3412


 50/Unknown  25s 456ms/step - loss: 1.8591 - sparse_categorical_accuracy: 0.3425


 51/Unknown  26s 457ms/step - loss: 1.8546 - sparse_categorical_accuracy: 0.3438


 52/Unknown  26s 458ms/step - loss: 1.8501 - sparse_categorical_accuracy: 0.3450


 53/Unknown  27s 460ms/step - loss: 1.8456 - sparse_categorical_accuracy: 0.3463


 54/Unknown  27s 460ms/step - loss: 1.8412 - sparse_categorical_accuracy: 0.3476


 55/Unknown  28s 460ms/step - loss: 1.8368 - sparse_categorical_accuracy: 0.3488


 56/Unknown  28s 461ms/step - loss: 1.8325 - sparse_categorical_accuracy: 0.3500


 57/Unknown  29s 461ms/step - loss: 1.8282 - sparse_categorical_accuracy: 0.3513


 58/Unknown  29s 461ms/step - loss: 1.8239 - sparse_categorical_accuracy: 0.3525


 59/Unknown  30s 462ms/step - loss: 1.8197 - sparse_categorical_accuracy: 0.3537


 60/Unknown  30s 463ms/step - loss: 1.8154 - sparse_categorical_accuracy: 0.3549


 61/Unknown  31s 464ms/step - loss: 1.8112 - sparse_categorical_accuracy: 0.3561


 62/Unknown  31s 464ms/step - loss: 1.8071 - sparse_categorical_accuracy: 0.3573


 63/Unknown  32s 465ms/step - loss: 1.8030 - sparse_categorical_accuracy: 0.3584


 64/Unknown  32s 465ms/step - loss: 1.7989 - sparse_categorical_accuracy: 0.3595


 65/Unknown  33s 466ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3606


 66/Unknown  33s 466ms/step - loss: 1.7908 - sparse_categorical_accuracy: 0.3618


 67/Unknown  34s 467ms/step - loss: 1.7869 - sparse_categorical_accuracy: 0.3628


 68/Unknown  34s 467ms/step - loss: 1.7829 - sparse_categorical_accuracy: 0.3639


 69/Unknown  35s 467ms/step - loss: 1.7790 - sparse_categorical_accuracy: 0.3650


 70/Unknown  35s 468ms/step - loss: 1.7752 - sparse_categorical_accuracy: 0.3661


 71/Unknown  36s 468ms/step - loss: 1.7713 - sparse_categorical_accuracy: 0.3671


 72/Unknown  36s 468ms/step - loss: 1.7675 - sparse_categorical_accuracy: 0.3682


 73/Unknown  37s 468ms/step - loss: 1.7638 - sparse_categorical_accuracy: 0.3692


 74/Unknown  37s 469ms/step - loss: 1.7600 - sparse_categorical_accuracy: 0.3703


 75/Unknown  38s 468ms/step - loss: 1.7563 - sparse_categorical_accuracy: 0.3713


 76/Unknown  38s 468ms/step - loss: 1.7526 - sparse_categorical_accuracy: 0.3723


 77/Unknown  39s 468ms/step - loss: 1.7490 - sparse_categorical_accuracy: 0.3733


 78/Unknown  39s 468ms/step - loss: 1.7453 - sparse_categorical_accuracy: 0.3743


 79/Unknown  40s 468ms/step - loss: 1.7417 - sparse_categorical_accuracy: 0.3753


 80/Unknown  40s 469ms/step - loss: 1.7382 - sparse_categorical_accuracy: 0.3763


 81/Unknown  41s 470ms/step - loss: 1.7346 - sparse_categorical_accuracy: 0.3773


 82/Unknown  41s 470ms/step - loss: 1.7312 - sparse_categorical_accuracy: 0.3783


 83/Unknown  42s 471ms/step - loss: 1.7277 - sparse_categorical_accuracy: 0.3792


 84/Unknown  42s 471ms/step - loss: 1.7243 - sparse_categorical_accuracy: 0.3802


 85/Unknown  43s 471ms/step - loss: 1.7209 - sparse_categorical_accuracy: 0.3811


 86/Unknown  43s 472ms/step - loss: 1.7175 - sparse_categorical_accuracy: 0.3821


 87/Unknown  44s 471ms/step - loss: 1.7142 - sparse_categorical_accuracy: 0.3830


 88/Unknown  44s 472ms/step - loss: 1.7109 - sparse_categorical_accuracy: 0.3839


 89/Unknown  45s 472ms/step - loss: 1.7076 - sparse_categorical_accuracy: 0.3848


 90/Unknown  45s 473ms/step - loss: 1.7043 - sparse_categorical_accuracy: 0.3857


 91/Unknown  46s 473ms/step - loss: 1.7011 - sparse_categorical_accuracy: 0.3866


 92/Unknown  46s 473ms/step - loss: 1.6979 - sparse_categorical_accuracy: 0.3875


 93/Unknown  47s 473ms/step - loss: 1.6947 - sparse_categorical_accuracy: 0.3884


 94/Unknown  47s 474ms/step - loss: 1.6916 - sparse_categorical_accuracy: 0.3893


 95/Unknown  48s 474ms/step - loss: 1.6884 - sparse_categorical_accuracy: 0.3902


 96/Unknown  48s 474ms/step - loss: 1.6853 - sparse_categorical_accuracy: 0.3911


 97/Unknown  49s 475ms/step - loss: 1.6822 - sparse_categorical_accuracy: 0.3920


 98/Unknown  49s 475ms/step - loss: 1.6791 - sparse_categorical_accuracy: 0.3928


 99/Unknown  50s 475ms/step - loss: 1.6761 - sparse_categorical_accuracy: 0.3937


100/Unknown  50s 475ms/step - loss: 1.6731 - sparse_categorical_accuracy: 0.3946


101/Unknown  51s 475ms/step - loss: 1.6700 - sparse_categorical_accuracy: 0.3954


102/Unknown  51s 475ms/step - loss: 1.6671 - sparse_categorical_accuracy: 0.3962


103/Unknown  52s 476ms/step - loss: 1.6641 - sparse_categorical_accuracy: 0.3971


104/Unknown  52s 476ms/step - loss: 1.6612 - sparse_categorical_accuracy: 0.3979


105/Unknown  53s 476ms/step - loss: 1.6582 - sparse_categorical_accuracy: 0.3988


106/Unknown  53s 476ms/step - loss: 1.6553 - sparse_categorical_accuracy: 0.3996


107/Unknown  54s 476ms/step - loss: 1.6525 - sparse_categorical_accuracy: 0.4004


108/Unknown  54s 476ms/step - loss: 1.6496 - sparse_categorical_accuracy: 0.4012


109/Unknown  55s 477ms/step - loss: 1.6468 - sparse_categorical_accuracy: 0.4020


110/Unknown  55s 477ms/step - loss: 1.6440 - sparse_categorical_accuracy: 0.4028


111/Unknown  56s 477ms/step - loss: 1.6412 - sparse_categorical_accuracy: 0.4036


112/Unknown  56s 477ms/step - loss: 1.6385 - sparse_categorical_accuracy: 0.4044


113/Unknown  57s 477ms/step - loss: 1.6357 - sparse_categorical_accuracy: 0.4052


114/Unknown  57s 477ms/step - loss: 1.6330 - sparse_categorical_accuracy: 0.4059


115/Unknown  57s 476ms/step - loss: 1.6303 - sparse_categorical_accuracy: 0.4067


116/Unknown  58s 477ms/step - loss: 1.6276 - sparse_categorical_accuracy: 0.4075


117/Unknown  58s 476ms/step - loss: 1.6249 - sparse_categorical_accuracy: 0.4082


118/Unknown  59s 477ms/step - loss: 1.6223 - sparse_categorical_accuracy: 0.4090


119/Unknown  59s 477ms/step - loss: 1.6196 - sparse_categorical_accuracy: 0.4098


120/Unknown  60s 477ms/step - loss: 1.6170 - sparse_categorical_accuracy: 0.4105


121/Unknown  60s 477ms/step - loss: 1.6144 - sparse_categorical_accuracy: 0.4113


122/Unknown  61s 477ms/step - loss: 1.6118 - sparse_categorical_accuracy: 0.4120


123/Unknown  61s 477ms/step - loss: 1.6093 - sparse_categorical_accuracy: 0.4128


124/Unknown  62s 477ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4135


125/Unknown  62s 477ms/step - loss: 1.6042 - sparse_categorical_accuracy: 0.4142


126/Unknown  63s 477ms/step - loss: 1.6017 - sparse_categorical_accuracy: 0.4150


127/Unknown  63s 477ms/step - loss: 1.5991 - sparse_categorical_accuracy: 0.4157


128/Unknown  64s 477ms/step - loss: 1.5967 - sparse_categorical_accuracy: 0.4164


129/Unknown  64s 477ms/step - loss: 1.5942 - sparse_categorical_accuracy: 0.4172


130/Unknown  65s 477ms/step - loss: 1.5917 - sparse_categorical_accuracy: 0.4179


131/Unknown  65s 477ms/step - loss: 1.5893 - sparse_categorical_accuracy: 0.4186


132/Unknown  66s 477ms/step - loss: 1.5869 - sparse_categorical_accuracy: 0.4193


133/Unknown  66s 477ms/step - loss: 1.5844 - sparse_categorical_accuracy: 0.4200


134/Unknown  66s 476ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4207


135/Unknown  67s 476ms/step - loss: 1.5797 - sparse_categorical_accuracy: 0.4214


136/Unknown  67s 476ms/step - loss: 1.5773 - sparse_categorical_accuracy: 0.4221


137/Unknown  68s 475ms/step - loss: 1.5749 - sparse_categorical_accuracy: 0.4228


138/Unknown  68s 475ms/step - loss: 1.5726 - sparse_categorical_accuracy: 0.4235


139/Unknown  69s 475ms/step - loss: 1.5703 - sparse_categorical_accuracy: 0.4242


140/Unknown  69s 475ms/step - loss: 1.5680 - sparse_categorical_accuracy: 0.4249


141/Unknown  70s 474ms/step - loss: 1.5657 - sparse_categorical_accuracy: 0.4255


142/Unknown  70s 474ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4262


143/Unknown  70s 474ms/step - loss: 1.5611 - sparse_categorical_accuracy: 0.4269


144/Unknown  71s 474ms/step - loss: 1.5589 - sparse_categorical_accuracy: 0.4276


145/Unknown  71s 474ms/step - loss: 1.5566 - sparse_categorical_accuracy: 0.4282


146/Unknown  72s 474ms/step - loss: 1.5544 - sparse_categorical_accuracy: 0.4289


147/Unknown  72s 474ms/step - loss: 1.5522 - sparse_categorical_accuracy: 0.4295


148/Unknown  73s 474ms/step - loss: 1.5500 - sparse_categorical_accuracy: 0.4302


149/Unknown  73s 473ms/step - loss: 1.5478 - sparse_categorical_accuracy: 0.4308


150/Unknown  74s 472ms/step - loss: 1.5456 - sparse_categorical_accuracy: 0.4315


151/Unknown  74s 472ms/step - loss: 1.5435 - sparse_categorical_accuracy: 0.4321


152/Unknown  74s 471ms/step - loss: 1.5413 - sparse_categorical_accuracy: 0.4328


153/Unknown  75s 470ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4334


154/Unknown  75s 470ms/step - loss: 1.5370 - sparse_categorical_accuracy: 0.4340


155/Unknown  75s 469ms/step - loss: 1.5349 - sparse_categorical_accuracy: 0.4347


156/Unknown  76s 468ms/step - loss: 1.5328 - sparse_categorical_accuracy: 0.4353


157/Unknown  76s 468ms/step - loss: 1.5308 - sparse_categorical_accuracy: 0.4359


158/Unknown  76s 467ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4365


159/Unknown  77s 467ms/step - loss: 1.5266 - sparse_categorical_accuracy: 0.4372


160/Unknown  77s 466ms/step - loss: 1.5246 - sparse_categorical_accuracy: 0.4378


161/Unknown  78s 466ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4384


162/Unknown  78s 465ms/step - loss: 1.5205 - sparse_categorical_accuracy: 0.4390


163/Unknown  78s 464ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4396


164/Unknown  79s 464ms/step - loss: 1.5165 - sparse_categorical_accuracy: 0.4402


165/Unknown  79s 463ms/step - loss: 1.5145 - sparse_categorical_accuracy: 0.4408


166/Unknown  79s 462ms/step - loss: 1.5126 - sparse_categorical_accuracy: 0.4414


167/Unknown  80s 462ms/step - loss: 1.5106 - sparse_categorical_accuracy: 0.4420


168/Unknown  80s 462ms/step - loss: 1.5087 - sparse_categorical_accuracy: 0.4425


169/Unknown  81s 462ms/step - loss: 1.5067 - sparse_categorical_accuracy: 0.4431


170/Unknown  81s 462ms/step - loss: 1.5048 - sparse_categorical_accuracy: 0.4437


171/Unknown  82s 461ms/step - loss: 1.5029 - sparse_categorical_accuracy: 0.4443


172/Unknown  82s 461ms/step - loss: 1.5010 - sparse_categorical_accuracy: 0.4449


173/Unknown  82s 461ms/step - loss: 1.4991 - sparse_categorical_accuracy: 0.4454


174/Unknown  83s 460ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4460


175/Unknown  83s 460ms/step - loss: 1.4953 - sparse_categorical_accuracy: 0.4466


176/Unknown  83s 459ms/step - loss: 1.4935 - sparse_categorical_accuracy: 0.4471


177/Unknown  84s 458ms/step - loss: 1.4916 - sparse_categorical_accuracy: 0.4477


178/Unknown  84s 457ms/step - loss: 1.4898 - sparse_categorical_accuracy: 0.4482


179/Unknown  84s 457ms/step - loss: 1.4880 - sparse_categorical_accuracy: 0.4488


180/Unknown  85s 456ms/step - loss: 1.4861 - sparse_categorical_accuracy: 0.4493


181/Unknown  85s 455ms/step - loss: 1.4843 - sparse_categorical_accuracy: 0.4499


182/Unknown  85s 454ms/step - loss: 1.4825 - sparse_categorical_accuracy: 0.4504


183/Unknown  86s 454ms/step - loss: 1.4807 - sparse_categorical_accuracy: 0.4510


184/Unknown  86s 453ms/step - loss: 1.4790 - sparse_categorical_accuracy: 0.4515


185/Unknown  86s 452ms/step - loss: 1.4772 - sparse_categorical_accuracy: 0.4521


186/Unknown  87s 452ms/step - loss: 1.4754 - sparse_categorical_accuracy: 0.4526


187/Unknown  87s 451ms/step - loss: 1.4737 - sparse_categorical_accuracy: 0.4531


188/Unknown  87s 451ms/step - loss: 1.4719 - sparse_categorical_accuracy: 0.4537


189/Unknown  88s 450ms/step - loss: 1.4702 - sparse_categorical_accuracy: 0.4542


190/Unknown  88s 450ms/step - loss: 1.4685 - sparse_categorical_accuracy: 0.4547


191/Unknown  89s 450ms/step - loss: 1.4668 - sparse_categorical_accuracy: 0.4552


192/Unknown  89s 450ms/step - loss: 1.4651 - sparse_categorical_accuracy: 0.4557


193/Unknown  89s 450ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4563


194/Unknown  90s 449ms/step - loss: 1.4617 - sparse_categorical_accuracy: 0.4568


195/Unknown  90s 449ms/step - loss: 1.4600 - sparse_categorical_accuracy: 0.4573


196/Unknown  91s 449ms/step - loss: 1.4583 - sparse_categorical_accuracy: 0.4578


197/Unknown  91s 449ms/step - loss: 1.4567 - sparse_categorical_accuracy: 0.4583


198/Unknown  92s 449ms/step - loss: 1.4550 - sparse_categorical_accuracy: 0.4588


199/Unknown  92s 449ms/step - loss: 1.4534 - sparse_categorical_accuracy: 0.4593


200/Unknown  92s 449ms/step - loss: 1.4517 - sparse_categorical_accuracy: 0.4598


201/Unknown  93s 448ms/step - loss: 1.4501 - sparse_categorical_accuracy: 0.4603


202/Unknown  93s 448ms/step - loss: 1.4485 - sparse_categorical_accuracy: 0.4608


203/Unknown  94s 447ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4613


204/Unknown  94s 447ms/step - loss: 1.4453 - sparse_categorical_accuracy: 0.4618


205/Unknown  94s 447ms/step - loss: 1.4437 - sparse_categorical_accuracy: 0.4623


206/Unknown  95s 447ms/step - loss: 1.4421 - sparse_categorical_accuracy: 0.4628


207/Unknown  95s 446ms/step - loss: 1.4406 - sparse_categorical_accuracy: 0.4632


208/Unknown  95s 446ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4637


209/Unknown  96s 445ms/step - loss: 1.4374 - sparse_categorical_accuracy: 0.4642


210/Unknown  96s 445ms/step - loss: 1.4359 - sparse_categorical_accuracy: 0.4647


211/Unknown  97s 445ms/step - loss: 1.4343 - sparse_categorical_accuracy: 0.4651


212/Unknown  97s 444ms/step - loss: 1.4328 - sparse_categorical_accuracy: 0.4656


213/Unknown  97s 444ms/step - loss: 1.4313 - sparse_categorical_accuracy: 0.4661


214/Unknown  98s 444ms/step - loss: 1.4297 - sparse_categorical_accuracy: 0.4666


215/Unknown  98s 444ms/step - loss: 1.4282 - sparse_categorical_accuracy: 0.4670


216/Unknown  99s 444ms/step - loss: 1.4267 - sparse_categorical_accuracy: 0.4675


217/Unknown  99s 445ms/step - loss: 1.4252 - sparse_categorical_accuracy: 0.4679


218/Unknown  100s 445ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4684


219/Unknown  100s 445ms/step - loss: 1.4222 - sparse_categorical_accuracy: 0.4689


220/Unknown  101s 445ms/step - loss: 1.4207 - sparse_categorical_accuracy: 0.4693


221/Unknown  101s 444ms/step - loss: 1.4192 - sparse_categorical_accuracy: 0.4698


222/Unknown  101s 444ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702


223/Unknown  102s 444ms/step - loss: 1.4163 - sparse_categorical_accuracy: 0.4707


224/Unknown  102s 443ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4711


225/Unknown  102s 443ms/step - loss: 1.4134 - sparse_categorical_accuracy: 0.4716


226/Unknown  103s 442ms/step - loss: 1.4120 - sparse_categorical_accuracy: 0.4720


227/Unknown  103s 442ms/step - loss: 1.4105 - sparse_categorical_accuracy: 0.4725


228/Unknown  103s 441ms/step - loss: 1.4091 - sparse_categorical_accuracy: 0.4729


229/Unknown  104s 441ms/step - loss: 1.4077 - sparse_categorical_accuracy: 0.4734


230/Unknown  104s 440ms/step - loss: 1.4063 - sparse_categorical_accuracy: 0.4738


231/Unknown  104s 440ms/step - loss: 1.4048 - sparse_categorical_accuracy: 0.4742


232/Unknown  105s 439ms/step - loss: 1.4034 - sparse_categorical_accuracy: 0.4747


233/Unknown  105s 439ms/step - loss: 1.4020 - sparse_categorical_accuracy: 0.4751


234/Unknown  105s 439ms/step - loss: 1.4007 - sparse_categorical_accuracy: 0.4755


235/Unknown  106s 438ms/step - loss: 1.3993 - sparse_categorical_accuracy: 0.4759


236/Unknown  106s 438ms/step - loss: 1.3979 - sparse_categorical_accuracy: 0.4764


237/Unknown  106s 437ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4768


238/Unknown  107s 437ms/step - loss: 1.3952 - sparse_categorical_accuracy: 0.4772


239/Unknown  107s 437ms/step - loss: 1.3938 - sparse_categorical_accuracy: 0.4776


240/Unknown  108s 437ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4780


241/Unknown  108s 437ms/step - loss: 1.3911 - sparse_categorical_accuracy: 0.4785


242/Unknown  109s 437ms/step - loss: 1.3898 - sparse_categorical_accuracy: 0.4789


243/Unknown  109s 437ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4793


244/Unknown  109s 437ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4797


245/Unknown  110s 437ms/step - loss: 1.3858 - sparse_categorical_accuracy: 0.4801


246/Unknown  110s 437ms/step - loss: 1.3845 - sparse_categorical_accuracy: 0.4805


247/Unknown  111s 437ms/step - loss: 1.3832 - sparse_categorical_accuracy: 0.4809


248/Unknown  111s 437ms/step - loss: 1.3819 - sparse_categorical_accuracy: 0.4813


249/Unknown  111s 436ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4817


250/Unknown  112s 436ms/step - loss: 1.3793 - sparse_categorical_accuracy: 0.4821


251/Unknown  112s 435ms/step - loss: 1.3780 - sparse_categorical_accuracy: 0.4825


252/Unknown  112s 435ms/step - loss: 1.3767 - sparse_categorical_accuracy: 0.4829


253/Unknown  113s 435ms/step - loss: 1.3754 - sparse_categorical_accuracy: 0.4833


254/Unknown  113s 435ms/step - loss: 1.3742 - sparse_categorical_accuracy: 0.4837


255/Unknown  113s 434ms/step - loss: 1.3729 - sparse_categorical_accuracy: 0.4841


256/Unknown  114s 434ms/step - loss: 1.3716 - sparse_categorical_accuracy: 0.4845


257/Unknown  114s 434ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4849


258/Unknown  115s 434ms/step - loss: 1.3691 - sparse_categorical_accuracy: 0.4853


259/Unknown  115s 433ms/step - loss: 1.3679 - sparse_categorical_accuracy: 0.4857


260/Unknown  115s 433ms/step - loss: 1.3666 - sparse_categorical_accuracy: 0.4861


261/Unknown  116s 433ms/step - loss: 1.3654 - sparse_categorical_accuracy: 0.4864


262/Unknown  116s 433ms/step - loss: 1.3642 - sparse_categorical_accuracy: 0.4868


263/Unknown  116s 433ms/step - loss: 1.3629 - sparse_categorical_accuracy: 0.4872


264/Unknown  117s 433ms/step - loss: 1.3617 - sparse_categorical_accuracy: 0.4876


265/Unknown  117s 432ms/step - loss: 1.3605 - sparse_categorical_accuracy: 0.4880


266/Unknown  118s 432ms/step - loss: 1.3593 - sparse_categorical_accuracy: 0.4883


267/Unknown  118s 432ms/step - loss: 1.3581 - sparse_categorical_accuracy: 0.4887


268/Unknown  118s 432ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.4891


269/Unknown  119s 432ms/step - loss: 1.3557 - sparse_categorical_accuracy: 0.4895


270/Unknown  119s 432ms/step - loss: 1.3545 - sparse_categorical_accuracy: 0.4898


271/Unknown  120s 432ms/step - loss: 1.3533 - sparse_categorical_accuracy: 0.4902


272/Unknown  120s 432ms/step - loss: 1.3521 - sparse_categorical_accuracy: 0.4906


273/Unknown  121s 432ms/step - loss: 1.3509 - sparse_categorical_accuracy: 0.4909


274/Unknown  121s 432ms/step - loss: 1.3497 - sparse_categorical_accuracy: 0.4913


275/Unknown  121s 432ms/step - loss: 1.3486 - sparse_categorical_accuracy: 0.4917


276/Unknown  122s 432ms/step - loss: 1.3474 - sparse_categorical_accuracy: 0.4920


277/Unknown  122s 432ms/step - loss: 1.3462 - sparse_categorical_accuracy: 0.4924


278/Unknown  123s 432ms/step - loss: 1.3451 - sparse_categorical_accuracy: 0.4928


279/Unknown  123s 431ms/step - loss: 1.3439 - sparse_categorical_accuracy: 0.4931


280/Unknown  123s 431ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4935


281/Unknown  124s 431ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.4938


282/Unknown  124s 430ms/step - loss: 1.3405 - sparse_categorical_accuracy: 0.4942


283/Unknown  124s 430ms/step - loss: 1.3393 - sparse_categorical_accuracy: 0.4946


284/Unknown  125s 430ms/step - loss: 1.3382 - sparse_categorical_accuracy: 0.4949


285/Unknown  125s 430ms/step - loss: 1.3371 - sparse_categorical_accuracy: 0.4953


286/Unknown  126s 430ms/step - loss: 1.3360 - sparse_categorical_accuracy: 0.4956


287/Unknown  126s 430ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4960


288/Unknown  126s 429ms/step - loss: 1.3337 - sparse_categorical_accuracy: 0.4963


289/Unknown  127s 429ms/step - loss: 1.3326 - sparse_categorical_accuracy: 0.4967


290/Unknown  127s 429ms/step - loss: 1.3315 - sparse_categorical_accuracy: 0.4970


291/Unknown  128s 429ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.4974


292/Unknown  128s 429ms/step - loss: 1.3293 - sparse_categorical_accuracy: 0.4977


293/Unknown  128s 429ms/step - loss: 1.3282 - sparse_categorical_accuracy: 0.4980


294/Unknown  129s 429ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.4984


295/Unknown  129s 429ms/step - loss: 1.3260 - sparse_categorical_accuracy: 0.4987


296/Unknown  130s 429ms/step - loss: 1.3250 - sparse_categorical_accuracy: 0.4991


297/Unknown  130s 429ms/step - loss: 1.3239 - sparse_categorical_accuracy: 0.4994


298/Unknown  131s 429ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.4997


299/Unknown  131s 429ms/step - loss: 1.3217 - sparse_categorical_accuracy: 0.5001


300/Unknown  132s 429ms/step - loss: 1.3207 - sparse_categorical_accuracy: 0.5004


301/Unknown  132s 429ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5007


302/Unknown  132s 429ms/step - loss: 1.3186 - sparse_categorical_accuracy: 0.5011


303/Unknown  133s 429ms/step - loss: 1.3175 - sparse_categorical_accuracy: 0.5014


304/Unknown  133s 429ms/step - loss: 1.3165 - sparse_categorical_accuracy: 0.5017


305/Unknown  133s 429ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5021


306/Unknown  134s 429ms/step - loss: 1.3144 - sparse_categorical_accuracy: 0.5024


307/Unknown  134s 428ms/step - loss: 1.3133 - sparse_categorical_accuracy: 0.5027


308/Unknown  135s 428ms/step - loss: 1.3123 - sparse_categorical_accuracy: 0.5030


309/Unknown  135s 428ms/step - loss: 1.3113 - sparse_categorical_accuracy: 0.5034


310/Unknown  135s 428ms/step - loss: 1.3103 - sparse_categorical_accuracy: 0.5037


311/Unknown  136s 428ms/step - loss: 1.3092 - sparse_categorical_accuracy: 0.5040


312/Unknown  136s 428ms/step - loss: 1.3082 - sparse_categorical_accuracy: 0.5043


313/Unknown  136s 427ms/step - loss: 1.3072 - sparse_categorical_accuracy: 0.5047


314/Unknown  137s 427ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5050


315/Unknown  137s 427ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5053


316/Unknown  138s 427ms/step - loss: 1.3042 - sparse_categorical_accuracy: 0.5056


317/Unknown  138s 427ms/step - loss: 1.3032 - sparse_categorical_accuracy: 0.5059


318/Unknown  138s 427ms/step - loss: 1.3022 - sparse_categorical_accuracy: 0.5062


319/Unknown  139s 427ms/step - loss: 1.3012 - sparse_categorical_accuracy: 0.5066


320/Unknown  139s 426ms/step - loss: 1.3002 - sparse_categorical_accuracy: 0.5069


321/Unknown  140s 427ms/step - loss: 1.2992 - sparse_categorical_accuracy: 0.5072


322/Unknown  140s 427ms/step - loss: 1.2982 - sparse_categorical_accuracy: 0.5075


323/Unknown  141s 427ms/step - loss: 1.2973 - sparse_categorical_accuracy: 0.5078


324/Unknown  141s 427ms/step - loss: 1.2963 - sparse_categorical_accuracy: 0.5081


325/Unknown  141s 427ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5084


326/Unknown  142s 427ms/step - loss: 1.2943 - sparse_categorical_accuracy: 0.5087


327/Unknown  142s 427ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5090


328/Unknown  143s 427ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5093


329/Unknown  143s 426ms/step - loss: 1.2915 - sparse_categorical_accuracy: 0.5096


330/Unknown  143s 426ms/step - loss: 1.2905 - sparse_categorical_accuracy: 0.5099


331/Unknown  144s 426ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5103


332/Unknown  144s 426ms/step - loss: 1.2886 - sparse_categorical_accuracy: 0.5106


333/Unknown  145s 426ms/step - loss: 1.2876 - sparse_categorical_accuracy: 0.5109


334/Unknown  145s 426ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5112


335/Unknown  145s 426ms/step - loss: 1.2858 - sparse_categorical_accuracy: 0.5115


336/Unknown  146s 426ms/step - loss: 1.2848 - sparse_categorical_accuracy: 0.5118


337/Unknown  146s 426ms/step - loss: 1.2839 - sparse_categorical_accuracy: 0.5121


338/Unknown  146s 425ms/step - loss: 1.2830 - sparse_categorical_accuracy: 0.5124


339/Unknown  147s 425ms/step - loss: 1.2820 - sparse_categorical_accuracy: 0.5126


340/Unknown  147s 425ms/step - loss: 1.2811 - sparse_categorical_accuracy: 0.5129


341/Unknown  148s 425ms/step - loss: 1.2802 - sparse_categorical_accuracy: 0.5132


342/Unknown  148s 425ms/step - loss: 1.2793 - sparse_categorical_accuracy: 0.5135


343/Unknown  149s 425ms/step - loss: 1.2784 - sparse_categorical_accuracy: 0.5138


344/Unknown  149s 425ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5141


345/Unknown  149s 425ms/step - loss: 1.2765 - sparse_categorical_accuracy: 0.5144


346/Unknown  150s 426ms/step - loss: 1.2756 - sparse_categorical_accuracy: 0.5147


347/Unknown  150s 425ms/step - loss: 1.2747 - sparse_categorical_accuracy: 0.5150


348/Unknown  151s 425ms/step - loss: 1.2738 - sparse_categorical_accuracy: 0.5153


349/Unknown  151s 425ms/step - loss: 1.2729 - sparse_categorical_accuracy: 0.5156


350/Unknown  151s 425ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5158


351/Unknown  152s 425ms/step - loss: 1.2712 - sparse_categorical_accuracy: 0.5161


352/Unknown  152s 424ms/step - loss: 1.2703 - sparse_categorical_accuracy: 0.5164


353/Unknown  152s 424ms/step - loss: 1.2694 - sparse_categorical_accuracy: 0.5167


354/Unknown  153s 424ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5170


355/Unknown  153s 423ms/step - loss: 1.2676 - sparse_categorical_accuracy: 0.5172


356/Unknown  153s 423ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5175


357/Unknown  154s 423ms/step - loss: 1.2659 - sparse_categorical_accuracy: 0.5178


358/Unknown  154s 423ms/step - loss: 1.2650 - sparse_categorical_accuracy: 0.5181


359/Unknown  154s 422ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5184


360/Unknown  155s 422ms/step - loss: 1.2633 - sparse_categorical_accuracy: 0.5186


361/Unknown  155s 422ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5189


362/Unknown  155s 422ms/step - loss: 1.2616 - sparse_categorical_accuracy: 0.5192


363/Unknown  156s 422ms/step - loss: 1.2607 - sparse_categorical_accuracy: 0.5195


364/Unknown  156s 421ms/step - loss: 1.2599 - sparse_categorical_accuracy: 0.5197


365/Unknown  156s 421ms/step - loss: 1.2590 - sparse_categorical_accuracy: 0.5200


366/Unknown  157s 421ms/step - loss: 1.2582 - sparse_categorical_accuracy: 0.5203


367/Unknown  157s 421ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5206


368/Unknown  158s 421ms/step - loss: 1.2565 - sparse_categorical_accuracy: 0.5208


369/Unknown  158s 421ms/step - loss: 1.2557 - sparse_categorical_accuracy: 0.5211


370/Unknown  159s 421ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5214


371/Unknown  159s 421ms/step - loss: 1.2540 - sparse_categorical_accuracy: 0.5216


372/Unknown  159s 421ms/step - loss: 1.2532 - sparse_categorical_accuracy: 0.5219


373/Unknown  160s 420ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5222


374/Unknown  160s 420ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5224


375/Unknown  160s 420ms/step - loss: 1.2507 - sparse_categorical_accuracy: 0.5227


376/Unknown  161s 420ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5230


377/Unknown  161s 420ms/step - loss: 1.2491 - sparse_categorical_accuracy: 0.5232


378/Unknown  161s 420ms/step - loss: 1.2482 - sparse_categorical_accuracy: 0.5235


379/Unknown  162s 420ms/step - loss: 1.2474 - sparse_categorical_accuracy: 0.5237


380/Unknown  162s 420ms/step - loss: 1.2466 - sparse_categorical_accuracy: 0.5240


381/Unknown  163s 419ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5243


382/Unknown  163s 419ms/step - loss: 1.2450 - sparse_categorical_accuracy: 0.5245


383/Unknown  163s 419ms/step - loss: 1.2442 - sparse_categorical_accuracy: 0.5248


384/Unknown  164s 419ms/step - loss: 1.2434 - sparse_categorical_accuracy: 0.5250


385/Unknown  164s 419ms/step - loss: 1.2426 - sparse_categorical_accuracy: 0.5253


386/Unknown  165s 419ms/step - loss: 1.2418 - sparse_categorical_accuracy: 0.5256


387/Unknown  165s 419ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5258


388/Unknown  165s 419ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5261


389/Unknown  166s 419ms/step - loss: 1.2395 - sparse_categorical_accuracy: 0.5263


390/Unknown  166s 419ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5266


391/Unknown  167s 419ms/step - loss: 1.2379 - sparse_categorical_accuracy: 0.5268


392/Unknown  167s 419ms/step - loss: 1.2371 - sparse_categorical_accuracy: 0.5271


393/Unknown  167s 419ms/step - loss: 1.2363 - sparse_categorical_accuracy: 0.5273


394/Unknown  168s 419ms/step - loss: 1.2356 - sparse_categorical_accuracy: 0.5276


395/Unknown  168s 419ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5278


396/Unknown  168s 419ms/step - loss: 1.2340 - sparse_categorical_accuracy: 0.5281


397/Unknown  169s 418ms/step - loss: 1.2333 - sparse_categorical_accuracy: 0.5283


398/Unknown  169s 418ms/step - loss: 1.2325 - sparse_categorical_accuracy: 0.5286


399/Unknown  170s 418ms/step - loss: 1.2317 - sparse_categorical_accuracy: 0.5288


400/Unknown  170s 418ms/step - loss: 1.2310 - sparse_categorical_accuracy: 0.5290


401/Unknown  170s 418ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5293


402/Unknown  171s 418ms/step - loss: 1.2295 - sparse_categorical_accuracy: 0.5295


403/Unknown  171s 418ms/step - loss: 1.2287 - sparse_categorical_accuracy: 0.5298


404/Unknown  171s 418ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5300


405/Unknown  172s 418ms/step - loss: 1.2272 - sparse_categorical_accuracy: 0.5303


406/Unknown  172s 418ms/step - loss: 1.2265 - sparse_categorical_accuracy: 0.5305


407/Unknown  173s 418ms/step - loss: 1.2257 - sparse_categorical_accuracy: 0.5307


408/Unknown  173s 418ms/step - loss: 1.2250 - sparse_categorical_accuracy: 0.5310


409/Unknown  174s 418ms/step - loss: 1.2243 - sparse_categorical_accuracy: 0.5312


410/Unknown  174s 418ms/step - loss: 1.2235 - sparse_categorical_accuracy: 0.5314


411/Unknown  175s 418ms/step - loss: 1.2228 - sparse_categorical_accuracy: 0.5317


412/Unknown  175s 419ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5319


413/Unknown  176s 419ms/step - loss: 1.2213 - sparse_categorical_accuracy: 0.5322


414/Unknown  176s 419ms/step - loss: 1.2206 - sparse_categorical_accuracy: 0.5324


415/Unknown  176s 419ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5326


416/Unknown  177s 419ms/step - loss: 1.2192 - sparse_categorical_accuracy: 0.5329


417/Unknown  177s 418ms/step - loss: 1.2185 - sparse_categorical_accuracy: 0.5331


418/Unknown  177s 418ms/step - loss: 1.2177 - sparse_categorical_accuracy: 0.5333


419/Unknown  178s 418ms/step - loss: 1.2170 - sparse_categorical_accuracy: 0.5336


420/Unknown  178s 418ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5338


421/Unknown  179s 418ms/step - loss: 1.2156 - sparse_categorical_accuracy: 0.5340


422/Unknown  179s 418ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5342


423/Unknown  179s 418ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5345


424/Unknown  180s 417ms/step - loss: 1.2135 - sparse_categorical_accuracy: 0.5347


425/Unknown  180s 417ms/step - loss: 1.2128 - sparse_categorical_accuracy: 0.5349


426/Unknown  180s 417ms/step - loss: 1.2121 - sparse_categorical_accuracy: 0.5351


427/Unknown  181s 417ms/step - loss: 1.2114 - sparse_categorical_accuracy: 0.5354


428/Unknown  181s 417ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5356


429/Unknown  182s 417ms/step - loss: 1.2100 - sparse_categorical_accuracy: 0.5358


430/Unknown  182s 418ms/step - loss: 1.2093 - sparse_categorical_accuracy: 0.5360


431/Unknown  183s 418ms/step - loss: 1.2086 - sparse_categorical_accuracy: 0.5363


432/Unknown  183s 418ms/step - loss: 1.2079 - sparse_categorical_accuracy: 0.5365


433/Unknown  184s 418ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5367


434/Unknown  184s 418ms/step - loss: 1.2065 - sparse_categorical_accuracy: 0.5369


435/Unknown  185s 418ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5372


436/Unknown  185s 418ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5374


437/Unknown  185s 418ms/step - loss: 1.2045 - sparse_categorical_accuracy: 0.5376


438/Unknown  186s 418ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5378


439/Unknown  186s 418ms/step - loss: 1.2032 - sparse_categorical_accuracy: 0.5380


440/Unknown  187s 418ms/step - loss: 1.2025 - sparse_categorical_accuracy: 0.5383


441/Unknown  187s 418ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5385


442/Unknown  187s 418ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5387


443/Unknown  188s 418ms/step - loss: 1.2005 - sparse_categorical_accuracy: 0.5389


444/Unknown  188s 417ms/step - loss: 1.1998 - sparse_categorical_accuracy: 0.5391


445/Unknown  188s 417ms/step - loss: 1.1992 - sparse_categorical_accuracy: 0.5393


446/Unknown  189s 417ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5396


447/Unknown  189s 417ms/step - loss: 1.1978 - sparse_categorical_accuracy: 0.5398


448/Unknown  190s 417ms/step - loss: 1.1972 - sparse_categorical_accuracy: 0.5400


449/Unknown  190s 417ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5402


450/Unknown  190s 417ms/step - loss: 1.1959 - sparse_categorical_accuracy: 0.5404


451/Unknown  191s 417ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5406


452/Unknown  191s 417ms/step - loss: 1.1946 - sparse_categorical_accuracy: 0.5408


453/Unknown  191s 417ms/step - loss: 1.1939 - sparse_categorical_accuracy: 0.5410


454/Unknown  192s 417ms/step - loss: 1.1933 - sparse_categorical_accuracy: 0.5413


455/Unknown  192s 417ms/step - loss: 1.1926 - sparse_categorical_accuracy: 0.5415


456/Unknown  193s 417ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5417


457/Unknown  193s 417ms/step - loss: 1.1913 - sparse_categorical_accuracy: 0.5419


458/Unknown  193s 417ms/step - loss: 1.1907 - sparse_categorical_accuracy: 0.5421


459/Unknown  194s 417ms/step - loss: 1.1900 - sparse_categorical_accuracy: 0.5423


460/Unknown  194s 417ms/step - loss: 1.1894 - sparse_categorical_accuracy: 0.5425


461/Unknown  195s 417ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5427


462/Unknown  195s 417ms/step - loss: 1.1881 - sparse_categorical_accuracy: 0.5429


463/Unknown  196s 417ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5431


464/Unknown  196s 417ms/step - loss: 1.1869 - sparse_categorical_accuracy: 0.5433


465/Unknown  197s 417ms/step - loss: 1.1862 - sparse_categorical_accuracy: 0.5435


466/Unknown  197s 417ms/step - loss: 1.1856 - sparse_categorical_accuracy: 0.5437


467/Unknown  198s 417ms/step - loss: 1.1850 - sparse_categorical_accuracy: 0.5439


468/Unknown  198s 417ms/step - loss: 1.1844 - sparse_categorical_accuracy: 0.5441


469/Unknown  198s 417ms/step - loss: 1.1837 - sparse_categorical_accuracy: 0.5443


470/Unknown  199s 417ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5446


471/Unknown  199s 417ms/step - loss: 1.1825 - sparse_categorical_accuracy: 0.5448


472/Unknown  199s 417ms/step - loss: 1.1819 - sparse_categorical_accuracy: 0.5450


473/Unknown  200s 417ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5452


474/Unknown  200s 417ms/step - loss: 1.1807 - sparse_categorical_accuracy: 0.5454


475/Unknown  201s 417ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5456


476/Unknown  201s 416ms/step - loss: 1.1794 - sparse_categorical_accuracy: 0.5458


477/Unknown  201s 417ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5460


478/Unknown  202s 416ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5461


479/Unknown  202s 416ms/step - loss: 1.1776 - sparse_categorical_accuracy: 0.5463


480/Unknown  203s 416ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5465


481/Unknown  203s 416ms/step - loss: 1.1764 - sparse_categorical_accuracy: 0.5467


482/Unknown  203s 416ms/step - loss: 1.1758 - sparse_categorical_accuracy: 0.5469


483/Unknown  204s 416ms/step - loss: 1.1752 - sparse_categorical_accuracy: 0.5471


484/Unknown  204s 416ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5473


485/Unknown  205s 416ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5475


486/Unknown  205s 416ms/step - loss: 1.1734 - sparse_categorical_accuracy: 0.5477


487/Unknown  205s 416ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5479


488/Unknown  206s 416ms/step - loss: 1.1722 - sparse_categorical_accuracy: 0.5481


489/Unknown  206s 416ms/step - loss: 1.1716 - sparse_categorical_accuracy: 0.5483


490/Unknown  207s 416ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5485


491/Unknown  207s 416ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5487


492/Unknown  207s 416ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5489


493/Unknown  208s 416ms/step - loss: 1.1693 - sparse_categorical_accuracy: 0.5491


494/Unknown  208s 416ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5493


495/Unknown  208s 416ms/step - loss: 1.1681 - sparse_categorical_accuracy: 0.5494


496/Unknown  209s 416ms/step - loss: 1.1676 - sparse_categorical_accuracy: 0.5496


497/Unknown  209s 416ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5498


498/Unknown  210s 416ms/step - loss: 1.1664 - sparse_categorical_accuracy: 0.5500


499/Unknown  210s 415ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5502


500/Unknown  210s 415ms/step - loss: 1.1652 - sparse_categorical_accuracy: 0.5504


501/Unknown  211s 415ms/step - loss: 1.1647 - sparse_categorical_accuracy: 0.5506


502/Unknown  211s 415ms/step - loss: 1.1641 - sparse_categorical_accuracy: 0.5508


503/Unknown  212s 415ms/step - loss: 1.1635 - sparse_categorical_accuracy: 0.5509


504/Unknown  212s 415ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5511


505/Unknown  212s 415ms/step - loss: 1.1624 - sparse_categorical_accuracy: 0.5513


506/Unknown  213s 415ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5515


507/Unknown  213s 416ms/step - loss: 1.1613 - sparse_categorical_accuracy: 0.5517


508/Unknown  214s 416ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5519


509/Unknown  214s 416ms/step - loss: 1.1601 - sparse_categorical_accuracy: 0.5521


510/Unknown  215s 416ms/step - loss: 1.1596 - sparse_categorical_accuracy: 0.5522


511/Unknown  215s 416ms/step - loss: 1.1590 - sparse_categorical_accuracy: 0.5524


512/Unknown  216s 416ms/step - loss: 1.1585 - sparse_categorical_accuracy: 0.5526


513/Unknown  216s 415ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5528


514/Unknown  216s 415ms/step - loss: 1.1574 - sparse_categorical_accuracy: 0.5530


515/Unknown  217s 415ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5531


516/Unknown  217s 415ms/step - loss: 1.1562 - sparse_categorical_accuracy: 0.5533


517/Unknown  217s 415ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5535


518/Unknown  218s 415ms/step - loss: 1.1551 - sparse_categorical_accuracy: 0.5537


519/Unknown  218s 415ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5539


520/Unknown  218s 415ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5540


521/Unknown  219s 415ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5542


522/Unknown  219s 415ms/step - loss: 1.1530 - sparse_categorical_accuracy: 0.5544


523/Unknown  219s 414ms/step - loss: 1.1524 - sparse_categorical_accuracy: 0.5546


524/Unknown  220s 415ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5548


525/Unknown  220s 415ms/step - loss: 1.1513 - sparse_categorical_accuracy: 0.5549


526/Unknown  221s 415ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5551


527/Unknown  221s 415ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5553


528/Unknown  222s 415ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5555


529/Unknown  222s 415ms/step - loss: 1.1492 - sparse_categorical_accuracy: 0.5556


530/Unknown  223s 415ms/step - loss: 1.1487 - sparse_categorical_accuracy: 0.5558


531/Unknown  223s 415ms/step - loss: 1.1481 - sparse_categorical_accuracy: 0.5560


532/Unknown  223s 415ms/step - loss: 1.1476 - sparse_categorical_accuracy: 0.5562


533/Unknown  224s 415ms/step - loss: 1.1471 - sparse_categorical_accuracy: 0.5563


534/Unknown  224s 415ms/step - loss: 1.1465 - sparse_categorical_accuracy: 0.5565


535/Unknown  225s 415ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5567


536/Unknown  225s 415ms/step - loss: 1.1455 - sparse_categorical_accuracy: 0.5569


537/Unknown  226s 415ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5570


538/Unknown  226s 415ms/step - loss: 1.1444 - sparse_categorical_accuracy: 0.5572


539/Unknown  227s 415ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5574


540/Unknown  227s 415ms/step - loss: 1.1434 - sparse_categorical_accuracy: 0.5575


541/Unknown  227s 415ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5577


542/Unknown  228s 415ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5579


543/Unknown  228s 415ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5581


544/Unknown  228s 415ms/step - loss: 1.1413 - sparse_categorical_accuracy: 0.5582


545/Unknown  229s 415ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5584


546/Unknown  229s 415ms/step - loss: 1.1403 - sparse_categorical_accuracy: 0.5586


547/Unknown  230s 415ms/step - loss: 1.1398 - sparse_categorical_accuracy: 0.5587


548/Unknown  230s 415ms/step - loss: 1.1393 - sparse_categorical_accuracy: 0.5589


549/Unknown  230s 415ms/step - loss: 1.1388 - sparse_categorical_accuracy: 0.5591


550/Unknown  231s 415ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5592


551/Unknown  231s 415ms/step - loss: 1.1378 - sparse_categorical_accuracy: 0.5594


552/Unknown  232s 415ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5596


553/Unknown  232s 414ms/step - loss: 1.1368 - sparse_categorical_accuracy: 0.5597


554/Unknown  232s 414ms/step - loss: 1.1362 - sparse_categorical_accuracy: 0.5599


555/Unknown  233s 414ms/step - loss: 1.1357 - sparse_categorical_accuracy: 0.5601


556/Unknown  233s 414ms/step - loss: 1.1352 - sparse_categorical_accuracy: 0.5602


557/Unknown  233s 414ms/step - loss: 1.1347 - sparse_categorical_accuracy: 0.5604


558/Unknown  234s 414ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5605


559/Unknown  234s 415ms/step - loss: 1.1338 - sparse_categorical_accuracy: 0.5607


560/Unknown  235s 415ms/step - loss: 1.1333 - sparse_categorical_accuracy: 0.5609


561/Unknown  235s 415ms/step - loss: 1.1328 - sparse_categorical_accuracy: 0.5610


562/Unknown  236s 415ms/step - loss: 1.1323 - sparse_categorical_accuracy: 0.5612


563/Unknown  236s 415ms/step - loss: 1.1318 - sparse_categorical_accuracy: 0.5614


564/Unknown  237s 415ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5615


565/Unknown  237s 415ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5617


566/Unknown  238s 415ms/step - loss: 1.1303 - sparse_categorical_accuracy: 0.5618


567/Unknown  238s 415ms/step - loss: 1.1298 - sparse_categorical_accuracy: 0.5620


568/Unknown  238s 415ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5622


569/Unknown  239s 415ms/step - loss: 1.1288 - sparse_categorical_accuracy: 0.5623


570/Unknown  239s 415ms/step - loss: 1.1284 - sparse_categorical_accuracy: 0.5625


571/Unknown  240s 415ms/step - loss: 1.1279 - sparse_categorical_accuracy: 0.5626


572/Unknown  240s 415ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5628


573/Unknown  240s 415ms/step - loss: 1.1269 - sparse_categorical_accuracy: 0.5630


574/Unknown  241s 415ms/step - loss: 1.1264 - sparse_categorical_accuracy: 0.5631


575/Unknown  241s 415ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5633


576/Unknown  241s 414ms/step - loss: 1.1255 - sparse_categorical_accuracy: 0.5634


577/Unknown  242s 414ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5636


578/Unknown  242s 414ms/step - loss: 1.1245 - sparse_categorical_accuracy: 0.5638


579/Unknown  242s 414ms/step - loss: 1.1240 - sparse_categorical_accuracy: 0.5639


580/Unknown  243s 414ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5641


581/Unknown  243s 414ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5642


582/Unknown  243s 413ms/step - loss: 1.1226 - sparse_categorical_accuracy: 0.5644


583/Unknown  244s 413ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5645


584/Unknown  244s 413ms/step - loss: 1.1217 - sparse_categorical_accuracy: 0.5647


585/Unknown  244s 413ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5648


586/Unknown  245s 413ms/step - loss: 1.1207 - sparse_categorical_accuracy: 0.5650


587/Unknown  245s 413ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5651


588/Unknown  246s 413ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5653


589/Unknown  246s 413ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5655


590/Unknown  246s 413ms/step - loss: 1.1189 - sparse_categorical_accuracy: 0.5656


591/Unknown  247s 413ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5658


592/Unknown  247s 413ms/step - loss: 1.1180 - sparse_categorical_accuracy: 0.5659


593/Unknown  248s 413ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5661


594/Unknown  248s 413ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5662


595/Unknown  248s 413ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5664


596/Unknown  249s 413ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5665


597/Unknown  249s 413ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5667


598/Unknown  249s 413ms/step - loss: 1.1152 - sparse_categorical_accuracy: 0.5668


599/Unknown  250s 413ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5670


600/Unknown  250s 413ms/step - loss: 1.1143 - sparse_categorical_accuracy: 0.5671


601/Unknown  251s 412ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5673


602/Unknown  251s 412ms/step - loss: 1.1134 - sparse_categorical_accuracy: 0.5674


603/Unknown  251s 412ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5676


604/Unknown  252s 412ms/step - loss: 1.1125 - sparse_categorical_accuracy: 0.5677


605/Unknown  252s 412ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5679


606/Unknown  252s 412ms/step - loss: 1.1116 - sparse_categorical_accuracy: 0.5680


607/Unknown  253s 412ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5682


608/Unknown  253s 412ms/step - loss: 1.1107 - sparse_categorical_accuracy: 0.5683


609/Unknown  254s 412ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5685


610/Unknown  254s 412ms/step - loss: 1.1098 - sparse_categorical_accuracy: 0.5686


611/Unknown  255s 412ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5687


612/Unknown  255s 412ms/step - loss: 1.1090 - sparse_categorical_accuracy: 0.5689


613/Unknown  255s 412ms/step - loss: 1.1085 - sparse_categorical_accuracy: 0.5690


614/Unknown  256s 412ms/step - loss: 1.1081 - sparse_categorical_accuracy: 0.5692


615/Unknown  256s 412ms/step - loss: 1.1076 - sparse_categorical_accuracy: 0.5693


616/Unknown  257s 413ms/step - loss: 1.1072 - sparse_categorical_accuracy: 0.5695


617/Unknown  257s 413ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5696


618/Unknown  258s 413ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5698


619/Unknown  258s 413ms/step - loss: 1.1059 - sparse_categorical_accuracy: 0.5699


620/Unknown  259s 413ms/step - loss: 1.1055 - sparse_categorical_accuracy: 0.5700


621/Unknown  259s 413ms/step - loss: 1.1050 - sparse_categorical_accuracy: 0.5702


622/Unknown  260s 413ms/step - loss: 1.1046 - sparse_categorical_accuracy: 0.5703


623/Unknown  260s 413ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5705


624/Unknown  261s 413ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5706


625/Unknown  261s 413ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5708


626/Unknown  261s 413ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5709


627/Unknown  262s 413ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5710


628/Unknown  262s 413ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5712


629/Unknown  263s 413ms/step - loss: 1.1016 - sparse_categorical_accuracy: 0.5713


630/Unknown  263s 414ms/step - loss: 1.1012 - sparse_categorical_accuracy: 0.5715


631/Unknown  264s 414ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5716


632/Unknown  264s 414ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5717


633/Unknown  265s 414ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5719


634/Unknown  265s 414ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5720


635/Unknown  265s 413ms/step - loss: 1.0991 - sparse_categorical_accuracy: 0.5722


636/Unknown  266s 413ms/step - loss: 1.0987 - sparse_categorical_accuracy: 0.5723


637/Unknown  266s 413ms/step - loss: 1.0982 - sparse_categorical_accuracy: 0.5724


638/Unknown  266s 413ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5726


639/Unknown  267s 413ms/step - loss: 1.0974 - sparse_categorical_accuracy: 0.5727


640/Unknown  267s 413ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5728


641/Unknown  268s 413ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5730


642/Unknown  268s 413ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5731


643/Unknown  268s 413ms/step - loss: 1.0957 - sparse_categorical_accuracy: 0.5733


644/Unknown  269s 413ms/step - loss: 1.0953 - sparse_categorical_accuracy: 0.5734


645/Unknown  269s 413ms/step - loss: 1.0949 - sparse_categorical_accuracy: 0.5735


646/Unknown  269s 413ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5737


647/Unknown  270s 413ms/step - loss: 1.0941 - sparse_categorical_accuracy: 0.5738


648/Unknown  270s 413ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5739


649/Unknown  270s 413ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5741


650/Unknown  271s 413ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5742


651/Unknown  271s 413ms/step - loss: 1.0925 - sparse_categorical_accuracy: 0.5743


652/Unknown  272s 412ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5745


653/Unknown  272s 412ms/step - loss: 1.0917 - sparse_categorical_accuracy: 0.5746


654/Unknown  272s 412ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5747


655/Unknown  273s 412ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5749


656/Unknown  273s 412ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5750


657/Unknown  274s 413ms/step - loss: 1.0901 - sparse_categorical_accuracy: 0.5751


658/Unknown  274s 413ms/step - loss: 1.0897 - sparse_categorical_accuracy: 0.5753


659/Unknown  275s 413ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5754


660/Unknown  275s 413ms/step - loss: 1.0889 - sparse_categorical_accuracy: 0.5755


661/Unknown  275s 413ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5757


662/Unknown  276s 413ms/step - loss: 1.0881 - sparse_categorical_accuracy: 0.5758


663/Unknown  276s 413ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5759


664/Unknown  277s 413ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5760


665/Unknown  277s 413ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5762


666/Unknown  278s 413ms/step - loss: 1.0865 - sparse_categorical_accuracy: 0.5763


667/Unknown  278s 413ms/step - loss: 1.0861 - sparse_categorical_accuracy: 0.5764


668/Unknown  279s 413ms/step - loss: 1.0857 - sparse_categorical_accuracy: 0.5766


669/Unknown  279s 413ms/step - loss: 1.0853 - sparse_categorical_accuracy: 0.5767


670/Unknown  279s 413ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5768


671/Unknown  280s 413ms/step - loss: 1.0845 - sparse_categorical_accuracy: 0.5770


672/Unknown  280s 413ms/step - loss: 1.0842 - sparse_categorical_accuracy: 0.5771


673/Unknown  281s 413ms/step - loss: 1.0838 - sparse_categorical_accuracy: 0.5772


674/Unknown  281s 413ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5773


675/Unknown  281s 413ms/step - loss: 1.0830 - sparse_categorical_accuracy: 0.5775


676/Unknown  282s 413ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5776


677/Unknown  282s 413ms/step - loss: 1.0822 - sparse_categorical_accuracy: 0.5777


678/Unknown  282s 412ms/step - loss: 1.0818 - sparse_categorical_accuracy: 0.5778


679/Unknown  283s 412ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5780


680/Unknown  283s 412ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5781


681/Unknown  284s 412ms/step - loss: 1.0807 - sparse_categorical_accuracy: 0.5782


682/Unknown  284s 412ms/step - loss: 1.0803 - sparse_categorical_accuracy: 0.5783


683/Unknown  284s 412ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5785


684/Unknown  285s 412ms/step - loss: 1.0796 - sparse_categorical_accuracy: 0.5786


685/Unknown  285s 412ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5787


686/Unknown  286s 412ms/step - loss: 1.0788 - sparse_categorical_accuracy: 0.5788


687/Unknown  286s 412ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5790


688/Unknown  287s 413ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5791


689/Unknown  287s 413ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5792


690/Unknown  287s 413ms/step - loss: 1.0773 - sparse_categorical_accuracy: 0.5793


691/Unknown  288s 413ms/step - loss: 1.0769 - sparse_categorical_accuracy: 0.5795


692/Unknown  288s 413ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5796


693/Unknown  289s 413ms/step - loss: 1.0762 - sparse_categorical_accuracy: 0.5797


694/Unknown  289s 413ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5798


695/Unknown  290s 413ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5800


696/Unknown  290s 413ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5801


697/Unknown  291s 413ms/step - loss: 1.0747 - sparse_categorical_accuracy: 0.5802


698/Unknown  291s 413ms/step - loss: 1.0743 - sparse_categorical_accuracy: 0.5803


699/Unknown  292s 413ms/step - loss: 1.0740 - sparse_categorical_accuracy: 0.5804


700/Unknown  292s 413ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5806


701/Unknown  292s 413ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5807


702/Unknown  293s 413ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5808


703/Unknown  293s 413ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5809


704/Unknown  294s 413ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5810


705/Unknown  294s 413ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5812


706/Unknown  295s 413ms/step - loss: 1.0714 - sparse_categorical_accuracy: 0.5813


707/Unknown  295s 413ms/step - loss: 1.0710 - sparse_categorical_accuracy: 0.5814


708/Unknown  295s 413ms/step - loss: 1.0707 - sparse_categorical_accuracy: 0.5815


709/Unknown  296s 413ms/step - loss: 1.0703 - sparse_categorical_accuracy: 0.5816


710/Unknown  296s 413ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5818


711/Unknown  296s 413ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5819


712/Unknown  297s 413ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5820


713/Unknown  297s 413ms/step - loss: 1.0689 - sparse_categorical_accuracy: 0.5821


714/Unknown  298s 413ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5822


715/Unknown  298s 413ms/step - loss: 1.0682 - sparse_categorical_accuracy: 0.5824


716/Unknown  298s 413ms/step - loss: 1.0678 - sparse_categorical_accuracy: 0.5825


717/Unknown  299s 413ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5826


718/Unknown  299s 413ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5827


719/Unknown  300s 413ms/step - loss: 1.0668 - sparse_categorical_accuracy: 0.5828


720/Unknown  300s 413ms/step - loss: 1.0664 - sparse_categorical_accuracy: 0.5829


721/Unknown  300s 413ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5831


722/Unknown  301s 413ms/step - loss: 1.0657 - sparse_categorical_accuracy: 0.5832


723/Unknown  301s 413ms/step - loss: 1.0653 - sparse_categorical_accuracy: 0.5833


724/Unknown  301s 413ms/step - loss: 1.0650 - sparse_categorical_accuracy: 0.5834


725/Unknown  302s 413ms/step - loss: 1.0646 - sparse_categorical_accuracy: 0.5835


726/Unknown  302s 413ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5836


727/Unknown  303s 413ms/step - loss: 1.0640 - sparse_categorical_accuracy: 0.5837


728/Unknown  303s 413ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5839


729/Unknown  304s 413ms/step - loss: 1.0633 - sparse_categorical_accuracy: 0.5840


730/Unknown  304s 413ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5841


731/Unknown  305s 413ms/step - loss: 1.0626 - sparse_categorical_accuracy: 0.5842


732/Unknown  305s 413ms/step - loss: 1.0622 - sparse_categorical_accuracy: 0.5843


733/Unknown  305s 413ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5844


734/Unknown  306s 413ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5845


735/Unknown  306s 413ms/step - loss: 1.0612 - sparse_categorical_accuracy: 0.5847


736/Unknown  307s 413ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5848


737/Unknown  307s 413ms/step - loss: 1.0605 - sparse_categorical_accuracy: 0.5849


738/Unknown  308s 413ms/step - loss: 1.0602 - sparse_categorical_accuracy: 0.5850


739/Unknown  308s 414ms/step - loss: 1.0598 - sparse_categorical_accuracy: 0.5851


740/Unknown  309s 414ms/step - loss: 1.0595 - sparse_categorical_accuracy: 0.5852


741/Unknown  309s 414ms/step - loss: 1.0591 - sparse_categorical_accuracy: 0.5853


742/Unknown  310s 414ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5854


743/Unknown  310s 414ms/step - loss: 1.0585 - sparse_categorical_accuracy: 0.5856


744/Unknown  310s 414ms/step - loss: 1.0581 - sparse_categorical_accuracy: 0.5857


745/Unknown  311s 414ms/step - loss: 1.0578 - sparse_categorical_accuracy: 0.5858


746/Unknown  311s 413ms/step - loss: 1.0575 - sparse_categorical_accuracy: 0.5859


747/Unknown  312s 413ms/step - loss: 1.0571 - sparse_categorical_accuracy: 0.5860


748/Unknown  312s 413ms/step - loss: 1.0568 - sparse_categorical_accuracy: 0.5861


749/Unknown  312s 413ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5862


750/Unknown  313s 413ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5863


751/Unknown  313s 413ms/step - loss: 1.0558 - sparse_categorical_accuracy: 0.5864


752/Unknown  313s 413ms/step - loss: 1.0555 - sparse_categorical_accuracy: 0.5866


753/Unknown  314s 413ms/step - loss: 1.0551 - sparse_categorical_accuracy: 0.5867


754/Unknown  314s 413ms/step - loss: 1.0548 - sparse_categorical_accuracy: 0.5868


755/Unknown  314s 413ms/step - loss: 1.0545 - sparse_categorical_accuracy: 0.5869


756/Unknown  315s 413ms/step - loss: 1.0541 - sparse_categorical_accuracy: 0.5870


757/Unknown  315s 413ms/step - loss: 1.0538 - sparse_categorical_accuracy: 0.5871


758/Unknown  316s 413ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5872


759/Unknown  316s 413ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5873


760/Unknown  317s 413ms/step - loss: 1.0528 - sparse_categorical_accuracy: 0.5874


761/Unknown  317s 413ms/step - loss: 1.0525 - sparse_categorical_accuracy: 0.5875


762/Unknown  318s 413ms/step - loss: 1.0522 - sparse_categorical_accuracy: 0.5876


763/Unknown  318s 413ms/step - loss: 1.0518 - sparse_categorical_accuracy: 0.5877


764/Unknown  319s 413ms/step - loss: 1.0515 - sparse_categorical_accuracy: 0.5879


765/Unknown  319s 413ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.5880


766/Unknown  319s 413ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.5881


767/Unknown  320s 414ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.5882


768/Unknown  320s 414ms/step - loss: 1.0502 - sparse_categorical_accuracy: 0.5883


769/Unknown  321s 414ms/step - loss: 1.0499 - sparse_categorical_accuracy: 0.5884


770/Unknown  321s 414ms/step - loss: 1.0496 - sparse_categorical_accuracy: 0.5885


771/Unknown  322s 414ms/step - loss: 1.0493 - sparse_categorical_accuracy: 0.5886


772/Unknown  322s 414ms/step - loss: 1.0489 - sparse_categorical_accuracy: 0.5887


773/Unknown  322s 414ms/step - loss: 1.0486 - sparse_categorical_accuracy: 0.5888


774/Unknown  323s 414ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.5889


775/Unknown  323s 413ms/step - loss: 1.0480 - sparse_categorical_accuracy: 0.5890


776/Unknown  323s 413ms/step - loss: 1.0477 - sparse_categorical_accuracy: 0.5891


777/Unknown  324s 413ms/step - loss: 1.0473 - sparse_categorical_accuracy: 0.5892


778/Unknown  324s 413ms/step - loss: 1.0470 - sparse_categorical_accuracy: 0.5893


779/Unknown  325s 413ms/step - loss: 1.0467 - sparse_categorical_accuracy: 0.5894


780/Unknown  325s 413ms/step - loss: 1.0464 - sparse_categorical_accuracy: 0.5895


781/Unknown  325s 413ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.5896


782/Unknown  326s 413ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.5898


783/Unknown  326s 413ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.5899


784/Unknown  327s 413ms/step - loss: 1.0451 - sparse_categorical_accuracy: 0.5900


785/Unknown  327s 413ms/step - loss: 1.0448 - sparse_categorical_accuracy: 0.5901


786/Unknown  327s 413ms/step - loss: 1.0445 - sparse_categorical_accuracy: 0.5902


787/Unknown  328s 413ms/step - loss: 1.0442 - sparse_categorical_accuracy: 0.5903


788/Unknown  328s 413ms/step - loss: 1.0439 - sparse_categorical_accuracy: 0.5904


789/Unknown  329s 413ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.5905


790/Unknown  329s 413ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.5906


791/Unknown  330s 413ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.5907


792/Unknown  330s 413ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.5908


793/Unknown  331s 413ms/step - loss: 1.0423 - sparse_categorical_accuracy: 0.5909


794/Unknown  331s 414ms/step - loss: 1.0420 - sparse_categorical_accuracy: 0.5910


795/Unknown  331s 414ms/step - loss: 1.0417 - sparse_categorical_accuracy: 0.5911


796/Unknown  332s 414ms/step - loss: 1.0414 - sparse_categorical_accuracy: 0.5912


797/Unknown  332s 414ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.5913


798/Unknown  333s 414ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.5914


799/Unknown  333s 413ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.5915


800/Unknown  334s 414ms/step - loss: 1.0402 - sparse_categorical_accuracy: 0.5916


801/Unknown  334s 414ms/step - loss: 1.0399 - sparse_categorical_accuracy: 0.5917


802/Unknown  334s 414ms/step - loss: 1.0396 - sparse_categorical_accuracy: 0.5918


803/Unknown  335s 414ms/step - loss: 1.0393 - sparse_categorical_accuracy: 0.5919


804/Unknown  335s 413ms/step - loss: 1.0390 - sparse_categorical_accuracy: 0.5920


805/Unknown  335s 413ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.5921


806/Unknown  336s 413ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.5922


807/Unknown  336s 413ms/step - loss: 1.0381 - sparse_categorical_accuracy: 0.5923


808/Unknown  336s 413ms/step - loss: 1.0378 - sparse_categorical_accuracy: 0.5924


809/Unknown  337s 413ms/step - loss: 1.0375 - sparse_categorical_accuracy: 0.5925


810/Unknown  337s 413ms/step - loss: 1.0372 - sparse_categorical_accuracy: 0.5926


811/Unknown  338s 413ms/step - loss: 1.0369 - sparse_categorical_accuracy: 0.5927


812/Unknown  338s 413ms/step - loss: 1.0366 - sparse_categorical_accuracy: 0.5928


813/Unknown  338s 413ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.5929


814/Unknown  339s 413ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.5930


815/Unknown  339s 413ms/step - loss: 1.0357 - sparse_categorical_accuracy: 0.5931


816/Unknown  339s 413ms/step - loss: 1.0354 - sparse_categorical_accuracy: 0.5932


817/Unknown  340s 413ms/step - loss: 1.0351 - sparse_categorical_accuracy: 0.5933


818/Unknown  340s 413ms/step - loss: 1.0348 - sparse_categorical_accuracy: 0.5934


819/Unknown  341s 413ms/step - loss: 1.0345 - sparse_categorical_accuracy: 0.5935


820/Unknown  341s 412ms/step - loss: 1.0342 - sparse_categorical_accuracy: 0.5936


821/Unknown  341s 412ms/step - loss: 1.0339 - sparse_categorical_accuracy: 0.5937


822/Unknown  342s 412ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.5938


823/Unknown  342s 412ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.5939


824/Unknown  343s 412ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.5939


825/Unknown  343s 412ms/step - loss: 1.0327 - sparse_categorical_accuracy: 0.5940


826/Unknown  343s 412ms/step - loss: 1.0324 - sparse_categorical_accuracy: 0.5941


827/Unknown  344s 412ms/step - loss: 1.0322 - sparse_categorical_accuracy: 0.5942


828/Unknown  344s 412ms/step - loss: 1.0319 - sparse_categorical_accuracy: 0.5943


829/Unknown  344s 412ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.5944


830/Unknown  345s 412ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.5945


831/Unknown  345s 412ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.5946


832/Unknown  346s 412ms/step - loss: 1.0307 - sparse_categorical_accuracy: 0.5947


833/Unknown  346s 412ms/step - loss: 1.0304 - sparse_categorical_accuracy: 0.5948


834/Unknown  346s 412ms/step - loss: 1.0301 - sparse_categorical_accuracy: 0.5949


835/Unknown  347s 412ms/step - loss: 1.0298 - sparse_categorical_accuracy: 0.5950


836/Unknown  347s 412ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.5951


837/Unknown  348s 412ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.5952


838/Unknown  348s 412ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.5953


839/Unknown  348s 412ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.5954


840/Unknown  349s 412ms/step - loss: 1.0284 - sparse_categorical_accuracy: 0.5955


841/Unknown  349s 412ms/step - loss: 1.0281 - sparse_categorical_accuracy: 0.5956


842/Unknown  350s 412ms/step - loss: 1.0278 - sparse_categorical_accuracy: 0.5957


843/Unknown  350s 412ms/step - loss: 1.0276 - sparse_categorical_accuracy: 0.5958


844/Unknown  351s 412ms/step - loss: 1.0273 - sparse_categorical_accuracy: 0.5958


845/Unknown  351s 412ms/step - loss: 1.0270 - sparse_categorical_accuracy: 0.5959


846/Unknown  352s 412ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.5960


847/Unknown  352s 412ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.5961


848/Unknown  352s 412ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.5962


849/Unknown  353s 412ms/step - loss: 1.0259 - sparse_categorical_accuracy: 0.5963


850/Unknown  353s 412ms/step - loss: 1.0256 - sparse_categorical_accuracy: 0.5964


851/Unknown  354s 412ms/step - loss: 1.0253 - sparse_categorical_accuracy: 0.5965


852/Unknown  354s 412ms/step - loss: 1.0250 - sparse_categorical_accuracy: 0.5966


853/Unknown  354s 412ms/step - loss: 1.0247 - sparse_categorical_accuracy: 0.5967


854/Unknown  355s 412ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.5968


855/Unknown  355s 412ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.5969


856/Unknown  355s 412ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.5970


857/Unknown  356s 412ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.5970


858/Unknown  356s 412ms/step - loss: 1.0234 - sparse_categorical_accuracy: 0.5971


859/Unknown  357s 412ms/step - loss: 1.0231 - sparse_categorical_accuracy: 0.5972


860/Unknown  357s 412ms/step - loss: 1.0228 - sparse_categorical_accuracy: 0.5973


861/Unknown  357s 412ms/step - loss: 1.0225 - sparse_categorical_accuracy: 0.5974


862/Unknown  358s 412ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.5975


863/Unknown  358s 412ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.5976


864/Unknown  359s 412ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.5977


865/Unknown  359s 412ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.5978


866/Unknown  360s 412ms/step - loss: 1.0212 - sparse_categorical_accuracy: 0.5979


867/Unknown  360s 412ms/step - loss: 1.0209 - sparse_categorical_accuracy: 0.5980


868/Unknown  361s 412ms/step - loss: 1.0206 - sparse_categorical_accuracy: 0.5980


869/Unknown  361s 412ms/step - loss: 1.0203 - sparse_categorical_accuracy: 0.5981


870/Unknown  361s 412ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.5982


871/Unknown  362s 412ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.5983


872/Unknown  362s 412ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.5984


873/Unknown  363s 412ms/step - loss: 1.0193 - sparse_categorical_accuracy: 0.5985


874/Unknown  363s 412ms/step - loss: 1.0190 - sparse_categorical_accuracy: 0.5986


875/Unknown  364s 412ms/step - loss: 1.0187 - sparse_categorical_accuracy: 0.5987


876/Unknown  364s 412ms/step - loss: 1.0184 - sparse_categorical_accuracy: 0.5988


877/Unknown  364s 412ms/step - loss: 1.0182 - sparse_categorical_accuracy: 0.5988


878/Unknown  365s 412ms/step - loss: 1.0179 - sparse_categorical_accuracy: 0.5989


879/Unknown  365s 412ms/step - loss: 1.0176 - sparse_categorical_accuracy: 0.5990


880/Unknown  365s 412ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.5991


881/Unknown  366s 412ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.5992


882/Unknown  366s 412ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.5993


883/Unknown  367s 412ms/step - loss: 1.0166 - sparse_categorical_accuracy: 0.5994


884/Unknown  367s 412ms/step - loss: 1.0163 - sparse_categorical_accuracy: 0.5995


885/Unknown  367s 412ms/step - loss: 1.0160 - sparse_categorical_accuracy: 0.5996


886/Unknown  368s 412ms/step - loss: 1.0158 - sparse_categorical_accuracy: 0.5996


887/Unknown  368s 412ms/step - loss: 1.0155 - sparse_categorical_accuracy: 0.5997


888/Unknown  368s 412ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.5998


889/Unknown  369s 412ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.5999


890/Unknown  369s 412ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6000


891/Unknown  370s 412ms/step - loss: 1.0145 - sparse_categorical_accuracy: 0.6001


892/Unknown  370s 412ms/step - loss: 1.0142 - sparse_categorical_accuracy: 0.6002


893/Unknown  371s 412ms/step - loss: 1.0139 - sparse_categorical_accuracy: 0.6002


894/Unknown  371s 412ms/step - loss: 1.0137 - sparse_categorical_accuracy: 0.6003


895/Unknown  371s 412ms/step - loss: 1.0134 - sparse_categorical_accuracy: 0.6004


896/Unknown  372s 412ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6005


897/Unknown  372s 412ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6006


898/Unknown  373s 412ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6007


899/Unknown  373s 412ms/step - loss: 1.0124 - sparse_categorical_accuracy: 0.6008


900/Unknown  373s 412ms/step - loss: 1.0121 - sparse_categorical_accuracy: 0.6008


901/Unknown  374s 412ms/step - loss: 1.0119 - sparse_categorical_accuracy: 0.6009


902/Unknown  374s 412ms/step - loss: 1.0116 - sparse_categorical_accuracy: 0.6010


903/Unknown  374s 412ms/step - loss: 1.0113 - sparse_categorical_accuracy: 0.6011


904/Unknown  375s 412ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6012


905/Unknown  375s 412ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6013


906/Unknown  376s 412ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6014


907/Unknown  376s 412ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6014


908/Unknown  376s 412ms/step - loss: 1.0101 - sparse_categorical_accuracy: 0.6015


909/Unknown  377s 411ms/step - loss: 1.0098 - sparse_categorical_accuracy: 0.6016


910/Unknown  377s 411ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6017


911/Unknown  378s 411ms/step - loss: 1.0093 - sparse_categorical_accuracy: 0.6018


912/Unknown  378s 411ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6019


913/Unknown  378s 411ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6019


914/Unknown  379s 411ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6020


915/Unknown  379s 411ms/step - loss: 1.0083 - sparse_categorical_accuracy: 0.6021


916/Unknown  380s 412ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6022


917/Unknown  380s 412ms/step - loss: 1.0078 - sparse_categorical_accuracy: 0.6023


918/Unknown  380s 412ms/step - loss: 1.0075 - sparse_categorical_accuracy: 0.6024


919/Unknown  381s 411ms/step - loss: 1.0073 - sparse_categorical_accuracy: 0.6024


920/Unknown  381s 411ms/step - loss: 1.0070 - sparse_categorical_accuracy: 0.6025


921/Unknown  382s 411ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6026


922/Unknown  382s 411ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6027


923/Unknown  382s 411ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6028


924/Unknown  383s 411ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6029


925/Unknown  383s 411ms/step - loss: 1.0058 - sparse_categorical_accuracy: 0.6029


926/Unknown  383s 411ms/step - loss: 1.0055 - sparse_categorical_accuracy: 0.6030


927/Unknown  384s 411ms/step - loss: 1.0053 - sparse_categorical_accuracy: 0.6031


928/Unknown  384s 411ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6032


929/Unknown  384s 411ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6033


930/Unknown  385s 411ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6033


931/Unknown  385s 411ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6034


932/Unknown  386s 411ms/step - loss: 1.0041 - sparse_categorical_accuracy: 0.6035


933/Unknown  386s 411ms/step - loss: 1.0038 - sparse_categorical_accuracy: 0.6036


934/Unknown  386s 411ms/step - loss: 1.0036 - sparse_categorical_accuracy: 0.6037


935/Unknown  387s 411ms/step - loss: 1.0033 - sparse_categorical_accuracy: 0.6037


936/Unknown  387s 411ms/step - loss: 1.0031 - sparse_categorical_accuracy: 0.6038


937/Unknown  387s 411ms/step - loss: 1.0028 - sparse_categorical_accuracy: 0.6039


938/Unknown  388s 411ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6040


939/Unknown  388s 411ms/step - loss: 1.0024 - sparse_categorical_accuracy: 0.6041


940/Unknown  389s 411ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6042


941/Unknown  389s 410ms/step - loss: 1.0019 - sparse_categorical_accuracy: 0.6042


942/Unknown  389s 410ms/step - loss: 1.0016 - sparse_categorical_accuracy: 0.6043


943/Unknown  390s 411ms/step - loss: 1.0014 - sparse_categorical_accuracy: 0.6044


944/Unknown  390s 411ms/step - loss: 1.0011 - sparse_categorical_accuracy: 0.6045


945/Unknown  391s 411ms/step - loss: 1.0009 - sparse_categorical_accuracy: 0.6046


946/Unknown  391s 411ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6046


947/Unknown  392s 411ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6047


948/Unknown  392s 411ms/step - loss: 1.0002 - sparse_categorical_accuracy: 0.6048


949/Unknown  393s 411ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6049


950/Unknown  393s 411ms/step - loss: 0.9997 - sparse_categorical_accuracy: 0.6049


951/Unknown  393s 411ms/step - loss: 0.9995 - sparse_categorical_accuracy: 0.6050


952/Unknown  394s 411ms/step - loss: 0.9992 - sparse_categorical_accuracy: 0.6051


953/Unknown  394s 411ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6052


954/Unknown  394s 411ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6053


955/Unknown  395s 410ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6053


956/Unknown  395s 410ms/step - loss: 0.9983 - sparse_categorical_accuracy: 0.6054


957/Unknown  395s 410ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6055


958/Unknown  396s 410ms/step - loss: 0.9978 - sparse_categorical_accuracy: 0.6056


959/Unknown  396s 410ms/step - loss: 0.9976 - sparse_categorical_accuracy: 0.6057


960/Unknown  397s 410ms/step - loss: 0.9973 - sparse_categorical_accuracy: 0.6057


961/Unknown  397s 410ms/step - loss: 0.9971 - sparse_categorical_accuracy: 0.6058


962/Unknown  397s 410ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6059


963/Unknown  398s 410ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6060


964/Unknown  398s 410ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6060


965/Unknown  398s 410ms/step - loss: 0.9962 - sparse_categorical_accuracy: 0.6061


966/Unknown  399s 410ms/step - loss: 0.9959 - sparse_categorical_accuracy: 0.6062


967/Unknown  399s 410ms/step - loss: 0.9957 - sparse_categorical_accuracy: 0.6063


968/Unknown  400s 410ms/step - loss: 0.9955 - sparse_categorical_accuracy: 0.6064


969/Unknown  400s 410ms/step - loss: 0.9952 - sparse_categorical_accuracy: 0.6064


970/Unknown  401s 410ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6065


971/Unknown  401s 410ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6066


972/Unknown  402s 410ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6067


973/Unknown  402s 410ms/step - loss: 0.9943 - sparse_categorical_accuracy: 0.6067


974/Unknown  402s 410ms/step - loss: 0.9941 - sparse_categorical_accuracy: 0.6068


975/Unknown  403s 410ms/step - loss: 0.9938 - sparse_categorical_accuracy: 0.6069


976/Unknown  403s 410ms/step - loss: 0.9936 - sparse_categorical_accuracy: 0.6070


977/Unknown  404s 410ms/step - loss: 0.9934 - sparse_categorical_accuracy: 0.6070


978/Unknown  404s 410ms/step - loss: 0.9931 - sparse_categorical_accuracy: 0.6071


979/Unknown  404s 410ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6072


980/Unknown  405s 410ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6073


981/Unknown  405s 410ms/step - loss: 0.9925 - sparse_categorical_accuracy: 0.6073


982/Unknown  405s 410ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6074


983/Unknown  406s 410ms/step - loss: 0.9920 - sparse_categorical_accuracy: 0.6075


984/Unknown  406s 410ms/step - loss: 0.9918 - sparse_categorical_accuracy: 0.6076


985/Unknown  406s 410ms/step - loss: 0.9915 - sparse_categorical_accuracy: 0.6076


986/Unknown  407s 410ms/step - loss: 0.9913 - sparse_categorical_accuracy: 0.6077


987/Unknown  407s 410ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6078


988/Unknown  408s 410ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6079


989/Unknown  408s 410ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6079


990/Unknown  408s 410ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6080


991/Unknown  409s 410ms/step - loss: 0.9902 - sparse_categorical_accuracy: 0.6081


992/Unknown  409s 410ms/step - loss: 0.9900 - sparse_categorical_accuracy: 0.6082


993/Unknown  410s 410ms/step - loss: 0.9897 - sparse_categorical_accuracy: 0.6082


994/Unknown  410s 410ms/step - loss: 0.9895 - sparse_categorical_accuracy: 0.6083


995/Unknown  411s 410ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6084


996/Unknown  411s 410ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6085


997/Unknown  411s 410ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6085


998/Unknown  412s 410ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6086


999/Unknown  412s 410ms/step - loss: 0.9884 - sparse_categorical_accuracy: 0.6087



1000/未知 413秒 410毫秒/步 - loss: 0.9882 - sparse_categorical_accuracy: 0.6088



1001/未知 413秒 410毫秒/步 - loss: 0.9880 - sparse_categorical_accuracy: 0.6088



1002/未知 414秒 410毫秒/步 - loss: 0.9877 - sparse_categorical_accuracy: 0.6089



1003/未知 414秒 410毫秒/步 - loss: 0.9875 - sparse_categorical_accuracy: 0.6090



1004/未知 414秒 410毫秒/步 - loss: 0.9873 - sparse_categorical_accuracy: 0.6091



1005/未知 415秒 410毫秒/步 - loss: 0.9871 - sparse_categorical_accuracy: 0.6091



1006/未知 415秒 410毫秒/步 - loss: 0.9868 - sparse_categorical_accuracy: 0.6092



1007/未知 416秒 410毫秒/步 - loss: 0.9866 - sparse_categorical_accuracy: 0.6093



1008/未知 416秒 410毫秒/步 - loss: 0.9864 - sparse_categorical_accuracy: 0.6093



1009/未知 416秒 410毫秒/步 - loss: 0.9862 - sparse_categorical_accuracy: 0.6094



1010/未知 416秒 410毫秒/步 - loss: 0.9860 - sparse_categorical_accuracy: 0.6095



1011/未知 417秒 410毫秒/步 - loss: 0.9857 - sparse_categorical_accuracy: 0.6096



1012/未知 417秒 409毫秒/步 - loss: 0.9855 - sparse_categorical_accuracy: 0.6096



1013/未知 417秒 409毫秒/步 - loss: 0.9853 - sparse_categorical_accuracy: 0.6097



1014/未知 418秒 409毫秒/步 - loss: 0.9851 - sparse_categorical_accuracy: 0.6098



1015/未知 418秒 409毫秒/步 - loss: 0.9849 - sparse_categorical_accuracy: 0.6099



1016/未知 418秒 409毫秒/步 - loss: 0.9847 - sparse_categorical_accuracy: 0.6099



1017/未知 419秒 409毫秒/步 - loss: 0.9844 - sparse_categorical_accuracy: 0.6100



1018/未知 419秒 409毫秒/步 - loss: 0.9842 - sparse_categorical_accuracy: 0.6101



1019/未知 419秒 409毫秒/步 - loss: 0.9840 - sparse_categorical_accuracy: 0.6101



1020/未知 420秒 409毫秒/步 - loss: 0.9838 - sparse_categorical_accuracy: 0.6102



1021/未知 420秒 409毫秒/步 - loss: 0.9836 - sparse_categorical_accuracy: 0.6103



1022/未知 421秒 409毫秒/步 - loss: 0.9834 - sparse_categorical_accuracy: 0.6104



1023/未知 421秒 409毫秒/步 - loss: 0.9831 - sparse_categorical_accuracy: 0.6104



1024/未知 422秒 409毫秒/步 - loss: 0.9829 - sparse_categorical_accuracy: 0.6105



1025/未知 422秒 409毫秒/步 - loss: 0.9827 - sparse_categorical_accuracy: 0.6106



1026/未知 423秒 409毫秒/步 - loss: 0.9825 - sparse_categorical_accuracy: 0.6106



1027/未知 423秒 409毫秒/步 - loss: 0.9823 - sparse_categorical_accuracy: 0.6107



1028/未知 423秒 409毫秒/步 - loss: 0.9821 - sparse_categorical_accuracy: 0.6108



1029/未知 424秒 409毫秒/步 - loss: 0.9819 - sparse_categorical_accuracy: 0.6109



1030/未知 424秒 409毫秒/步 - loss: 0.9816 - sparse_categorical_accuracy: 0.6109



1031/未知 425秒 409毫秒/步 - loss: 0.9814 - sparse_categorical_accuracy: 0.6110



1032/未知 425秒 409毫秒/步 - loss: 0.9812 - sparse_categorical_accuracy: 0.6111



1033/未知 425秒 409毫秒/步 - loss: 0.9810 - sparse_categorical_accuracy: 0.6111



1034/未知 426秒 409毫秒/步 - loss: 0.9808 - sparse_categorical_accuracy: 0.6112



1035/未知 426秒 409毫秒/步 - loss: 0.9806 - sparse_categorical_accuracy: 0.6113



1036/未知 427秒 409毫秒/步 - loss: 0.9804 - sparse_categorical_accuracy: 0.6113



1037/未知 427秒 409毫秒/步 - loss: 0.9802 - sparse_categorical_accuracy: 0.6114



1038/未知 427秒 409毫秒/步 - loss: 0.9799 - sparse_categorical_accuracy: 0.6115



1039/未知 428秒 409毫秒/步 - loss: 0.9797 - sparse_categorical_accuracy: 0.6116



1040/未知 428秒 409毫秒/步 - loss: 0.9795 - sparse_categorical_accuracy: 0.6116



1041/未知 428秒 409毫秒/步 - loss: 0.9793 - sparse_categorical_accuracy: 0.6117



1042/未知 429秒 409毫秒/步 - loss: 0.9791 - sparse_categorical_accuracy: 0.6118



1043/未知 429秒 409毫秒/步 - loss: 0.9789 - sparse_categorical_accuracy: 0.6118



1044/未知 430秒 409毫秒/步 - loss: 0.9787 - sparse_categorical_accuracy: 0.6119



1045/未知 430秒 409毫秒/步 - loss: 0.9785 - sparse_categorical_accuracy: 0.6120



1046/未知 430秒 409毫秒/步 - loss: 0.9783 - sparse_categorical_accuracy: 0.6120



1047/未知 431秒 409毫秒/步 - loss: 0.9781 - sparse_categorical_accuracy: 0.6121



1048/未知 431秒 409毫秒/步 - loss: 0.9779 - sparse_categorical_accuracy: 0.6122



1049/未知 432秒 409毫秒/步 - loss: 0.9777 - sparse_categorical_accuracy: 0.6122



1050/未知 432秒 409毫秒/步 - loss: 0.9774 - sparse_categorical_accuracy: 0.6123



1051/未知 433秒 409毫秒/步 - loss: 0.9772 - sparse_categorical_accuracy: 0.6124



1052/未知 433秒 409毫秒/步 - loss: 0.9770 - sparse_categorical_accuracy: 0.6125



1053/未知 433秒 409毫秒/步 - loss: 0.9768 - sparse_categorical_accuracy: 0.6125



1054/未知 434秒 409毫秒/步 - loss: 0.9766 - sparse_categorical_accuracy: 0.6126



1055/未知 434秒 409毫秒/步 - loss: 0.9764 - sparse_categorical_accuracy: 0.6127



1056/未知 435秒 409毫秒/步 - loss: 0.9762 - sparse_categorical_accuracy: 0.6127



1057/未知 435秒 409毫秒/步 - loss: 0.9760 - sparse_categorical_accuracy: 0.6128



1058/未知 435秒 409毫秒/步 - loss: 0.9758 - sparse_categorical_accuracy: 0.6129



1059/未知 436秒 409毫秒/步 - loss: 0.9756 - sparse_categorical_accuracy: 0.6129



1060/未知 436秒 409毫秒/步 - loss: 0.9754 - sparse_categorical_accuracy: 0.6130



1061/未知 436秒 409毫秒/步 - loss: 0.9752 - sparse_categorical_accuracy: 0.6131



1062/未知 437秒 409毫秒/步 - loss: 0.9750 - sparse_categorical_accuracy: 0.6131



1063/未知 437秒 409毫秒/步 - loss: 0.9748 - sparse_categorical_accuracy: 0.6132



1064/未知 438秒 409毫秒/步 - loss: 0.9746 - sparse_categorical_accuracy: 0.6133



1065/未知 438秒 409毫秒/步 - loss: 0.9744 - sparse_categorical_accuracy: 0.6133



1066/未知 439秒 409毫秒/步 - loss: 0.9742 - sparse_categorical_accuracy: 0.6134



1067/未知 439秒 409毫秒/步 - loss: 0.9740 - sparse_categorical_accuracy: 0.6135



1068/未知 440秒 409毫秒/步 - loss: 0.9738 - sparse_categorical_accuracy: 0.6135



1069/未知 440秒 409毫秒/步 - loss: 0.9736 - sparse_categorical_accuracy: 0.6136



1070/未知 441秒 409毫秒/步 - loss: 0.9734 - sparse_categorical_accuracy: 0.6137



1071/未知 441秒 409毫秒/步 - loss: 0.9732 - sparse_categorical_accuracy: 0.6137



1072/未知 442秒 409毫秒/步 - loss: 0.9730 - sparse_categorical_accuracy: 0.6138



1073/未知 442秒 409毫秒/步 - loss: 0.9728 - sparse_categorical_accuracy: 0.6139



1074/未知 443秒 410毫秒/步 - loss: 0.9726 - sparse_categorical_accuracy: 0.6139



1075/未知 443秒 410毫秒/步 - loss: 0.9723 - sparse_categorical_accuracy: 0.6140



1076/未知 444秒 410毫秒/步 - loss: 0.9721 - sparse_categorical_accuracy: 0.6141



1077/未知 444秒 410毫秒/步 - loss: 0.9719 - sparse_categorical_accuracy: 0.6141



1078/未知 445秒 410毫秒/步 - loss: 0.9717 - sparse_categorical_accuracy: 0.6142



1079/未知 445秒 410毫秒/步 - loss: 0.9716 - sparse_categorical_accuracy: 0.6143



1080/未知 445秒 410毫秒/步 - loss: 0.9714 - sparse_categorical_accuracy: 0.6143



1081/未知 446秒 410毫秒/步 - loss: 0.9712 - sparse_categorical_accuracy: 0.6144



1082/未知 446秒 410毫秒/步 - loss: 0.9710 - sparse_categorical_accuracy: 0.6145



1083/未知 447秒 410毫秒/步 - loss: 0.9708 - sparse_categorical_accuracy: 0.6145



1084/未知 447秒 410毫秒/步 - loss: 0.9706 - sparse_categorical_accuracy: 0.6146



1085/未知 448秒 410毫秒/步 - loss: 0.9704 - sparse_categorical_accuracy: 0.6147



1086/未知 448秒 410毫秒/步 - loss: 0.9702 - sparse_categorical_accuracy: 0.6147



1087/未知 449秒 410毫秒/步 - loss: 0.9700 - sparse_categorical_accuracy: 0.6148



1088/未知 449秒 410毫秒/步 - loss: 0.9698 - sparse_categorical_accuracy: 0.6149



1089/未知 449秒 410毫秒/步 - loss: 0.9696 - sparse_categorical_accuracy: 0.6149



1090/未知 450秒 410毫秒/步 - loss: 0.9694 - sparse_categorical_accuracy: 0.6150



1091/未知 450秒 410毫秒/步 - loss: 0.9692 - sparse_categorical_accuracy: 0.6150



1092/未知 451秒 410毫秒/步 - loss: 0.9690 - sparse_categorical_accuracy: 0.6151



1093/未知 451秒 411毫秒/步 - loss: 0.9688 - sparse_categorical_accuracy: 0.6152



1094/未知 452秒 411毫秒/步 - loss: 0.9686 - sparse_categorical_accuracy: 0.6152



1095/未知 452秒 411毫秒/步 - loss: 0.9684 - sparse_categorical_accuracy: 0.6153



1096/未知 453秒 411毫秒/步 - loss: 0.9682 - sparse_categorical_accuracy: 0.6154



1097/未知 453秒 411毫秒/步 - loss: 0.9680 - sparse_categorical_accuracy: 0.6154



1098/未知 454秒 411毫秒/步 - loss: 0.9678 - sparse_categorical_accuracy: 0.6155



1099/未知 454秒 411毫秒/步 - loss: 0.9676 - sparse_categorical_accuracy: 0.6156



1100/未知 455秒 411毫秒/步 - loss: 0.9674 - sparse_categorical_accuracy: 0.6156



1101/未知 455秒 411毫秒/步 - loss: 0.9672 - sparse_categorical_accuracy: 0.6157



1102/未知 456秒 411毫秒/步 - loss: 0.9670 - sparse_categorical_accuracy: 0.6158



1103/未知 456秒 411毫秒/步 - loss: 0.9668 - sparse_categorical_accuracy: 0.6158



1104/未知 457秒 411毫秒/步 - loss: 0.9667 - sparse_categorical_accuracy: 0.6159



1105/未知 457秒 411毫秒/步 - loss: 0.9665 - sparse_categorical_accuracy: 0.6159



1106/未知 457秒 411毫秒/步 - loss: 0.9663 - sparse_categorical_accuracy: 0.6160



1107/未知 458秒 411毫秒/步 - loss: 0.9661 - sparse_categorical_accuracy: 0.6161



1108/未知 458秒 411毫秒/步 - loss: 0.9659 - sparse_categorical_accuracy: 0.6161



1109/未知 459秒 411毫秒/步 - loss: 0.9657 - sparse_categorical_accuracy: 0.6162



1110/未知 459秒 411毫秒/步 - loss: 0.9655 - sparse_categorical_accuracy: 0.6163



1111/未知 459秒 411毫秒/步 - loss: 0.9653 - sparse_categorical_accuracy: 0.6163



1112/未知 460秒 411毫秒/步 - loss: 0.9651 - sparse_categorical_accuracy: 0.6164



1113/未知 460秒 411毫秒/步 - loss: 0.9649 - sparse_categorical_accuracy: 0.6165



1114/未知 461秒 411毫秒/步 - loss: 0.9647 - sparse_categorical_accuracy: 0.6165



1115/未知 461秒 411毫秒/步 - loss: 0.9645 - sparse_categorical_accuracy: 0.6166



1116/未知 462秒 411毫秒/步 - loss: 0.9644 - sparse_categorical_accuracy: 0.6166



1117/未知 462秒 412毫秒/步 - loss: 0.9642 - sparse_categorical_accuracy: 0.6167



1118/未知 463秒 412毫秒/步 - loss: 0.9640 - sparse_categorical_accuracy: 0.6168



1119/未知 463秒 412毫秒/步 - loss: 0.9638 - sparse_categorical_accuracy: 0.6168



1120/未知 464秒 412毫秒/步 - loss: 0.9636 - sparse_categorical_accuracy: 0.6169



1121/未知 464秒 412毫秒/步 - loss: 0.9634 - sparse_categorical_accuracy: 0.6170



1122/未知 465秒 412毫秒/步 - loss: 0.9632 - sparse_categorical_accuracy: 0.6170



1123/未知 465秒 412毫秒/步 - loss: 0.9630 - sparse_categorical_accuracy: 0.6171



1124/未知 466秒 412毫秒/步 - loss: 0.9628 - sparse_categorical_accuracy: 0.6171



1125/未知 466秒 412毫秒/步 - loss: 0.9627 - sparse_categorical_accuracy: 0.6172



1126/未知 467秒 412毫秒/步 - loss: 0.9625 - sparse_categorical_accuracy: 0.6173



1127/未知 467秒 412毫秒/步 - loss: 0.9623 - sparse_categorical_accuracy: 0.6173



1128/未知 468秒 412毫秒/步 - loss: 0.9621 - sparse_categorical_accuracy: 0.6174



1129/未知 468秒 412毫秒/步 - loss: 0.9619 - sparse_categorical_accuracy: 0.6174



1130/未知 469秒 412毫秒/步 - loss: 0.9617 - sparse_categorical_accuracy: 0.6175



1131/未知 469秒 412毫秒/步 - loss: 0.9615 - sparse_categorical_accuracy: 0.6176



1132/未知 470秒 412毫秒/步 - loss: 0.9614 - sparse_categorical_accuracy: 0.6176



1133/未知 470秒 412毫秒/步 - loss: 0.9612 - sparse_categorical_accuracy: 0.6177



1134/未知 471秒 413毫秒/步 - loss: 0.9610 - sparse_categorical_accuracy: 0.6178



1135/未知 471秒 413毫秒/步 - loss: 0.9608 - sparse_categorical_accuracy: 0.6178



1136/未知 471秒 413毫秒/步 - loss: 0.9606 - sparse_categorical_accuracy: 0.6179



1137/未知 472秒 413毫秒/步 - loss: 0.9604 - sparse_categorical_accuracy: 0.6179



1138/未知 472秒 413毫秒/步 - loss: 0.9602 - sparse_categorical_accuracy: 0.6180



1139/未知 473秒 413毫秒/步 - loss: 0.9601 - sparse_categorical_accuracy: 0.6181



1140/未知 473秒 413毫秒/步 - loss: 0.9599 - sparse_categorical_accuracy: 0.6181



1141/未知 474秒 413毫秒/步 - loss: 0.9597 - sparse_categorical_accuracy: 0.6182



1142/未知 474秒 413毫秒/步 - loss: 0.9595 - sparse_categorical_accuracy: 0.6182



1143/未知 475秒 413毫秒/步 - loss: 0.9593 - sparse_categorical_accuracy: 0.6183



1144/未知 475秒 413毫秒/步 - loss: 0.9591 - sparse_categorical_accuracy: 0.6184



1145/未知 476秒 413毫秒/步 - loss: 0.9590 - sparse_categorical_accuracy: 0.6184



1146/未知 476秒 413毫秒/步 - loss: 0.9588 - sparse_categorical_accuracy: 0.6185



1147/未知 477秒 413毫秒/步 - loss: 0.9586 - sparse_categorical_accuracy: 0.6185



1148/未知 477秒 413毫秒/步 - loss: 0.9584 - sparse_categorical_accuracy: 0.6186



1149/未知 478秒 413毫秒/步 - loss: 0.9582 - sparse_categorical_accuracy: 0.6187



1150/未知 478秒 413毫秒/步 - loss: 0.9580 - sparse_categorical_accuracy: 0.6187



1151/未知 479秒 413毫秒/步 - loss: 0.9579 - sparse_categorical_accuracy: 0.6188



1152/未知 479秒 413毫秒/步 - loss: 0.9577 - sparse_categorical_accuracy: 0.6188



1153/未知 479秒 413毫秒/步 - loss: 0.9575 - sparse_categorical_accuracy: 0.6189



1154/未知 480秒 413毫秒/步 - loss: 0.9573 - sparse_categorical_accuracy: 0.6190



1155/未知 480秒 413毫秒/步 - loss: 0.9571 - sparse_categorical_accuracy: 0.6190



1156/未知 480秒 413毫秒/步 - loss: 0.9570 - sparse_categorical_accuracy: 0.6191



1157/未知 481秒 413毫秒/步 - loss: 0.9568 - sparse_categorical_accuracy: 0.6191



1158/未知 481秒 413毫秒/步 - loss: 0.9566 - sparse_categorical_accuracy: 0.6192



1159/未知 482秒 413毫秒/步 - loss: 0.9564 - sparse_categorical_accuracy: 0.6193



1160/未知 482秒 413毫秒/步 - loss: 0.9562 - sparse_categorical_accuracy: 0.6193



1161/未知 482秒 413毫秒/步 - loss: 0.9561 - sparse_categorical_accuracy: 0.6194



1162/未知 483秒 413毫秒/步 - loss: 0.9559 - sparse_categorical_accuracy: 0.6194



1163/未知 483秒 413毫秒/步 - loss: 0.9557 - sparse_categorical_accuracy: 0.6195



1164/未知 484秒 413毫秒/步 - loss: 0.9555 - sparse_categorical_accuracy: 0.6196



1165/未知 484秒 413毫秒/步 - loss: 0.9554 - sparse_categorical_accuracy: 0.6196



1166/未知 484秒 413毫秒/步 - loss: 0.9552 - sparse_categorical_accuracy: 0.6197



1167/未知 485秒 413毫秒/步 - loss: 0.9550 - sparse_categorical_accuracy: 0.6197



1168/未知 485秒 413毫秒/步 - loss: 0.9548 - sparse_categorical_accuracy: 0.6198



1169/未知 486秒 413毫秒/步 - loss: 0.9546 - sparse_categorical_accuracy: 0.6199



1170/未知 486秒 413毫秒/步 - loss: 0.9545 - sparse_categorical_accuracy: 0.6199



1171/未知 487秒 413毫秒/步 - loss: 0.9543 - sparse_categorical_accuracy: 0.6200



1172/未知 487秒 413毫秒/步 - loss: 0.9541 - sparse_categorical_accuracy: 0.6200



1173/未知 488秒 413毫秒/步 - loss: 0.9539 - sparse_categorical_accuracy: 0.6201



1174/未知 488秒 413毫秒/步 - loss: 0.9538 - sparse_categorical_accuracy: 0.6201



1175/未知 489秒 413毫秒/步 - loss: 0.9536 - sparse_categorical_accuracy: 0.6202



1176/未知 489秒 413毫秒/步 - loss: 0.9534 - sparse_categorical_accuracy: 0.6203



1177/未知 489秒 413毫秒/步 - loss: 0.9532 - sparse_categorical_accuracy: 0.6203



1178/未知 490秒 413毫秒/步 - loss: 0.9531 - sparse_categorical_accuracy: 0.6204



1179/未知 490秒 413毫秒/步 - loss: 0.9529 - sparse_categorical_accuracy: 0.6204



1180/未知 491秒 414毫秒/步 - loss: 0.9527 - sparse_categorical_accuracy: 0.6205



1181/未知 491秒 414毫秒/步 - loss: 0.9525 - sparse_categorical_accuracy: 0.6206



1182/未知 492秒 414毫秒/步 - loss: 0.9524 - sparse_categorical_accuracy: 0.6206



1183/未知 492秒 414毫秒/步 - loss: 0.9522 - sparse_categorical_accuracy: 0.6207



1184/未知 492秒 414毫秒/步 - loss: 0.9520 - sparse_categorical_accuracy: 0.6207



1185/未知 493秒 414毫秒/步 - loss: 0.9518 - sparse_categorical_accuracy: 0.6208



1186/未知 493秒 413毫秒/步 - loss: 0.9517 - sparse_categorical_accuracy: 0.6208



1187/未知 493秒 413毫秒/步 - loss: 0.9515 - sparse_categorical_accuracy: 0.6209



1188/未知 494秒 413毫秒/步 - loss: 0.9513 - sparse_categorical_accuracy: 0.6210



1189/未知 494秒 413毫秒/步 - loss: 0.9511 - sparse_categorical_accuracy: 0.6210



1190/未知 495秒 413毫秒/步 - loss: 0.9510 - sparse_categorical_accuracy: 0.6211



1191/未知 495秒 413毫秒/步 - loss: 0.9508 - sparse_categorical_accuracy: 0.6211



1192/未知 495秒 413毫秒/步 - loss: 0.9506 - sparse_categorical_accuracy: 0.6212



1193/未知 496秒 413毫秒/步 - loss: 0.9504 - sparse_categorical_accuracy: 0.6212



1194/未知 496秒 413毫秒/步 - loss: 0.9503 - sparse_categorical_accuracy: 0.6213



1195/未知 496秒 413毫秒/步 - loss: 0.9501 - sparse_categorical_accuracy: 0.6214



1196/未知 497秒 413毫秒/步 - loss: 0.9499 - sparse_categorical_accuracy: 0.6214



1197/未知 497秒 413毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6215



1198/未知 498秒 413毫秒/步 - loss: 0.9496 - sparse_categorical_accuracy: 0.6215



1199/未知 498秒 413毫秒/步 - loss: 0.9494 - sparse_categorical_accuracy: 0.6216



1200/未知 499秒 413毫秒/步 - loss: 0.9492 - sparse_categorical_accuracy: 0.6216



1201/未知 499秒 413毫秒/步 - loss: 0.9491 - sparse_categorical_accuracy: 0.6217



1202/未知 500秒 413毫秒/步 - loss: 0.9489 - sparse_categorical_accuracy: 0.6218



1203/未知 500秒 413毫秒/步 - loss: 0.9487 - sparse_categorical_accuracy: 0.6218



1204/未知 500秒 413毫秒/步 - loss: 0.9486 - sparse_categorical_accuracy: 0.6219



1205/未知 501秒 413毫秒/步 - loss: 0.9484 - sparse_categorical_accuracy: 0.6219



1206/未知 501秒 413毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6220



1207/未知 501秒 413毫秒/步 - loss: 0.9481 - sparse_categorical_accuracy: 0.6220



1208/未知 502秒 413毫秒/步 - loss: 0.9479 - sparse_categorical_accuracy: 0.6221



1209/未知 502秒 413毫秒/步 - loss: 0.9477 - sparse_categorical_accuracy: 0.6221



1210/未知 503秒 413毫秒/步 - loss: 0.9476 - sparse_categorical_accuracy: 0.6222



1211/未知 503秒 413毫秒/步 - loss: 0.9474 - sparse_categorical_accuracy: 0.6223



1212/未知 503秒 413毫秒/步 - loss: 0.9472 - sparse_categorical_accuracy: 0.6223



1213/未知 504秒 413毫秒/步 - loss: 0.9470 - sparse_categorical_accuracy: 0.6224



1214/未知 504秒 413毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6224



1215/未知 505秒 413毫秒/步 - loss: 0.9467 - sparse_categorical_accuracy: 0.6225



1216/未知 505秒 413毫秒/步 - loss: 0.9465 - sparse_categorical_accuracy: 0.6225



1217/未知 506秒 413毫秒/步 - loss: 0.9464 - sparse_categorical_accuracy: 0.6226



1218/未知 506秒 413毫秒/步 - loss: 0.9462 - sparse_categorical_accuracy: 0.6226



1219/未知 506秒 413毫秒/步 - loss: 0.9460 - sparse_categorical_accuracy: 0.6227



1220/未知 507秒 413毫秒/步 - loss: 0.9459 - sparse_categorical_accuracy: 0.6228



1221/未知 507秒 413毫秒/步 - loss: 0.9457 - sparse_categorical_accuracy: 0.6228



1222/未知 508秒 413毫秒/步 - 损失: 0.9455 - 稀疏分类准确率: 0.6229



1223/未知 508秒 413毫秒/步 - 损失: 0.9454 - 稀疏分类准确率: 0.6229



1224/未知 509秒 413毫秒/步 - 损失: 0.9452 - 稀疏分类准确率: 0.6230



1225/未知 509秒 413毫秒/步 - 损失: 0.9450 - 稀疏分类准确率: 0.6230



1226/未知 509秒 413毫秒/步 - 损失: 0.9449 - 稀疏分类准确率: 0.6231



1227/未知 510秒 413毫秒/步 - 损失: 0.9447 - 稀疏分类准确率: 0.6231



1228/未知 510秒 413毫秒/步 - 损失: 0.9446 - 稀疏分类准确率: 0.6232



1229/未知 511秒 413毫秒/步 - 损失: 0.9444 - 稀疏分类准确率: 0.6233



1230/未知 511秒 413毫秒/步 - 损失: 0.9442 - 稀疏分类准确率: 0.6233



1231/未知 512秒 413毫秒/步 - 损失: 0.9441 - 稀疏分类准确率: 0.6234



1232/未知 512秒 414毫秒/步 - 损失: 0.9439 - 稀疏分类准确率: 0.6234



1233/未知 513秒 414毫秒/步 - 损失: 0.9437 - 稀疏分类准确率: 0.6235



1234/未知 513秒 414毫秒/步 - 损失: 0.9436 - 稀疏分类准确率: 0.6235



1235/未知 513秒 414毫秒/步 - 损失: 0.9434 - 稀疏分类准确率: 0.6236



1236/未知 514秒 414毫秒/步 - 损失: 0.9432 - 稀疏分类准确率: 0.6236



1237/未知 514秒 414毫秒/步 - 损失: 0.9431 - 稀疏分类准确率: 0.6237



1238/未知 515秒 414毫秒/步 - 损失: 0.9429 - 稀疏分类准确率: 0.6237



1239/未知 515秒 414毫秒/步 - 损失: 0.9427 - 稀疏分类准确率: 0.6238



1240/未知 516秒 414毫秒/步 - 损失: 0.9426 - 稀疏分类准确率: 0.6239



1241/未知 516秒 414毫秒/步 - 损失: 0.9424 - 稀疏分类准确率: 0.6239



1242/未知 517秒 414毫秒/步 - 损失: 0.9423 - 稀疏分类准确率: 0.6240



1243/未知 517秒 414毫秒/步 - 损失: 0.9421 - 稀疏分类准确率: 0.6240



1244/未知 518秒 414毫秒/步 - 损失: 0.9419 - 稀疏分类准确率: 0.6241



1245/未知 518秒 414毫秒/步 - 损失: 0.9418 - 稀疏分类准确率: 0.6241



1246/未知 519秒 414毫秒/步 - 损失: 0.9416 - 稀疏分类准确率: 0.6242



1247/未知 519秒 414毫秒/步 - 损失: 0.9415 - 稀疏分类准确率: 0.6242



1248/未知 519秒 414毫秒/步 - 损失: 0.9413 - 稀疏分类准确率: 0.6243



1249/未知 520秒 414毫秒/步 - 损失: 0.9411 - 稀疏分类准确率: 0.6243



1250/未知 520秒 414毫秒/步 - 损失: 0.9410 - 稀疏分类准确率: 0.6244



1251/未知 521秒 414毫秒/步 - 损失: 0.9408 - 稀疏分类准确率: 0.6244



1252/未知 521秒 414毫秒/步 - 损失: 0.9406 - 稀疏分类准确率: 0.6245



1253/未知 521秒 414毫秒/步 - 损失: 0.9405 - 稀疏分类准确率: 0.6245



1254/未知 522秒 414毫秒/步 - 损失: 0.9403 - 稀疏分类准确率: 0.6246



1255/未知 522秒 414毫秒/步 - 损失: 0.9402 - 稀疏分类准确率: 0.6247



1256/未知 522秒 414毫秒/步 - 损失: 0.9400 - 稀疏分类准确率: 0.6247



1257/未知 523秒 414毫秒/步 - 损失: 0.9398 - 稀疏分类准确率: 0.6248



1258/未知 523秒 414毫秒/步 - 损失: 0.9397 - 稀疏分类准确率: 0.6248



1259/未知 524秒 414毫秒/步 - 损失: 0.9395 - 稀疏分类准确率: 0.6249



1260/未知 524秒 414毫秒/步 - 损失: 0.9394 - 稀疏分类准确率: 0.6249



1261/未知 524秒 414毫秒/步 - 损失: 0.9392 - 稀疏分类准确率: 0.6250



1262/未知 525秒 414毫秒/步 - 损失: 0.9391 - 稀疏分类准确率: 0.6250



1263/未知 525秒 414毫秒/步 - 损失: 0.9389 - 稀疏分类准确率: 0.6251



1264/未知 526秒 414毫秒/步 - 损失: 0.9387 - 稀疏分类准确率: 0.6251



1265/未知 526秒 414毫秒/步 - 损失: 0.9386 - 稀疏分类准确率: 0.6252



1266/未知 527秒 414毫秒/步 - 损失: 0.9384 - 稀疏分类准确率: 0.6252



1267/未知 527秒 414毫秒/步 - 损失: 0.9383 - 稀疏分类准确率: 0.6253



1268/未知 527秒 414毫秒/步 - 损失: 0.9381 - 稀疏分类准确率: 0.6253



1269/未知 528秒 414毫秒/步 - 损失: 0.9380 - 稀疏分类准确率: 0.6254



1270/未知 528秒 414毫秒/步 - 损失: 0.9378 - 稀疏分类准确率: 0.6254



1271/未知 529秒 414毫秒/步 - 损失: 0.9376 - 稀疏分类准确率: 0.6255



1272/未知 529秒 414毫秒/步 - 损失: 0.9375 - 稀疏分类准确率: 0.6255



1273/未知 530秒 414毫秒/步 - 损失: 0.9373 - 稀疏分类准确率: 0.6256



1274/未知 530秒 414毫秒/步 - 损失: 0.9372 - 稀疏分类准确率: 0.6256



1275/未知 531秒 414毫秒/步 - 损失: 0.9370 - 稀疏分类准确率: 0.6257



1276/未知 531秒 414毫秒/步 - 损失: 0.9369 - 稀疏分类准确率: 0.6257



1277/未知 532秒 414毫秒/步 - 损失: 0.9367 - 稀疏分类准确率: 0.6258



1278/未知 532秒 414毫秒/步 - 损失: 0.9365 - 稀疏分类准确率: 0.6259



1279/未知 532秒 414毫秒/步 - 损失: 0.9364 - 稀疏分类准确率: 0.6259



1280/未知 533秒 414毫秒/步 - 损失: 0.9362 - 稀疏分类准确率: 0.6260



1281/未知 533秒 414毫秒/步 - 损失: 0.9361 - 稀疏分类准确率: 0.6260



1282/未知 534秒 414毫秒/步 - 损失: 0.9359 - 稀疏分类准确率: 0.6261



1283/未知 534秒 414毫秒/步 - 损失: 0.9358 - 稀疏分类准确率: 0.6261



1284/未知 535秒 414毫秒/步 - 损失: 0.9356 - 稀疏分类准确率: 0.6262



1285/未知 535秒 414毫秒/步 - 损失: 0.9355 - 稀疏分类准确率: 0.6262



1286/未知 535秒 414毫秒/步 - 损失: 0.9353 - 稀疏分类准确率: 0.6263



1287/未知 536秒 414毫秒/步 - 损失: 0.9352 - 稀疏分类准确率: 0.6263



1288/未知 536秒 414毫秒/步 - 损失: 0.9350 - 稀疏分类准确率: 0.6264



1289/未知 537秒 414毫秒/步 - 损失: 0.9348 - 稀疏分类准确率: 0.6264



1290/未知 537秒 414毫秒/步 - 损失: 0.9347 - 稀疏分类准确率: 0.6265



1291/未知 537秒 414毫秒/步 - 损失: 0.9345 - 稀疏分类准确率: 0.6265



1292/未知 538秒 414毫秒/步 - 损失: 0.9344 - 稀疏分类准确率: 0.6266



1293/未知 538秒 414毫秒/步 - 损失: 0.9342 - 稀疏分类准确率: 0.6266



1294/未知 539秒 414毫秒/步 - 损失: 0.9341 - 稀疏分类准确率: 0.6267



1295/未知 539秒 414毫秒/步 - 损失: 0.9339 - 稀疏分类准确率: 0.6267



1296/未知 539秒 414毫秒/步 - 损失: 0.9338 - 稀疏分类准确率: 0.6268



1297/未知 540秒 414毫秒/步 - 损失: 0.9336 - 稀疏分类准确率: 0.6268



1298/未知 540秒 414毫秒/步 - 损失: 0.9335 - 稀疏分类准确率: 0.6269



1299/未知 540秒 414毫秒/步 - 损失: 0.9333 - 稀疏分类准确率: 0.6269



1300/未知 541秒 414毫秒/步 - 损失: 0.9332 - 稀疏分类准确率: 0.6270



1301/未知 541秒 414毫秒/步 - 损失: 0.9330 - 稀疏分类准确率: 0.6270



1302/未知 542秒 414毫秒/步 - 损失: 0.9329 - 稀疏分类准确率: 0.6271



1303/未知 542秒 414毫秒/步 - 损失: 0.9327 - 稀疏分类准确率: 0.6271



1304/未知 542秒 414毫秒/步 - 损失: 0.9326 - 稀疏分类准确率: 0.6272



1305/未知 543秒 414毫秒/步 - 损失: 0.9324 - 稀疏分类准确率: 0.6272



1306/未知 543秒 414毫秒/步 - 损失: 0.9323 - 稀疏分类准确率: 0.6273



1307/未知 544秒 414毫秒/步 - 损失: 0.9321 - 稀疏分类准确率: 0.6273



1308/未知 544秒 414毫秒/步 - 损失: 0.9320 - 稀疏分类准确率: 0.6274



1309/未知 544秒 414毫秒/步 - 损失: 0.9318 - 稀疏分类准确率: 0.6274



1310/未知 545秒 414毫秒/步 - 损失: 0.9317 - 稀疏分类准确率: 0.6275



1311/未知 545秒 414毫秒/步 - 损失: 0.9315 - 稀疏分类准确率: 0.6275



1312/未知 546秒 414毫秒/步 - 损失: 0.9314 - 稀疏分类准确率: 0.6276



1313/未知 546秒 414毫秒/步 - 损失: 0.9312 - 稀疏分类准确率: 0.6276



1314/未知 547秒 414毫秒/步 - 损失: 0.9311 - 稀疏分类准确率: 0.6277



1315/未知 547秒 414毫秒/步 - 损失: 0.9309 - 稀疏分类准确率: 0.6277



1316/未知 548秒 414毫秒/步 - 损失: 0.9308 - 稀疏分类准确率: 0.6278



1317/未知 548秒 414毫秒/步 - 损失: 0.9306 - 稀疏分类准确率: 0.6278



1318/未知 549秒 414毫秒/步 - 损失: 0.9305 - 稀疏分类准确率: 0.6279



1319/未知 549秒 414毫秒/步 - 损失: 0.9303 - 稀疏分类准确率: 0.6279



1320/未知 550秒 414毫秒/步 - 损失: 0.9302 - 稀疏分类准确率: 0.6280



1321/未知 550秒 414毫秒/步 - 损失: 0.9300 - 稀疏分类准确率: 0.6280



1322/未知 551秒 414毫秒/步 - 损失: 0.9299 - 稀疏分类准确率: 0.6281



1323/未知 551秒 415毫秒/步 - 损失: 0.9297 - 稀疏分类准确率: 0.6281



1324/未知 552秒 415毫秒/步 - 损失: 0.9296 - 稀疏分类准确率: 0.6282



1325/未知 552秒 415毫秒/步 - 损失: 0.9294 - 稀疏分类准确率: 0.6282



1326/未知 553秒 415毫秒/步 - 损失: 0.9293 - 稀疏分类准确率: 0.6283



1327/未知 553秒 415毫秒/步 - 损失: 0.9291 - 稀疏分类准确率: 0.6283



1328/未知 553秒 415毫秒/步 - 损失: 0.9290 - 稀疏分类准确率: 0.6284



1329/未知 554秒 415毫秒/步 - 损失: 0.9288 - 稀疏分类准确率: 0.6284



1330/未知 554秒 415毫秒/步 - 损失: 0.9287 - 稀疏分类准确率: 0.6285



1331/未知 555秒 415毫秒/步 - 损失: 0.9285 - 稀疏分类准确率: 0.6285



1332/未知 555秒 415毫秒/步 - 损失: 0.9284 - 稀疏分类准确率: 0.6285



1333/未知 556秒 415毫秒/步 - 损失: 0.9283 - 稀疏分类准确率: 0.6286



1334/未知 556秒 415毫秒/步 - 损失: 0.9281 - 稀疏分类准确率: 0.6286



1335/未知 556秒 415毫秒/步 - 损失: 0.9280 - 稀疏分类准确率: 0.6287



1336/未知 557秒 415毫秒/步 - 损失: 0.9278 - 稀疏分类准确率: 0.6287



1337/未知 557秒 415毫秒/步 - 损失: 0.9277 - 稀疏分类准确率: 0.6288



1338/未知 558秒 415毫秒/步 - 损失: 0.9275 - 稀疏分类准确率: 0.6288



1339/未知 558秒 415毫秒/步 - 损失: 0.9274 - 稀疏分类准确率: 0.6289



1340/未知 559秒 415毫秒/步 - 损失: 0.9272 - 稀疏分类准确率: 0.6289



1341/未知 559秒 415毫秒/步 - 损失: 0.9271 - 稀疏分类准确率: 0.6290



1342/未知 560秒 415毫秒/步 - 损失: 0.9269 - 稀疏分类准确率: 0.6290



1343/未知 560秒 415毫秒/步 - 损失: 0.9268 - 稀疏分类准确率: 0.6291



1344/未知 561秒 415毫秒/步 - 损失: 0.9267 - 稀疏分类准确率: 0.6291



1345/未知 561秒 415毫秒/步 - 损失: 0.9265 - 稀疏分类准确率: 0.6292



1346/未知 561秒 415毫秒/步 - 损失: 0.9264 - 稀疏分类准确率: 0.6292



1347/未知 562秒 415毫秒/步 - 损失: 0.9262 - 稀疏分类准确率: 0.6293



1348/未知 562秒 415毫秒/步 - 损失: 0.9261 - 稀疏分类准确率: 0.6293



1349/未知 563秒 415毫秒/步 - 损失: 0.9259 - 稀疏分类准确率: 0.6294



1350/未知 563秒 415毫秒/步 - 损失: 0.9258 - 稀疏分类准确率: 0.6294



1351/未知 564秒 415毫秒/步 - 损失: 0.9256 - 稀疏分类准确率: 0.6295



1352/未知 564秒 415毫秒/步 - 损失: 0.9255 - 稀疏分类准确率: 0.6295



1353/未知 564秒 415毫秒/步 - 损失: 0.9254 - 稀疏分类准确率: 0.6296



1354/未知 565秒 415毫秒/步 - 损失: 0.9252 - 稀疏分类准确率: 0.6296



1355/未知 565秒 415毫秒/步 - 损失: 0.9251 - 稀疏分类准确率: 0.6296



1356/未知 565秒 415毫秒/步 - 损失: 0.9249 - 稀疏分类准确率: 0.6297



1357/未知 566秒 415毫秒/步 - 损失: 0.9248 - 稀疏分类准确率: 0.6297



1358/未知 566秒 415毫秒/步 - 损失: 0.9246 - 稀疏分类准确率: 0.6298



1359/未知 566秒 415毫秒/步 - 损失: 0.9245 - 稀疏分类准确率: 0.6298



1360/未知 567秒 415毫秒/步 - 损失: 0.9244 - 稀疏分类准确率: 0.6299



1361/未知 567秒 415毫秒/步 - 损失: 0.9242 - 稀疏分类准确率: 0.6299



1362/未知 568秒 415毫秒/步 - 损失: 0.9241 - 稀疏分类准确率: 0.6300



1363/未知 568秒 415毫秒/步 - 损失: 0.9239 - 稀疏分类准确率: 0.6300



1364/未知 568秒 415毫秒/步 - 损失: 0.9238 - 稀疏分类准确率: 0.6301



1365/未知 569秒 415毫秒/步 - 损失: 0.9237 - 稀疏分类准确率: 0.6301



1366/未知 569秒 415毫秒/步 - 损失: 0.9235 - 稀疏分类准确率: 0.6302



1367/未知 570秒 415毫秒/步 - 损失: 0.9234 - 稀疏分类准确率: 0.6302



1368/未知 570秒 415毫秒/步 - 损失: 0.9232 - 稀疏分类准确率: 0.6303



1369/未知 571秒 415毫秒/步 - 损失: 0.9231 - 稀疏分类准确率: 0.6303



1370/未知 571秒 415毫秒/步 - 损失: 0.9229 - 稀疏分类准确率: 0.6304



1371/未知 572秒 415毫秒/步 - 损失: 0.9228 - 稀疏分类准确率: 0.6304



1372/未知 572秒 415毫秒/步 - 损失: 0.9227 - 稀疏分类准确率: 0.6304



1373/未知 573秒 415毫秒/步 - 损失: 0.9225 - 稀疏分类准确率: 0.6305



1374/未知 573秒 415毫秒/步 - 损失: 0.9224 - 稀疏分类准确率: 0.6305



1375/未知 574秒 415毫秒/步 - 损失: 0.9222 - 稀疏分类准确率: 0.6306



1376/未知 574秒 415毫秒/步 - 损失: 0.9221 - 稀疏分类准确率: 0.6306



1377/未知 574秒 415毫秒/步 - 损失: 0.9220 - 稀疏分类准确率: 0.6307



1378/未知 575秒 415毫秒/步 - 损失: 0.9218 - 稀疏分类准确率: 0.6307



1379/未知 575秒 415毫秒/步 - 损失: 0.9217 - 稀疏分类准确率: 0.6308



1380/未知 575秒 415毫秒/步 - 损失: 0.9215 - 稀疏分类准确率: 0.6308



1381/未知 576秒 415毫秒/步 - 损失: 0.9214 - 稀疏分类准确率: 0.6309



1382/未知 576秒 415毫秒/步 - 损失: 0.9213 - 稀疏分类准确率: 0.6309



1383/未知 576秒 415毫秒/步 - 损失: 0.9211 - 稀疏分类准确率: 0.6309



1384/未知 577秒 415毫秒/步 - 损失: 0.9210 - 稀疏分类准确率: 0.6310



1385/未知 577秒 415毫秒/步 - 损失: 0.9209 - 稀疏分类准确率: 0.6310



1386/未知 578秒 415毫秒/步 - 损失: 0.9207 - 稀疏分类准确率: 0.6311



1387/未知 578秒 415毫秒/步 - 损失: 0.9206 - 稀疏分类准确率: 0.6311



1388/未知 578秒 415毫秒/步 - 损失: 0.9204 - 稀疏分类准确率: 0.6312



1389/未知 579秒 415毫秒/步 - 损失: 0.9203 - 稀疏分类准确率: 0.6312



1390/未知 579秒 415毫秒/步 - 损失: 0.9202 - 稀疏分类准确率: 0.6313



1391/未知 580秒 415毫秒/步 - 损失: 0.9200 - 稀疏分类准确率: 0.6313



1392/未知 580秒 415毫秒/步 - 损失: 0.9199 - 稀疏分类准确率: 0.6314



1393/未知 580秒 415毫秒/步 - 损失: 0.9198 - 稀疏分类准确率: 0.6314



1394/未知 581秒 415毫秒/步 - 损失: 0.9196 - 稀疏分类准确率: 0.6315



1395/未知 581秒 415毫秒/步 - 损失: 0.9195 - 稀疏分类准确率: 0.6315



1396/未知 582秒 415毫秒/步 - 损失: 0.9193 - 稀疏分类准确率: 0.6315



1397/未知 582秒 415毫秒/步 - 损失: 0.9192 - 稀疏分类准确率: 0.6316



1398/未知 583秒 415毫秒/步 - 损失: 0.9191 - 稀疏分类准确率: 0.6316



1399/未知 583秒 415毫秒/步 - 损失: 0.9189 - 稀疏分类准确率: 0.6317



1400/未知 583秒 415毫秒/步 - 损失: 0.9188 - 稀疏分类准确率: 0.6317



1401/未知 584秒 415毫秒/步 - 损失: 0.9187 - 稀疏分类准确率: 0.6318



1402/未知 584秒 415毫秒/步 - 损失: 0.9185 - 稀疏分类准确率: 0.6318



1403/未知 585秒 415毫秒/步 - 损失: 0.9184 - 稀疏分类准确率: 0.6319



1404/未知 585秒 415毫秒/步 - 损失: 0.9183 - 稀疏分类准确率: 0.6319



1405/未知 586秒 415毫秒/步 - 损失: 0.9181 - 稀疏分类准确率: 0.6319



1406/未知 586秒 415毫秒/步 - 损失: 0.9180 - 稀疏分类准确率: 0.6320



1407/未知 587秒 415毫秒/步 - 损失: 0.9178 - 稀疏分类准确率: 0.6320



1408/未知 587秒 415毫秒/步 - 损失: 0.9177 - 稀疏分类准确率: 0.6321



1409/未知 588秒 415毫秒/步 - 损失: 0.9176 - 稀疏分类准确率: 0.6321



1410/未知 588秒 415毫秒/步 - 损失: 0.9174 - 稀疏分类准确率: 0.6322



1411/未知 589秒 415毫秒/步 - 损失: 0.9173 - 稀疏分类准确率: 0.6322



1412/未知 589秒 415毫秒/步 - 损失: 0.9172 - 稀疏分类准确率: 0.6323



1413/未知 590秒 415毫秒/步 - 损失: 0.9170 - 稀疏分类准确率: 0.6323



1414/未知 590秒 415毫秒/步 - 损失: 0.9169 - 稀疏分类准确率: 0.6323



1415/未知 591秒 415毫秒/步 - 损失: 0.9168 - 稀疏分类准确率: 0.6324



1416/未知 591秒 415毫秒/步 - 损失: 0.9166 - 稀疏分类准确率: 0.6324



1417/未知 591秒 415毫秒/步 - 损失: 0.9165 - 稀疏分类准确率: 0.6325



1418/未知 592秒 415毫秒/步 - 损失: 0.9164 - 稀疏分类准确率: 0.6325



1419/未知 592秒 415毫秒/步 - 损失: 0.9162 - 稀疏分类准确率: 0.6326



1420/未知 592秒 415毫秒/步 - 损失: 0.9161 - 稀疏分类准确率: 0.6326



1421/未知 593秒 415毫秒/步 - 损失: 0.9160 - 稀疏分类准确率: 0.6327



1422/未知 593秒 415毫秒/步 - 损失: 0.9158 - 稀疏分类准确率: 0.6327



1423/未知 594秒 415毫秒/步 - 损失: 0.9157 - 稀疏分类准确率: 0.6327



1424/未知 594秒 415毫秒/步 - 损失: 0.9156 - 稀疏分类准确率: 0.6328



1425/未知 594秒 415毫秒/步 - 损失: 0.9154 - 稀疏分类准确率: 0.6328



1426/未知 595秒 415毫秒/步 - 损失: 0.9153 - 稀疏分类准确率: 0.6329



1427/未知 595秒 415毫秒/步 - 损失: 0.9152 - 稀疏分类准确率: 0.6329



1428/未知 596秒 415毫秒/步 - 损失: 0.9150 - 稀疏分类准确率: 0.6330



1429/未知 596秒 415毫秒/步 - 损失: 0.9149 - 稀疏分类准确率: 0.6330



1430/未知 596秒 415毫秒/步 - 损失: 0.9148 - 稀疏分类准确率: 0.6331



1431/未知 597秒 415毫秒/步 - 损失: 0.9146 - 稀疏分类准确率: 0.6331



1432/未知 597秒 415毫秒/步 - 损失: 0.9145 - 稀疏分类准确率: 0.6331



1433/未知 598秒 415毫秒/步 - 损失: 0.9144 - 稀疏分类准确率: 0.6332



1434/未知 598秒 415毫秒/步 - 损失: 0.9142 - 稀疏分类准确率: 0.6332



1435/未知 599秒 415毫秒/步 - 损失: 0.9141 - 稀疏分类准确率: 0.6333



1436/未知 599秒 415毫秒/步 - 损失: 0.9140 - 稀疏分类准确率: 0.6333



1437/未知 599秒 415毫秒/步 - 损失: 0.9139 - 稀疏分类准确率: 0.6334



1438/未知 600秒 415毫秒/步 - 损失: 0.9137 - 稀疏分类准确率: 0.6334



1439/未知 600秒 415毫秒/步 - 损失: 0.9136 - 稀疏分类准确率: 0.6334



1440/未知 601秒 415毫秒/步 - 损失: 0.9135 - 稀疏分类准确率: 0.6335



1441/未知 601秒 415毫秒/步 - 损失: 0.9133 - 稀疏分类准确率: 0.6335



1442/未知 602秒 416毫秒/步 - 损失: 0.9132 - 稀疏分类准确率: 0.6336



1443/未知 602秒 416毫秒/步 - 损失: 0.9131 - 稀疏分类准确率: 0.6336



1444/未知 603秒 416毫秒/步 - 损失: 0.9129 - 稀疏分类准确率: 0.6337



1445/未知 603秒 416毫秒/步 - 损失: 0.9128 - 稀疏分类准确率: 0.6337



1446/未知 604秒 416毫秒/步 - 损失: 0.9127 - 稀疏分类准确率: 0.6337



1447/未知 604秒 416毫秒/步 - 损失: 0.9126 - 稀疏分类准确率: 0.6338



1448/未知 605秒 416毫秒/步 - 损失: 0.9124 - 稀疏分类准确率: 0.6338



1449/未知 605秒 416毫秒/步 - 损失: 0.9123 - 稀疏分类准确率: 0.6339



1450/未知 606秒 416毫秒/步 - 损失: 0.9122 - 稀疏分类准确率: 0.6339



1451/未知 606秒 416毫秒/步 - 损失: 0.9120 - 稀疏分类准确率: 0.6340



1452/未知 606秒 416毫秒/步 - 损失: 0.9119 - 稀疏分类准确率: 0.6340



1453/未知 607秒 416毫秒/步 - 损失: 0.9118 - 稀疏分类准确率: 0.6340



1454/未知 607秒 416毫秒/步 - 损失: 0.9116 - 稀疏分类准确率: 0.6341



1455/未知 608秒 416毫秒/步 - 损失: 0.9115 - 稀疏分类准确率: 0.6341



1456/未知 608秒 416毫秒/步 - 损失: 0.9114 - 稀疏分类准确率: 0.6342



1457/未知 609秒 416毫秒/步 - 损失: 0.9113 - 稀疏分类准确率: 0.6342



1458/未知 609秒 416毫秒/步 - 损失: 0.9111 - 稀疏分类准确率: 0.6343



1459/未知 610秒 416毫秒/步 - 损失: 0.9110 - 稀疏分类准确率: 0.6343



1460/未知 610秒 416毫秒/步 - 损失: 0.9109 - 稀疏分类准确率: 0.6343



1461/未知 610秒 416毫秒/步 - 损失: 0.9108 - 稀疏分类准确率: 0.6344



1462/未知 611秒 416毫秒/步 - 损失: 0.9106 - 稀疏分类准确率: 0.6344



1463/未知 611秒 416毫秒/步 - 损失: 0.9105 - 稀疏分类准确率: 0.6345



1464/未知 612秒 416毫秒/步 - 损失: 0.9104 - 稀疏分类准确率: 0.6345



1465/未知 612秒 416毫秒/步 - 损失: 0.9102 - 稀疏分类准确率: 0.6345



1466/未知 613秒 416毫秒/步 - 损失: 0.9101 - 稀疏分类准确率: 0.6346



1467/未知 613秒 416毫秒/步 - 损失: 0.9100 - 稀疏分类准确率: 0.6346



1468/未知 613秒 416毫秒/步 - 损失: 0.9099 - 稀疏分类准确率: 0.6347



1469/未知 614秒 416毫秒/步 - 损失: 0.9097 - 稀疏分类准确率: 0.6347



1470/未知 614秒 416毫秒/步 - 损失: 0.9096 - 稀疏分类准确率: 0.6348



1471/未知 614秒 416毫秒/步 - 损失: 0.9095 - 稀疏分类准确率: 0.6348



1472/未知 615秒 416毫秒/步 - 损失: 0.9094 - 稀疏分类准确率: 0.6348



1473/未知 615秒 416毫秒/步 - 损失: 0.9092 - 稀疏分类准确率: 0.6349



1474/未知 615秒 416毫秒/步 - 损失: 0.9091 - 稀疏分类准确率: 0.6349



1475/未知 616秒 416毫秒/步 - 损失: 0.9090 - 稀疏分类准确率: 0.6350



1476/未知 616秒 416毫秒/步 - 损失: 0.9089 - 稀疏分类准确率: 0.6350



1477/未知 616秒 416毫秒/步 - 损失: 0.9087 - 稀疏分类准确率: 0.6350



1478/未知 617秒 415毫秒/步 - 损失: 0.9086 - 稀疏分类准确率: 0.6351



1479/未知 617秒 415毫秒/步 - 损失: 0.9085 - 稀疏分类准确率: 0.6351



1480/未知 617秒 415毫秒/步 - 损失: 0.9083 - 稀疏分类准确率: 0.6352



1481/未知 618秒 415毫秒/步 - 损失: 0.9082 - 稀疏分类准确率: 0.6352



1482/未知 618秒 415毫秒/步 - 损失: 0.9081 - 稀疏分类准确率: 0.6353



1483/未知 619秒 415毫秒/步 - 损失: 0.9080 - 稀疏分类准确率: 0.6353



1484/未知 619秒 415毫秒/步 - 损失: 0.9078 - 稀疏分类准确率: 0.6353



1485/未知 620秒 415毫秒/步 - 损失: 0.9077 - 稀疏分类准确率: 0.6354



1486/未知 620秒 415毫秒/步 - 损失: 0.9076 - 稀疏分类准确率: 0.6354



1487/未知 620秒 415毫秒/步 - 损失: 0.9075 - 稀疏分类准确率: 0.6355



1488/未知 621秒 416毫秒/步 - 损失: 0.9073 - 稀疏分类准确率: 0.6355



1489/未知 621秒 416毫秒/步 - 损失: 0.9072 - 稀疏分类准确率: 0.6355



1490/未知 622秒 416毫秒/步 - 损失: 0.9071 - 稀疏分类准确率: 0.6356



1491/未知 622秒 416毫秒/步 - 损失: 0.9070 - 稀疏分类准确率: 0.6356



1492/未知 623秒 416毫秒/步 - 损失: 0.9069 - 稀疏分类准确率: 0.6357



1493/未知 623秒 416毫秒/步 - 损失: 0.9067 - 稀疏分类准确率: 0.6357



1494/未知 624秒 416毫秒/步 - 损失: 0.9066 - 稀疏分类准确率: 0.6358



1495/未知 624秒 416毫秒/步 - 损失: 0.9065 - 稀疏分类准确率: 0.6358



1496/未知 624秒 416毫秒/步 - 损失: 0.9064 - 稀疏分类准确率: 0.6358



1497/未知 625秒 416毫秒/步 - 损失: 0.9062 - 稀疏分类准确率: 0.6359



1498/未知 625秒 416毫秒/步 - 损失: 0.9061 - 稀疏分类准确率: 0.6359



1499/未知 626秒 416毫秒/步 - 损失: 0.9060 - 稀疏分类准确率: 0.6360



1500/未知 626秒 416毫秒/步 - 损失: 0.9059 - 稀疏分类准确率: 0.6360



1501/未知 627秒 416毫秒/步 - 损失: 0.9057 - 稀疏分类准确率: 0.6360



1502/未知 627秒 416毫秒/步 - 损失: 0.9056 - 稀疏分类准确率: 0.6361



1503/未知 628秒 416毫秒/步 - 损失: 0.9055 - 稀疏分类准确率: 0.6361



1504/未知 628秒 416毫秒/步 - 损失: 0.9054 - 稀疏分类准确率: 0.6362



1505/未知 628秒 416毫秒/步 - 损失: 0.9053 - 稀疏分类准确率: 0.6362



1506/未知 629秒 416毫秒/步 - 损失: 0.9051 - 稀疏分类准确率: 0.6362



1507/未知 629秒 416毫秒/步 - 损失: 0.9050 - 稀疏分类准确率: 0.6363



1508/未知 630秒 416毫秒/步 - 损失: 0.9049 - 稀疏分类准确率: 0.6363



1509/未知 630秒 416毫秒/步 - 损失: 0.9048 - 稀疏分类准确率: 0.6364



1510/未知 631秒 416毫秒/步 - 损失: 0.9046 - 稀疏分类准确率: 0.6364



1511/未知 631秒 416毫秒/步 - 损失: 0.9045 - 稀疏分类准确率: 0.6364



1512/未知 631秒 416毫秒/步 - 损失: 0.9044 - 稀疏分类准确率: 0.6365



1513/未知 632秒 416毫秒/步 - 损失: 0.9043 - 稀疏分类准确率: 0.6365



1514/未知 632秒 416毫秒/步 - 损失: 0.9042 - 稀疏分类准确率: 0.6366



1515/未知 632秒 416毫秒/步 - 损失: 0.9040 - 稀疏分类准确率: 0.6366



1516/未知 633秒 416毫秒/步 - 损失: 0.9039 - 稀疏分类准确率: 0.6366



1517/未知 633秒 416毫秒/步 - 损失: 0.9038 - 稀疏分类准确率: 0.6367



1518/未知 634秒 416毫秒/步 - 损失: 0.9037 - 稀疏分类准确率: 0.6367



1519/未知 634秒 416毫秒/步 - 损失: 0.9036 - 稀疏分类准确率: 0.6368



1520/未知 634秒 415毫秒/步 - 损失: 0.9034 - 稀疏分类准确率: 0.6368



1521/未知 635秒 415毫秒/步 - 损失: 0.9033 - 稀疏分类准确率: 0.6368



1522/未知 635秒 415毫秒/步 - 损失: 0.9032 - 稀疏分类准确率: 0.6369



1523/未知 635秒 415毫秒/步 - 损失: 0.9031 - 稀疏分类准确率: 0.6369



1524/未知 636秒 415毫秒/步 - 损失: 0.9029 - 稀疏分类准确率: 0.6370



1525/未知 636秒 415毫秒/步 - 损失: 0.9028 - 稀疏分类准确率: 0.6370



1526/未知 637秒 415毫秒/步 - 损失: 0.9027 - 稀疏分类准确率: 0.6370



1527/未知 637秒 415毫秒/步 - 损失: 0.9026 - 稀疏分类准确率: 0.6371



1528/未知 638秒 416毫秒/步 - 损失: 0.9025 - 稀疏分类准确率: 0.6371



1529/未知 638秒 416毫秒/步 - 损失: 0.9023 - 稀疏分类准确率: 0.6372



1530/未知 639秒 416毫秒/步 - 损失: 0.9022 - 稀疏分类准确率: 0.6372



1531/未知 639秒 416毫秒/步 - 损失: 0.9021 - 稀疏分类准确率: 0.6372



1532/未知 640秒 416毫秒/步 - 损失: 0.9020 - 稀疏分类准确率: 0.6373



1533/未知 640秒 416毫秒/步 - 损失: 0.9019 - 稀疏分类准确率: 0.6373



1534/未知 641秒 416毫秒/步 - 损失: 0.9018 - 稀疏分类准确率: 0.6374



1535/未知 641秒 416毫秒/步 - 损失: 0.9016 - 稀疏分类准确率: 0.6374



1536/未知 641秒 416毫秒/步 - 损失: 0.9015 - 稀疏分类准确率: 0.6374



1537/未知 642秒 416毫秒/步 - 损失: 0.9014 - 稀疏分类准确率: 0.6375



1538/未知 642秒 416毫秒/步 - 损失: 0.9013 - 稀疏分类准确率: 0.6375



1539/未知 643秒 416毫秒/步 - 损失: 0.9012 - 稀疏分类准确率: 0.6376



1540/未知 643秒 416毫秒/步 - 损失: 0.9010 - 稀疏分类准确率: 0.6376



1541/未知 644秒 416毫秒/步 - 损失: 0.9009 - 稀疏分类准确率: 0.6376



1542/未知 644秒 416毫秒/步 - 损失: 0.9008 - 稀疏分类准确率: 0.6377



1543/未知 645秒 416毫秒/步 - 损失: 0.9007 - 稀疏分类准确率: 0.6377



1544/未知 645秒 416毫秒/步 - 损失: 0.9006 - 稀疏分类准确率: 0.6378



1545/未知 645秒 416毫秒/步 - 损失: 0.9004 - 稀疏分类准确率: 0.6378



1546/未知 646秒 416毫秒/步 - 损失: 0.9003 - 稀疏分类准确率: 0.6378



1547/未知 646秒 416毫秒/步 - 损失: 0.9002 - 稀疏分类准确率: 0.6379



1548/未知 646秒 416毫秒/步 - 损失: 0.9001 - 稀疏分类准确率: 0.6379



1549/未知 647秒 416毫秒/步 - 损失: 0.9000 - 稀疏分类准确率: 0.6379



1550/未知 647秒 416毫秒/步 - 损失: 0.8999 - 稀疏分类准确率: 0.6380



1551/未知 648秒 416毫秒/步 - 损失: 0.8997 - 稀疏分类准确率: 0.6380



1552/未知 648秒 416毫秒/步 - 损失: 0.8996 - 稀疏分类准确率: 0.6381



1553/未知 648秒 416毫秒/步 - 损失: 0.8995 - 稀疏分类准确率: 0.6381



1554/未知 649秒 416毫秒/步 - 损失: 0.8994 - 稀疏分类准确率: 0.6381



1555/未知 649秒 416毫秒/步 - 损失: 0.8993 - 稀疏分类准确率: 0.6382



1556/未知 650秒 416毫秒/步 - 损失: 0.8992 - 稀疏分类准确率: 0.6382



1557/未知 650秒 416毫秒/步 - 损失: 0.8990 - 稀疏分类准确率: 0.6383



1558/未知 650秒 416毫秒/步 - 损失: 0.8989 - 稀疏分类准确率: 0.6383



1559/未知 651秒 416毫秒/步 - 损失: 0.8988 - 稀疏分类准确率: 0.6383



1560/未知 651秒 416毫秒/步 - 损失: 0.8987 - 稀疏分类准确率: 0.6384



1561/未知 652秒 416毫秒/步 - 损失: 0.8986 - 稀疏分类准确率: 0.6384



1562/未知 652秒 416毫秒/步 - 损失: 0.8985 - 稀疏分类准确率: 0.6385



1563/未知 653秒 416毫秒/步 - 损失: 0.8983 - 稀疏分类准确率: 0.6385



1564/未知 653秒 416毫秒/步 - 损失: 0.8982 - 稀疏分类准确率: 0.6385



1565/未知 654秒 416毫秒/步 - 损失: 0.8981 - 稀疏分类准确率: 0.6386



1566/未知 654秒 416毫秒/步 - 损失: 0.8980 - 稀疏分类准确率: 0.6386



1567/未知 655秒 416毫秒/步 - 损失: 0.8979 - 稀疏分类准确率: 0.6386



1568/未知 655秒 416毫秒/步 - 损失: 0.8978 - 稀疏分类准确率: 0.6387



1569/未知 656秒 416毫秒/步 - 损失: 0.8977 - 稀疏分类准确率: 0.6387



1570/未知 656秒 416毫秒/步 - 损失: 0.8975 - 稀疏分类准确率: 0.6388



1571/未知 656秒 416毫秒/步 - 损失: 0.8974 - 稀疏分类准确率: 0.6388



1572/未知 657秒 416毫秒/步 - 损失: 0.8973 - 稀疏分类准确率: 0.6388



1573/未知 657秒 416毫秒/步 - 损失: 0.8972 - 稀疏分类准确率: 0.6389



1574/未知 658秒 416毫秒/步 - 损失: 0.8971 - 稀疏分类准确率: 0.6389



1575/未知 658秒 416毫秒/步 - 损失: 0.8970 - 稀疏分类准确率: 0.6389



1576/未知 659秒 416毫秒/步 - 损失: 0.8969 - 稀疏分类准确率: 0.6390



1577/未知 659秒 416毫秒/步 - 损失: 0.8967 - 稀疏分类准确率: 0.6390



1578/未知 660秒 416毫秒/步 - 损失: 0.8966 - 稀疏分类准确率: 0.6391



1579/未知 660秒 416毫秒/步 - 损失: 0.8965 - 稀疏分类准确率: 0.6391



1580/未知 661秒 416毫秒/步 - 损失: 0.8964 - 稀疏分类准确率: 0.6391



1581/未知 661秒 416毫秒/步 - 损失: 0.8963 - 稀疏分类准确率: 0.6392



1582/未知 662秒 416毫秒/步 - 损失: 0.8962 - 稀疏分类准确率: 0.6392



1583/未知 662秒 417毫秒/步 - 损失: 0.8961 - 稀疏分类准确率: 0.6392



1584/未知 662秒 417毫秒/步 - 损失: 0.8959 - 稀疏分类准确率: 0.6393



1585/未知 663秒 417毫秒/步 - 损失: 0.8958 - 稀疏分类准确率: 0.6393



1586/未知 663秒 417毫秒/步 - 损失: 0.8957 - 稀疏分类准确率: 0.6394



1587/未知 664秒 417毫秒/步 - 损失: 0.8956 - 稀疏分类准确率: 0.6394



1588/未知 664秒 417毫秒/步 - 损失: 0.8955 - 稀疏分类准确率: 0.6394



1589/未知 665秒 417毫秒/步 - 损失: 0.8954 - 稀疏分类准确率: 0.6395



1590/未知 665秒 417毫秒/步 - 损失: 0.8953 - 稀疏分类准确率: 0.6395



1591/未知 666秒 417毫秒/步 - 损失: 0.8952 - 稀疏分类准确率: 0.6395



1592/未知 666秒 417毫秒/步 - 损失: 0.8950 - 稀疏分类准确率: 0.6396



1593/未知 666秒 417毫秒/步 - 损失: 0.8949 - 稀疏分类准确率: 0.6396



1594/未知 667秒 417毫秒/步 - 损失: 0.8948 - 稀疏分类准确率: 0.6397



1595/未知 667秒 417毫秒/步 - 损失: 0.8947 - 稀疏分类准确率: 0.6397



1596/未知 668秒 417毫秒/步 - 损失: 0.8946 - 稀疏分类准确率: 0.6397



1597/未知 668秒 417毫秒/步 - 损失: 0.8945 - 稀疏分类准确率: 0.6398



1598/未知 669秒 417毫秒/步 - 损失: 0.8944 - 稀疏分类准确率: 0.6398



1599/未知 669秒 417毫秒/步 - 损失: 0.8943 - 稀疏分类准确率: 0.6398



1600/未知 669秒 417毫秒/步 - 损失: 0.8941 - 稀疏分类准确率: 0.6399



1601/未知 670秒 417毫秒/步 - 损失: 0.8940 - 稀疏分类准确率: 0.6399



1602/未知 670秒 417毫秒/步 - 损失: 0.8939 - 稀疏分类准确率: 0.6400



1603/未知 671秒 417毫秒/步 - 损失: 0.8938 - 稀疏分类准确率: 0.6400



1604/未知 671秒 417毫秒/步 - 损失: 0.8937 - 稀疏分类准确率: 0.6400



1605/未知 672秒 417毫秒/步 - 损失: 0.8936 - 稀疏分类准确率: 0.6401



1606/未知 672秒 417毫秒/步 - 损失: 0.8935 - 稀疏分类准确率: 0.6401



1607/未知 673秒 417毫秒/步 - 损失: 0.8934 - 稀疏分类准确率: 0.6401



1608/未知 673秒 417毫秒/步 - 损失: 0.8933 - 稀疏分类准确率: 0.6402



1609/未知 673秒 417毫秒/步 - 损失: 0.8931 - 稀疏分类准确率: 0.6402



1610/未知 674秒 417毫秒/步 - 损失: 0.8930 - 稀疏分类准确率: 0.6403



1611/未知 674秒 417毫秒/步 - 损失: 0.8929 - 稀疏分类准确率: 0.6403



1612/未知 675秒 417毫秒/步 - 损失: 0.8928 - 稀疏分类准确率: 0.6403



1613/未知 675秒 417毫秒/步 - 损失: 0.8927 - 稀疏分类准确率: 0.6404



1614/未知 675秒 417毫秒/步 - 损失: 0.8926 - 稀疏分类准确率: 0.6404



1615/未知 676秒 417毫秒/步 - 损失: 0.8925 - 稀疏分类准确率: 0.6404



1616/未知 676秒 417毫秒/步 - 损失: 0.8924 - 稀疏分类准确率: 0.6405



1617/未知 677秒 417毫秒/步 - 损失: 0.8923 - 稀疏分类准确率: 0.6405



1618/未知 677秒 417毫秒/步 - 损失: 0.8922 - 稀疏分类准确率: 0.6405



1619/未知 677秒 417毫秒/步 - 损失: 0.8920 - 稀疏分类准确率: 0.6406



1620/未知 678秒 417毫秒/步 - 损失: 0.8919 - 稀疏分类准确率: 0.6406



1621/未知 678秒 417毫秒/步 - 损失: 0.8918 - 稀疏分类准确率: 0.6407



1622/未知 678秒 417毫秒/步 - 损失: 0.8917 - 稀疏分类准确率: 0.6407



1623/未知 679秒 417毫秒/步 - 损失: 0.8916 - 稀疏分类准确率: 0.6407



1624/未知 679秒 417毫秒/步 - 损失: 0.8915 - 稀疏分类准确率: 0.6408



1625/未知 679秒 416毫秒/步 - 损失: 0.8914 - 稀疏分类准确率: 0.6408



1626/未知 680秒 416毫秒/步 - 损失: 0.8913 - 稀疏分类准确率: 0.6408



1627/未知 680秒 417毫秒/步 - 损失: 0.8912 - 稀疏分类准确率: 0.6409



1628/未知 681秒 417毫秒/步 - 损失: 0.8911 - 稀疏分类准确率: 0.6409



1629/未知 681秒 417毫秒/步 - 损失: 0.8909 - 稀疏分类准确率: 0.6409



1630/未知 682秒 417毫秒/步 - 损失: 0.8908 - 稀疏分类准确率: 0.6410



1631/未知 682秒 417毫秒/步 - 损失: 0.8907 - 稀疏分类准确率: 0.6410



1632/未知 683秒 417毫秒/步 - 损失: 0.8906 - 稀疏分类准确率: 0.6411



1633/未知 683秒 417毫秒/步 - 损失: 0.8905 - 稀疏分类准确率: 0.6411



1634/未知 684秒 417毫秒/步 - 损失: 0.8904 - 稀疏分类准确率: 0.6411



1635/未知 684秒 417毫秒/步 - 损失: 0.8903 - 稀疏分类准确率: 0.6412



1636/未知 685秒 417毫秒/步 - 损失: 0.8902 - 稀疏分类准确率: 0.6412



1637/未知 685秒 417毫秒/步 - 损失: 0.8901 - 稀疏分类准确率: 0.6412



1638/未知 686秒 417毫秒/步 - 损失: 0.8900 - 稀疏分类准确率: 0.6413



1639/未知 686秒 417毫秒/步 - 损失: 0.8899 - 稀疏分类准确率: 0.6413



1640/未知 686秒 417毫秒/步 - 损失: 0.8898 - 稀疏分类准确率: 0.6413



1641/未知 687秒 417毫秒/步 - 损失: 0.8897 - 稀疏分类准确率: 0.6414



1642/未知 687秒 417毫秒/步 - 损失: 0.8895 - 稀疏分类准确率: 0.6414



1643/未知 688秒 417毫秒/步 - 损失: 0.8894 - 稀疏分类准确率: 0.6414



1644/未知 688秒 417毫秒/步 - 损失: 0.8893 - 稀疏分类准确率: 0.6415



1645/未知 689秒 417毫秒/步 - 损失: 0.8892 - 稀疏分类准确率: 0.6415



1646/未知 689秒 417毫秒/步 - 损失: 0.8891 - 稀疏分类准确率: 0.6416



1647/未知 690秒 417毫秒/步 - 损失: 0.8890 - 稀疏分类准确率: 0.6416



1648/未知 690秒 417毫秒/步 - 损失: 0.8889 - 稀疏分类准确率: 0.6416



1649/未知 690秒 417毫秒/步 - 损失: 0.8888 - 稀疏分类准确率: 0.6417



1650/未知 691秒 417毫秒/步 - 损失: 0.8887 - 稀疏分类准确率: 0.6417



1651/未知 691秒 417毫秒/步 - 损失: 0.8886 - 稀疏分类准确率: 0.6417



1652/未知 692秒 417毫秒/步 - 损失: 0.8885 - 稀疏分类准确率: 0.6418



1653/未知 692秒 417毫秒/步 - 损失: 0.8884 - 稀疏分类准确率: 0.6418



1654/未知 693秒 417毫秒/步 - 损失: 0.8883 - 稀疏分类准确率: 0.6418



1655/未知 693秒 417毫秒/步 - 损失: 0.8882 - 稀疏分类准确率: 0.6419



1656/未知 693秒 417毫秒/步 - 损失: 0.8880 - 稀疏分类准确率: 0.6419



1657/未知 694秒 417毫秒/步 - 损失: 0.8879 - 稀疏分类准确率: 0.6419



1658/未知 694秒 417毫秒/步 - 损失: 0.8878 - 稀疏分类准确率: 0.6420



1659/未知 695秒 417毫秒/步 - 损失: 0.8877 - 稀疏分类准确率: 0.6420



1660/未知 695秒 417毫秒/步 - 损失: 0.8876 - 稀疏分类准确率: 0.6420



1661/未知 695秒 417毫秒/步 - 损失: 0.8875 - 稀疏分类准确率: 0.6421



1662/未知 696秒 417毫秒/步 - 损失: 0.8874 - 稀疏分类准确率: 0.6421



1663/未知 696秒 417毫秒/步 - 损失: 0.8873 - 稀疏分类准确率: 0.6422



1664/未知 696秒 417毫秒/步 - 损失: 0.8872 - 稀疏分类准确率: 0.6422



1665/未知 697秒 417毫秒/步 - 损失: 0.8871 - 稀疏分类准确率: 0.6422



1666/未知 697秒 417毫秒/步 - 损失: 0.8870 - 稀疏分类准确率: 0.6423



1667/未知 698秒 417毫秒/步 - 损失: 0.8869 - 稀疏分类准确率: 0.6423



1668/未知 698秒 417毫秒/步 - 损失: 0.8868 - 稀疏分类准确率: 0.6423



1669/未知 698秒 417毫秒/步 - 损失: 0.8867 - 稀疏分类准确率: 0.6424



1670/未知 699秒 417毫秒/步 - 损失: 0.8866 - 稀疏分类准确率: 0.6424



1671/未知 699秒 417毫秒/步 - 损失: 0.8865 - 稀疏分类准确率: 0.6424



1672/未知 700秒 417毫秒/步 - 损失: 0.8864 - 稀疏分类准确率: 0.6425



1673/未知 700秒 417毫秒/步 - 损失: 0.8863 - 稀疏分类准确率: 0.6425



1674/未知 700秒 417毫秒/步 - 损失: 0.8862 - 稀疏分类准确率: 0.6425



1675/未知 701秒 417毫秒/步 - 损失: 0.8861 - 稀疏分类准确率: 0.6426



1676/未知 701秒 417毫秒/步 - 损失: 0.8859 - 稀疏分类准确率: 0.6426



1677/未知 702秒 417毫秒/步 - 损失: 0.8858 - 稀疏分类准确率: 0.6426



1678/未知 702秒 417毫秒/步 - 损失: 0.8857 - 稀疏分类准确率: 0.6427



1679/未知 703秒 417毫秒/步 - 损失: 0.8856 - 稀疏分类准确率: 0.6427



1680/未知 703秒 417毫秒/步 - 损失: 0.8855 - 稀疏分类准确率: 0.6427



1681/未知 704秒 417毫秒/步 - 损失: 0.8854 - 稀疏分类准确率: 0.6428



1682/未知 704秒 417毫秒/步 - 损失: 0.8853 - 稀疏分类准确率: 0.6428



1683/未知 705秒 417毫秒/步 - 损失: 0.8852 - 稀疏分类准确率: 0.6428



1684/未知 705秒 417毫秒/步 - 损失: 0.8851 - 稀疏分类准确率: 0.6429



1685/未知 706秒 417毫秒/步 - 损失: 0.8850 - 稀疏分类准确率: 0.6429



1686/未知 706秒 417毫秒/步 - 损失: 0.8849 - 稀疏分类准确率: 0.6429



1687/未知 706秒 417毫秒/步 - 损失: 0.8848 - 稀疏分类准确率: 0.6430



1688/未知 707秒 417毫秒/步 - 损失: 0.8847 - 稀疏分类准确率: 0.6430



1689/未知 707秒 417毫秒/步 - 损失: 0.8846 - 稀疏分类准确率: 0.6431



1690/未知 708秒 417毫秒/步 - 损失: 0.8845 - 稀疏分类准确率: 0.6431



1691/未知 708秒 417毫秒/步 - 损失: 0.8844 - 稀疏分类准确率: 0.6431



1692/未知 709秒 417毫秒/步 - 损失: 0.8843 - 稀疏分类准确率: 0.6432



1693/未知 709秒 417毫秒/步 - 损失: 0.8842 - 稀疏分类准确率: 0.6432



1694/未知 709秒 417毫秒/步 - 损失: 0.8841 - 稀疏分类准确率: 0.6432



1695/未知 710秒 417毫秒/步 - 损失: 0.8840 - 稀疏分类准确率: 0.6433



1696/未知 710秒 417毫秒/步 - 损失: 0.8839 - 稀疏分类准确率: 0.6433



1697/未知 711秒 417毫秒/步 - 损失: 0.8838 - 稀疏分类准确率: 0.6433



1698/未知 711秒 417毫秒/步 - 损失: 0.8837 - 稀疏分类准确率: 0.6434



1699/未知 711秒 417毫秒/步 - 损失: 0.8836 - 稀疏分类准确率: 0.6434



1700/未知 712秒 417毫秒/步 - 损失: 0.8835 - 稀疏分类准确率: 0.6434



1701/未知 712秒 417毫秒/步 - 损失: 0.8834 - 稀疏分类准确率: 0.6435



1702/未知 713秒 417毫秒/步 - 损失: 0.8833 - 稀疏分类准确率: 0.6435



1703/未知 713秒 417毫秒/步 - 损失: 0.8832 - 稀疏分类准确率: 0.6435



1704/未知 713秒 417毫秒/步 - 损失: 0.8831 - 稀疏分类准确率: 0.6436



1705/未知 714秒 417毫秒/步 - 损失: 0.8830 - 稀疏分类准确率: 0.6436



1706/未知 714秒 417毫秒/步 - 损失: 0.8829 - 稀疏分类准确率: 0.6436



1707/未知 714秒 417毫秒/步 - 损失: 0.8828 - 稀疏分类准确率: 0.6437



1708/未知 715秒 417毫秒/步 - 损失: 0.8827 - 稀疏分类准确率: 0.6437



1709/未知 715秒 417毫秒/步 - 损失: 0.8826 - 稀疏分类准确率: 0.6437



1710/未知 716秒 417毫秒/步 - 损失: 0.8825 - 稀疏分类准确率: 0.6438



1711/未知 716秒 417毫秒/步 - 损失: 0.8824 - 稀疏分类准确率: 0.6438



1712/未知 717秒 417毫秒/步 - 损失: 0.8823 - 稀疏分类准确率: 0.6438



1713/未知 717秒 417毫秒/步 - 损失: 0.8822 - 稀疏分类准确率: 0.6439



1714/未知 718秒 417毫秒/步 - 损失: 0.8821 - 稀疏分类准确率: 0.6439



1715/未知 718秒 417毫秒/步 - 损失: 0.8820 - 稀疏分类准确率: 0.6439



1716/未知 719秒 417毫秒/步 - 损失: 0.8818 - 稀疏分类准确率: 0.6440



1717/未知 719秒 417毫秒/步 - 损失: 0.8817 - 稀疏分类准确率: 0.6440



1718/未知 719秒 417毫秒/步 - 损失: 0.8816 - 稀疏分类准确率: 0.6440



1719/未知 720秒 417毫秒/步 - 损失: 0.8815 - 稀疏分类准确率: 0.6441



1720/未知 720秒 417毫秒/步 - 损失: 0.8814 - 稀疏分类准确率: 0.6441



1721/未知 720秒 417毫秒/步 - 损失: 0.8813 - 稀疏分类准确率: 0.6441



1722/未知 721秒 417毫秒/步 - 损失: 0.8812 - 稀疏分类准确率: 0.6442



1723/未知 721秒 417毫秒/步 - 损失: 0.8811 - 稀疏分类准确率: 0.6442



1724/未知 722秒 417毫秒/步 - 损失: 0.8810 - 稀疏分类准确率: 0.6442



1725/未知 722秒 417毫秒/步 - 损失: 0.8809 - 稀疏分类准确率: 0.6443



1726/未知 722秒 417毫秒/步 - 损失: 0.8808 - 稀疏分类准确率: 0.6443



1727/未知 723秒 417毫秒/步 - 损失: 0.8807 - 稀疏分类准确率: 0.6443



1728/未知 723秒 417毫秒/步 - 损失: 0.8806 - 稀疏分类准确率: 0.6444



1729/未知 723秒 417毫秒/步 - 损失: 0.8805 - 稀疏分类准确率: 0.6444



1730/未知 724秒 417毫秒/步 - 损失: 0.8804 - 稀疏分类准确率: 0.6444



1731/未知 724秒 417毫秒/步 - 损失: 0.8804 - 稀疏分类准确率: 0.6445



1732/未知 725秒 417毫秒/步 - 损失: 0.8803 - 稀疏分类准确率: 0.6445



1733/未知 725秒 417毫秒/步 - 损失: 0.8802 - 稀疏分类准确率: 0.6445



1734/未知 726秒 417毫秒/步 - 损失: 0.8801 - 稀疏分类准确率: 0.6446



1735/未知 726秒 417毫秒/步 - 损失: 0.8800 - 稀疏分类准确率: 0.6446



1736/未知 727秒 417毫秒/步 - 损失: 0.8799 - 稀疏分类准确率: 0.6446



1737/未知 727秒 417毫秒/步 - 损失: 0.8798 - 稀疏分类准确率: 0.6447



1738/未知 727秒 417毫秒/步 - 损失: 0.8797 - 稀疏分类准确率: 0.6447



1739/未知 728秒 417毫秒/步 - 损失: 0.8796 - 稀疏分类准确率: 0.6447



1740/未知 728秒 417毫秒/步 - 损失: 0.8795 - 稀疏分类准确率: 0.6448



1741/未知 729秒 417毫秒/步 - 损失: 0.8794 - 稀疏分类准确率: 0.6448



1742/未知 729秒 417毫秒/步 - 损失: 0.8793 - 稀疏分类准确率: 0.6448



1743/未知 730秒 417毫秒/步 - 损失: 0.8792 - 稀疏分类准确率: 0.6449



1744/未知 730秒 417毫秒/步 - 损失: 0.8791 - 稀疏分类准确率: 0.6449



1745/未知 730秒 417毫秒/步 - 损失: 0.8790 - 稀疏分类准确率: 0.6449



1746/未知 731秒 417毫秒/步 - 损失: 0.8789 - 稀疏分类准确率: 0.6450



1747/未知 731秒 417毫秒/步 - 损失: 0.8788 - 稀疏分类准确率: 0.6450



1748/未知 731秒 417毫秒/步 - 损失: 0.8787 - 稀疏分类准确率: 0.6450



1749/未知 732秒 417毫秒/步 - 损失: 0.8786 - 稀疏分类准确率: 0.6451



1750/未知 732秒 417毫秒/步 - 损失: 0.8785 - 稀疏分类准确率: 0.6451



1751/未知 733秒 417毫秒/步 - 损失: 0.8784 - 稀疏分类准确率: 0.6451



1752/未知 733秒 417毫秒/步 - 损失: 0.8783 - 稀疏分类准确率: 0.6452



1753/未知 733秒 417毫秒/步 - 损失: 0.8782 - 稀疏分类准确率: 0.6452



1754/未知 734秒 417毫秒/步 - 损失: 0.8781 - 稀疏分类准确率: 0.6452



1755/未知 734秒 417毫秒/步 - 损失: 0.8780 - 稀疏分类准确率: 0.6453



1756/未知 735秒 417毫秒/步 - 损失: 0.8779 - 稀疏分类准确率: 0.6453



1757/未知 735秒 417毫秒/步 - 损失: 0.8778 - 稀疏分类准确率: 0.6453



1758/未知 736秒 417毫秒/步 - 损失: 0.8777 - 稀疏分类准确率: 0.6453



1759/未知 736秒 417毫秒/步 - 损失: 0.8776 - 稀疏分类准确率: 0.6454



1760/未知 737秒 417毫秒/步 - 损失: 0.8775 - 稀疏分类准确率: 0.6454



1761/未知 737秒 417毫秒/步 - 损失: 0.8774 - 稀疏分类准确率: 0.6454



1762/未知 738秒 417毫秒/步 - 损失: 0.8773 - 稀疏分类准确率: 0.6455



1763/未知 738秒 417毫秒/步 - 损失: 0.8772 - 稀疏分类准确率: 0.6455



1764/未知 738秒 417毫秒/步 - 损失: 0.8771 - 稀疏分类准确率: 0.6455



1765/未知 739秒 417毫秒/步 - 损失: 0.8770 - 稀疏分类准确率: 0.6456



1766/未知 739秒 417毫秒/步 - 损失: 0.8769 - 稀疏分类准确率: 0.6456



1767/未知 739秒 417毫秒/步 - 损失: 0.8768 - 稀疏分类准确率: 0.6456



1768/未知 740秒 417毫秒/步 - 损失: 0.8767 - 稀疏分类准确率: 0.6457



1769/未知 740秒 417毫秒/步 - 损失: 0.8766 - 稀疏分类准确率: 0.6457



1770/未知 741秒 417毫秒/步 - 损失: 0.8765 - 稀疏分类准确率: 0.6457



1771/未知 741秒 417毫秒/步 - 损失: 0.8764 - 稀疏分类准确率: 0.6458



1772/未知 741秒 417毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6458



1773/未知 742秒 417毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6458



1774/未知 742秒 417毫秒/步 - 损失: 0.8762 - 稀疏分类准确率: 0.6459



1775/未知 743秒 417毫秒/步 - 损失: 0.8761 - 稀疏分类准确率: 0.6459



1776/未知 743秒 417毫秒/步 - 损失: 0.8760 - 稀疏分类准确率: 0.6459



1777/未知 743秒 417毫秒/步 - 损失: 0.8759 - 稀疏分类准确率: 0.6460



1778/未知 744秒 417毫秒/步 - 损失: 0.8758 - 稀疏分类准确率: 0.6460



1779/未知 744秒 417毫秒/步 - 损失: 0.8757 - 稀疏分类准确率: 0.6460



1780/未知 745秒 417毫秒/步 - 损失: 0.8756 - 稀疏分类准确率: 0.6461



1781/未知 745秒 417毫秒/步 - 损失: 0.8755 - 稀疏分类准确率: 0.6461



1782/未知 746秒 417毫秒/步 - 损失: 0.8754 - 稀疏分类准确率: 0.6461



1783/未知 746秒 417毫秒/步 - 损失: 0.8753 - 稀疏分类准确率: 0.6461



1784/未知 747秒 417毫秒/步 - 损失: 0.8752 - 稀疏分类准确率: 0.6462



1785/未知 747秒 417毫秒/步 - 损失: 0.8751 - 稀疏分类准确率: 0.6462



1786/未知 747秒 417毫秒/步 - 损失: 0.8750 - 稀疏分类准确率: 0.6462



1787/未知 748秒 417毫秒/步 - 损失: 0.8749 - 稀疏分类准确率: 0.6463



1788/未知 748秒 417毫秒/步 - 损失: 0.8748 - 稀疏分类准确率: 0.6463



1789/未知 749秒 417毫秒/步 - 损失: 0.8747 - 稀疏分类准确率: 0.6463



1790/未知 749秒 417毫秒/步 - 损失: 0.8746 - 稀疏分类准确率: 0.6464



1791/未知 750秒 417毫秒/步 - 损失: 0.8745 - 稀疏分类准确率: 0.6464



1792/未知 750秒 417毫秒/步 - 损失: 0.8744 - 稀疏分类准确率: 0.6464



1793/未知 751秒 417毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6465



1794/未知 751秒 417毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6465



1795/未知 752秒 417毫秒/步 - 损失: 0.8742 - 稀疏分类准确率: 0.6465



1796/未知 752秒 417毫秒/步 - 损失: 0.8741 - 稀疏分类准确率: 0.6466



1797/未知 753秒 417毫秒/步 - 损失: 0.8740 - 稀疏分类准确率: 0.6466



1798/未知 753秒 417毫秒/步 - 损失: 0.8739 - 稀疏分类准确率: 0.6466



1799/未知 753秒 417毫秒/步 - 损失: 0.8738 - 稀疏分类准确率: 0.6466



1800/未知 754秒 417毫秒/步 - 损失: 0.8737 - 稀疏分类准确率: 0.6467



1801/未知 754秒 417毫秒/步 - 损失: 0.8736 - 稀疏分类准确率: 0.6467



1802/未知 755秒 417毫秒/步 - 损失: 0.8735 - 稀疏分类准确率: 0.6467



1803/未知 755秒 417毫秒/步 - 损失: 0.8734 - 稀疏分类准确率: 0.6468



1804/未知 756秒 417毫秒/步 - 损失: 0.8733 - 稀疏分类准确率: 0.6468



1805/未知 756秒 417毫秒/步 - 损失: 0.8732 - 稀疏分类准确率: 0.6468



1806/未知 757秒 417毫秒/步 - 损失: 0.8731 - 稀疏分类准确率: 0.6469



1807/未知 757秒 417毫秒/步 - 损失: 0.8730 - 稀疏分类准确率: 0.6469



1808/未知 757秒 417毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6469



1809/未知 758秒 417毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6470



1810/未知 758秒 417毫秒/步 - 损失: 0.8728 - 稀疏分类准确率: 0.6470



1811/未知 758秒 417毫秒/步 - 损失: 0.8727 - 稀疏分类准确率: 0.6470



1812/未知 759秒 417毫秒/步 - 损失: 0.8726 - 稀疏分类准确率: 0.6471



1813/未知 759秒 417毫秒/步 - 损失: 0.8725 - 稀疏分类准确率: 0.6471



1814/未知 760秒 417毫秒/步 - 损失: 0.8724 - 稀疏分类准确率: 0.6471



1815/未知 760秒 417毫秒/步 - 损失: 0.8723 - 稀疏分类准确率: 0.6471



1816/未知 760秒 417毫秒/步 - 损失: 0.8722 - 稀疏分类准确率: 0.6472



1817/未知 761秒 417毫秒/步 - 损失: 0.8721 - 稀疏分类准确率: 0.6472



1818/未知 761秒 417毫秒/步 - 损失: 0.8720 - 稀疏分类准确率: 0.6472



1819/未知 761秒 417毫秒/步 - 损失: 0.8719 - 稀疏分类准确率: 0.6473



1820/未知 762秒 417毫秒/步 - 损失: 0.8718 - 稀疏分类准确率: 0.6473



1821/未知 762秒 417毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6473



1822/未知 763秒 417毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6474



1823/未知 763秒 417毫秒/步 - 损失: 0.8716 - 稀疏分类准确率: 0.6474



1824/未知 764秒 417毫秒/步 - 损失: 0.8715 - 稀疏分类准确率: 0.6474



1825/未知 764秒 417毫秒/步 - 损失: 0.8714 - 稀疏分类准确率: 0.6475



1826/未知 765秒 417毫秒/步 - 损失: 0.8713 - 稀疏分类准确率: 0.6475



1827/未知 765秒 417毫秒/步 - 损失: 0.8712 - 稀疏分类准确率: 0.6475



1828/未知 766秒 417毫秒/步 - 损失: 0.8711 - 稀疏分类准确率: 0.6475



1829/未知 766秒 417毫秒/步 - 损失: 0.8710 - 稀疏分类准确率: 0.6476



1830/未知 767秒 417毫秒/步 - 损失: 0.8709 - 稀疏分类准确率: 0.6476



1831/未知 767秒 417毫秒/步 - 损失: 0.8708 - 稀疏分类准确率: 0.6476



1832/未知 767秒 417毫秒/步 - 损失: 0.8707 - 稀疏分类准确率: 0.6477



1833/未知 768秒 417毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6477



1834/未知 768秒 417毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6477



1835/未知 769秒 418毫秒/步 - 损失: 0.8705 - 稀疏分类准确率: 0.6478



1836/未知 769秒 418毫秒/步 - 损失: 0.8704 - 稀疏分类准确率: 0.6478



1837/未知 770秒 418毫秒/步 - 损失: 0.8703 - 稀疏分类准确率: 0.6478



1838/未知 770秒 418毫秒/步 - 损失: 0.8702 - 稀疏分类准确率: 0.6478



1839/未知 771秒 418毫秒/步 - 损失: 0.8701 - 稀疏分类准确率: 0.6479



1840/未知 771秒 418毫秒/步 - 损失: 0.8700 - 稀疏分类准确率: 0.6479



1841/未知 771秒 417毫秒/步 - 损失: 0.8699 - 稀疏分类准确率: 0.6479



1842/未知 772秒 417毫秒/步 - 损失: 0.8698 - 稀疏分类准确率: 0.6480



1843/未知 772秒 417毫秒/步 - 损失: 0.8697 - 稀疏分类准确率: 0.6480



1844/未知 772秒 417毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6480



1845/未知 773秒 417毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6481



1846/未知 773秒 417毫秒/步 - 损失: 0.8695 - 稀疏分类准确率: 0.6481



1847/未知 774秒 417毫秒/步 - 损失: 0.8694 - 稀疏分类准确率: 0.6481



1848/未知 774秒 417毫秒/步 - 损失: 0.8693 - 稀疏分类准确率: 0.6481



1849/未知 774秒 417毫秒/步 - 损失: 0.8692 - 稀疏分类准确率: 0.6482



1850/未知 775秒 417毫秒/步 - 损失: 0.8691 - 稀疏分类准确率: 0.6482



1851/未知 775秒 417毫秒/步 - 损失: 0.8690 - 稀疏分类准确率: 0.6482



1852/未知 776秒 417毫秒/步 - 损失: 0.8689 - 稀疏分类准确率: 0.6483



1853/未知 776秒 417毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6483



1854/未知 777秒 417毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6483



1855/未知 777秒 417毫秒/步 - 损失: 0.8687 - 稀疏分类准确率: 0.6484



1856/未知 778秒 417毫秒/步 - 损失: 0.8686 - 稀疏分类准确率: 0.6484



1857/未知 778秒 417毫秒/步 - 损失: 0.8685 - 稀疏分类准确率: 0.6484



1858/未知 778秒 417毫秒/步 - 损失: 0.8684 - 稀疏分类准确率: 0.6484



1859/未知 779秒 417毫秒/步 - 损失: 0.8683 - 稀疏分类准确率: 0.6485



1860/未知 779秒 417毫秒/步 - 损失: 0.8682 - 稀疏分类准确率: 0.6485



1861/未知 779秒 417毫秒/步 - 损失: 0.8681 - 稀疏分类准确率: 0.6485



1862/未知 780秒 417毫秒/步 - 损失: 0.8680 - 稀疏分类准确率: 0.6486



1863/未知 780秒 417毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6486



1864/未知 781秒 417毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6486



1865/未知 781秒 417毫秒/步 - 损失: 0.8678 - 稀疏分类准确率: 0.6486



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 781秒 417毫秒/步 - 损失: 0.8677 - 稀疏分类准确率: 0.6487

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 74.5%

Wide & Deep 模型达到了约 79% 的测试准确率。


实验 3: Deep & Cross 模型

在第三个实验中,我们创建了一个 Deep & Cross 模型。该模型的深度部分与前一个实验中创建的深度部分相同。交叉部分的关键思想是以有效的方式应用显式特征交叉,其中交叉特征的程度随层深度而增长。

def create_deep_and_cross_model():
    inputs = create_model_inputs()
    x0 = encode_inputs(inputs, use_embedding=True)

    cross = x0
    for _ in hidden_units:
        units = cross.shape[-1]
        x = layers.Dense(units)(cross)
        cross = x0 * x + cross
    cross = layers.BatchNormalization()(cross)

    deep = x0
    for units in hidden_units:
        deep = layers.Dense(units)(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(dropout_rate)(deep)

    merged = layers.concatenate([cross, deep])
    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


deep_and_cross_model = create_deep_and_cross_model()
keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR")

png

让我们运行它

run_experiment(deep_and_cross_model)
Start training the model...
  1/Unknown  1s 993ms/step - loss: 2.4838 - sparse_categorical_accuracy: 0.1057


  2/Unknown  1s 465ms/step - loss: 2.4552 - sparse_categorical_accuracy: 0.1113


  3/Unknown  2s 483ms/step - loss: 2.4419 - sparse_categorical_accuracy: 0.1124


  4/Unknown  2s 462ms/step - loss: 2.4248 - sparse_categorical_accuracy: 0.1140


  5/Unknown  3s 468ms/step - loss: 2.4071 - sparse_categorical_accuracy: 0.1150


  6/Unknown  3s 460ms/step - loss: 2.3918 - sparse_categorical_accuracy: 0.1176


  7/Unknown  4s 467ms/step - loss: 2.3763 - sparse_categorical_accuracy: 0.1209


  8/Unknown  4s 466ms/step - loss: 2.3613 - sparse_categorical_accuracy: 0.1243


  9/Unknown  5s 467ms/step - loss: 2.3470 - sparse_categorical_accuracy: 0.1277


 10/Unknown  5s 465ms/step - loss: 2.3333 - sparse_categorical_accuracy: 0.1311


 11/Unknown  6s 540ms/step - loss: 2.3202 - sparse_categorical_accuracy: 0.1346


 12/Unknown  7s 558ms/step - loss: 2.3077 - sparse_categorical_accuracy: 0.1380


 13/Unknown  8s 554ms/step - loss: 2.2955 - sparse_categorical_accuracy: 0.1414


 14/Unknown  8s 549ms/step - loss: 2.2834 - sparse_categorical_accuracy: 0.1451


 15/Unknown  9s 545ms/step - loss: 2.2716 - sparse_categorical_accuracy: 0.1489


 16/Unknown  9s 540ms/step - loss: 2.2602 - sparse_categorical_accuracy: 0.1526


 17/Unknown  10s 535ms/step - loss: 2.2494 - sparse_categorical_accuracy: 0.1562


 18/Unknown  10s 532ms/step - loss: 2.2387 - sparse_categorical_accuracy: 0.1598


 19/Unknown  11s 528ms/step - loss: 2.2280 - sparse_categorical_accuracy: 0.1634


 20/Unknown  11s 524ms/step - loss: 2.2174 - sparse_categorical_accuracy: 0.1672


 21/Unknown  11s 520ms/step - loss: 2.2071 - sparse_categorical_accuracy: 0.1707


 22/Unknown  12s 518ms/step - loss: 2.1971 - sparse_categorical_accuracy: 0.1742


 23/Unknown  12s 514ms/step - loss: 2.1872 - sparse_categorical_accuracy: 0.1778


 24/Unknown  13s 513ms/step - loss: 2.1775 - sparse_categorical_accuracy: 0.1813


 25/Unknown  13s 513ms/step - loss: 2.1680 - sparse_categorical_accuracy: 0.1848


 26/Unknown  14s 512ms/step - loss: 2.1587 - sparse_categorical_accuracy: 0.1882


 27/Unknown  14s 509ms/step - loss: 2.1495 - sparse_categorical_accuracy: 0.1917


 28/Unknown  15s 509ms/step - loss: 2.1405 - sparse_categorical_accuracy: 0.1951


 29/Unknown  15s 508ms/step - loss: 2.1316 - sparse_categorical_accuracy: 0.1986


 30/Unknown  16s 505ms/step - loss: 2.1228 - sparse_categorical_accuracy: 0.2020


 31/Unknown  16s 504ms/step - loss: 2.1142 - sparse_categorical_accuracy: 0.2054


 32/Unknown  17s 502ms/step - loss: 2.1056 - sparse_categorical_accuracy: 0.2089


 33/Unknown  17s 502ms/step - loss: 2.0971 - sparse_categorical_accuracy: 0.2123


 34/Unknown  18s 502ms/step - loss: 2.0888 - sparse_categorical_accuracy: 0.2156


 35/Unknown  18s 500ms/step - loss: 2.0807 - sparse_categorical_accuracy: 0.2190


 36/Unknown  18s 497ms/step - loss: 2.0726 - sparse_categorical_accuracy: 0.2223


 37/Unknown  19s 499ms/step - loss: 2.0646 - sparse_categorical_accuracy: 0.2257


 38/Unknown  19s 497ms/step - loss: 2.0567 - sparse_categorical_accuracy: 0.2290


 39/Unknown  20s 495ms/step - loss: 2.0490 - sparse_categorical_accuracy: 0.2322


 40/Unknown  20s 494ms/step - loss: 2.0414 - sparse_categorical_accuracy: 0.2354


 41/Unknown  21s 490ms/step - loss: 2.0339 - sparse_categorical_accuracy: 0.2386


 42/Unknown  21s 487ms/step - loss: 2.0265 - sparse_categorical_accuracy: 0.2417


 43/Unknown  21s 485ms/step - loss: 2.0192 - sparse_categorical_accuracy: 0.2448


 44/Unknown  22s 483ms/step - loss: 2.0120 - sparse_categorical_accuracy: 0.2479


 45/Unknown  22s 482ms/step - loss: 2.0049 - sparse_categorical_accuracy: 0.2509


 46/Unknown  23s 480ms/step - loss: 1.9980 - sparse_categorical_accuracy: 0.2539


 47/Unknown  23s 479ms/step - loss: 1.9911 - sparse_categorical_accuracy: 0.2569


 48/Unknown  23s 478ms/step - loss: 1.9843 - sparse_categorical_accuracy: 0.2598


 49/Unknown  24s 476ms/step - loss: 1.9777 - sparse_categorical_accuracy: 0.2627


 50/Unknown  24s 475ms/step - loss: 1.9711 - sparse_categorical_accuracy: 0.2655


 51/Unknown  25s 473ms/step - loss: 1.9646 - sparse_categorical_accuracy: 0.2683


 52/Unknown  25s 472ms/step - loss: 1.9581 - sparse_categorical_accuracy: 0.2711


 53/Unknown  26s 473ms/step - loss: 1.9517 - sparse_categorical_accuracy: 0.2739


 54/Unknown  26s 474ms/step - loss: 1.9454 - sparse_categorical_accuracy: 0.2766


 55/Unknown  27s 474ms/step - loss: 1.9392 - sparse_categorical_accuracy: 0.2793


 56/Unknown  27s 474ms/step - loss: 1.9331 - sparse_categorical_accuracy: 0.2819


 57/Unknown  28s 474ms/step - loss: 1.9271 - sparse_categorical_accuracy: 0.2845


 58/Unknown  28s 474ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.2871


 59/Unknown  28s 474ms/step - loss: 1.9152 - sparse_categorical_accuracy: 0.2897


 60/Unknown  29s 473ms/step - loss: 1.9093 - sparse_categorical_accuracy: 0.2922


 61/Unknown  29s 473ms/step - loss: 1.9035 - sparse_categorical_accuracy: 0.2947


 62/Unknown  30s 473ms/step - loss: 1.8977 - sparse_categorical_accuracy: 0.2971


 63/Unknown  30s 472ms/step - loss: 1.8921 - sparse_categorical_accuracy: 0.2996


 64/Unknown  31s 471ms/step - loss: 1.8864 - sparse_categorical_accuracy: 0.3020


 65/Unknown  31s 471ms/step - loss: 1.8809 - sparse_categorical_accuracy: 0.3043


 66/Unknown  32s 470ms/step - loss: 1.8754 - sparse_categorical_accuracy: 0.3067


 67/Unknown  32s 471ms/step - loss: 1.8699 - sparse_categorical_accuracy: 0.3090


 68/Unknown  32s 470ms/step - loss: 1.8645 - sparse_categorical_accuracy: 0.3112


 69/Unknown  33s 471ms/step - loss: 1.8592 - sparse_categorical_accuracy: 0.3135


 70/Unknown  33s 470ms/step - loss: 1.8540 - sparse_categorical_accuracy: 0.3157


 71/Unknown  34s 470ms/step - loss: 1.8487 - sparse_categorical_accuracy: 0.3179


 72/Unknown  34s 470ms/step - loss: 1.8436 - sparse_categorical_accuracy: 0.3201


 73/Unknown  35s 470ms/step - loss: 1.8385 - sparse_categorical_accuracy: 0.3222


 74/Unknown  35s 470ms/step - loss: 1.8335 - sparse_categorical_accuracy: 0.3243


 75/Unknown  36s 470ms/step - loss: 1.8285 - sparse_categorical_accuracy: 0.3264


 76/Unknown  36s 471ms/step - loss: 1.8236 - sparse_categorical_accuracy: 0.3285


 77/Unknown  37s 471ms/step - loss: 1.8187 - sparse_categorical_accuracy: 0.3306


 78/Unknown  37s 471ms/step - loss: 1.8138 - sparse_categorical_accuracy: 0.3326


 79/Unknown  38s 470ms/step - loss: 1.8090 - sparse_categorical_accuracy: 0.3346


 80/Unknown  38s 469ms/step - loss: 1.8042 - sparse_categorical_accuracy: 0.3366


 81/Unknown  38s 468ms/step - loss: 1.7995 - sparse_categorical_accuracy: 0.3385


 82/Unknown  39s 467ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3404


 83/Unknown  39s 466ms/step - loss: 1.7903 - sparse_categorical_accuracy: 0.3423


 84/Unknown  40s 466ms/step - loss: 1.7857 - sparse_categorical_accuracy: 0.3442


 85/Unknown  40s 465ms/step - loss: 1.7812 - sparse_categorical_accuracy: 0.3461


 86/Unknown  40s 464ms/step - loss: 1.7767 - sparse_categorical_accuracy: 0.3479


 87/Unknown  41s 463ms/step - loss: 1.7722 - sparse_categorical_accuracy: 0.3497


 88/Unknown  41s 463ms/step - loss: 1.7678 - sparse_categorical_accuracy: 0.3515


 89/Unknown  42s 462ms/step - loss: 1.7635 - sparse_categorical_accuracy: 0.3533


 90/Unknown  42s 462ms/step - loss: 1.7591 - sparse_categorical_accuracy: 0.3550


 91/Unknown  43s 462ms/step - loss: 1.7549 - sparse_categorical_accuracy: 0.3568


 92/Unknown  43s 462ms/step - loss: 1.7506 - sparse_categorical_accuracy: 0.3585


 93/Unknown  44s 462ms/step - loss: 1.7464 - sparse_categorical_accuracy: 0.3602


 94/Unknown  44s 462ms/step - loss: 1.7423 - sparse_categorical_accuracy: 0.3618


 95/Unknown  44s 463ms/step - loss: 1.7381 - sparse_categorical_accuracy: 0.3635


 96/Unknown  45s 463ms/step - loss: 1.7340 - sparse_categorical_accuracy: 0.3651


 97/Unknown  46s 464ms/step - loss: 1.7300 - sparse_categorical_accuracy: 0.3667


 98/Unknown  46s 465ms/step - loss: 1.7259 - sparse_categorical_accuracy: 0.3683


 99/Unknown  47s 465ms/step - loss: 1.7219 - sparse_categorical_accuracy: 0.3699


100/Unknown  47s 465ms/step - loss: 1.7180 - sparse_categorical_accuracy: 0.3715


101/Unknown  47s 465ms/step - loss: 1.7141 - sparse_categorical_accuracy: 0.3730


102/Unknown  48s 464ms/step - loss: 1.7102 - sparse_categorical_accuracy: 0.3745


103/Unknown  48s 464ms/step - loss: 1.7064 - sparse_categorical_accuracy: 0.3760


104/Unknown  49s 464ms/step - loss: 1.7025 - sparse_categorical_accuracy: 0.3775


105/Unknown  49s 465ms/step - loss: 1.6988 - sparse_categorical_accuracy: 0.3790


106/Unknown  50s 465ms/step - loss: 1.6950 - sparse_categorical_accuracy: 0.3804


107/Unknown  50s 465ms/step - loss: 1.6913 - sparse_categorical_accuracy: 0.3819


108/Unknown  51s 465ms/step - loss: 1.6876 - sparse_categorical_accuracy: 0.3833


109/Unknown  51s 465ms/step - loss: 1.6840 - sparse_categorical_accuracy: 0.3847


110/Unknown  52s 464ms/step - loss: 1.6804 - sparse_categorical_accuracy: 0.3861


111/Unknown  52s 463ms/step - loss: 1.6768 - sparse_categorical_accuracy: 0.3874


112/Unknown  52s 462ms/step - loss: 1.6732 - sparse_categorical_accuracy: 0.3888


113/Unknown  53s 461ms/step - loss: 1.6697 - sparse_categorical_accuracy: 0.3901


114/Unknown  53s 461ms/step - loss: 1.6662 - sparse_categorical_accuracy: 0.3914


115/Unknown  53s 460ms/step - loss: 1.6628 - sparse_categorical_accuracy: 0.3927


116/Unknown  54s 459ms/step - loss: 1.6593 - sparse_categorical_accuracy: 0.3940


117/Unknown  54s 459ms/step - loss: 1.6559 - sparse_categorical_accuracy: 0.3953


118/Unknown  55s 458ms/step - loss: 1.6526 - sparse_categorical_accuracy: 0.3966


119/Unknown  55s 458ms/step - loss: 1.6492 - sparse_categorical_accuracy: 0.3979


120/Unknown  55s 457ms/step - loss: 1.6459 - sparse_categorical_accuracy: 0.3991


121/Unknown  56s 458ms/step - loss: 1.6426 - sparse_categorical_accuracy: 0.4003


122/Unknown  56s 458ms/step - loss: 1.6393 - sparse_categorical_accuracy: 0.4016


123/Unknown  57s 458ms/step - loss: 1.6361 - sparse_categorical_accuracy: 0.4028


124/Unknown  57s 458ms/step - loss: 1.6329 - sparse_categorical_accuracy: 0.4040


125/Unknown  58s 459ms/step - loss: 1.6297 - sparse_categorical_accuracy: 0.4052


126/Unknown  58s 459ms/step - loss: 1.6265 - sparse_categorical_accuracy: 0.4063


127/Unknown  59s 459ms/step - loss: 1.6234 - sparse_categorical_accuracy: 0.4075


128/Unknown  59s 459ms/step - loss: 1.6203 - sparse_categorical_accuracy: 0.4087


129/Unknown  60s 459ms/step - loss: 1.6172 - sparse_categorical_accuracy: 0.4098


130/Unknown  60s 459ms/step - loss: 1.6142 - sparse_categorical_accuracy: 0.4109


131/Unknown  61s 459ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.4121


132/Unknown  61s 458ms/step - loss: 1.6081 - sparse_categorical_accuracy: 0.4132


133/Unknown  61s 457ms/step - loss: 1.6051 - sparse_categorical_accuracy: 0.4143


134/Unknown  62s 457ms/step - loss: 1.6021 - sparse_categorical_accuracy: 0.4154


135/Unknown  62s 457ms/step - loss: 1.5992 - sparse_categorical_accuracy: 0.4164


136/Unknown  63s 456ms/step - loss: 1.5963 - sparse_categorical_accuracy: 0.4175


137/Unknown  63s 456ms/step - loss: 1.5934 - sparse_categorical_accuracy: 0.4186


138/Unknown  63s 455ms/step - loss: 1.5905 - sparse_categorical_accuracy: 0.4196


139/Unknown  64s 455ms/step - loss: 1.5876 - sparse_categorical_accuracy: 0.4207


140/Unknown  64s 455ms/step - loss: 1.5848 - sparse_categorical_accuracy: 0.4217


141/Unknown  65s 455ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4227


142/Unknown  65s 455ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4237


143/Unknown  66s 455ms/step - loss: 1.5764 - sparse_categorical_accuracy: 0.4247


144/Unknown  66s 455ms/step - loss: 1.5737 - sparse_categorical_accuracy: 0.4257


145/Unknown  67s 455ms/step - loss: 1.5710 - sparse_categorical_accuracy: 0.4267


146/Unknown  67s 455ms/step - loss: 1.5683 - sparse_categorical_accuracy: 0.4277


147/Unknown  68s 456ms/step - loss: 1.5656 - sparse_categorical_accuracy: 0.4287


148/Unknown  68s 456ms/step - loss: 1.5629 - sparse_categorical_accuracy: 0.4297


149/Unknown  69s 456ms/step - loss: 1.5602 - sparse_categorical_accuracy: 0.4306


150/Unknown  69s 456ms/step - loss: 1.5576 - sparse_categorical_accuracy: 0.4316


151/Unknown  69s 457ms/step - loss: 1.5550 - sparse_categorical_accuracy: 0.4325


152/Unknown  70s 457ms/step - loss: 1.5524 - sparse_categorical_accuracy: 0.4335


153/Unknown  70s 457ms/step - loss: 1.5498 - sparse_categorical_accuracy: 0.4344


154/Unknown  71s 457ms/step - loss: 1.5472 - sparse_categorical_accuracy: 0.4353


155/Unknown  71s 456ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4362


156/Unknown  72s 456ms/step - loss: 1.5421 - sparse_categorical_accuracy: 0.4371


157/Unknown  72s 455ms/step - loss: 1.5396 - sparse_categorical_accuracy: 0.4381


158/Unknown  72s 455ms/step - loss: 1.5371 - sparse_categorical_accuracy: 0.4390


159/Unknown  73s 454ms/step - loss: 1.5346 - sparse_categorical_accuracy: 0.4398


160/Unknown  73s 454ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4407


161/Unknown  74s 454ms/step - loss: 1.5297 - sparse_categorical_accuracy: 0.4416


162/Unknown  74s 453ms/step - loss: 1.5273 - sparse_categorical_accuracy: 0.4425


163/Unknown  74s 453ms/step - loss: 1.5249 - sparse_categorical_accuracy: 0.4433


164/Unknown  75s 453ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4442


165/Unknown  75s 453ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4450


166/Unknown  76s 453ms/step - loss: 1.5178 - sparse_categorical_accuracy: 0.4459


167/Unknown  76s 452ms/step - loss: 1.5154 - sparse_categorical_accuracy: 0.4467


168/Unknown  77s 452ms/step - loss: 1.5131 - sparse_categorical_accuracy: 0.4475


169/Unknown  77s 452ms/step - loss: 1.5108 - sparse_categorical_accuracy: 0.4483


170/Unknown  77s 453ms/step - loss: 1.5085 - sparse_categorical_accuracy: 0.4491


171/Unknown  78s 453ms/step - loss: 1.5062 - sparse_categorical_accuracy: 0.4500


172/Unknown  78s 453ms/step - loss: 1.5039 - sparse_categorical_accuracy: 0.4508


173/Unknown  79s 453ms/step - loss: 1.5017 - sparse_categorical_accuracy: 0.4515


174/Unknown  79s 452ms/step - loss: 1.4994 - sparse_categorical_accuracy: 0.4523


175/Unknown  80s 452ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4531


176/Unknown  80s 452ms/step - loss: 1.4950 - sparse_categorical_accuracy: 0.4539


177/Unknown  80s 451ms/step - loss: 1.4928 - sparse_categorical_accuracy: 0.4547


178/Unknown  81s 451ms/step - loss: 1.4906 - sparse_categorical_accuracy: 0.4554


179/Unknown  81s 450ms/step - loss: 1.4884 - sparse_categorical_accuracy: 0.4562


180/Unknown  82s 450ms/step - loss: 1.4863 - sparse_categorical_accuracy: 0.4570


181/Unknown  82s 450ms/step - loss: 1.4841 - sparse_categorical_accuracy: 0.4577


182/Unknown  82s 449ms/step - loss: 1.4820 - sparse_categorical_accuracy: 0.4585


183/Unknown  83s 449ms/step - loss: 1.4799 - sparse_categorical_accuracy: 0.4592


184/Unknown  83s 449ms/step - loss: 1.4778 - sparse_categorical_accuracy: 0.4599


185/Unknown  84s 449ms/step - loss: 1.4757 - sparse_categorical_accuracy: 0.4607


186/Unknown  84s 448ms/step - loss: 1.4736 - sparse_categorical_accuracy: 0.4614


187/Unknown  84s 448ms/step - loss: 1.4715 - sparse_categorical_accuracy: 0.4621


188/Unknown  85s 448ms/step - loss: 1.4695 - sparse_categorical_accuracy: 0.4628


189/Unknown  85s 448ms/step - loss: 1.4674 - sparse_categorical_accuracy: 0.4635


190/Unknown  86s 448ms/step - loss: 1.4654 - sparse_categorical_accuracy: 0.4643


191/Unknown  86s 449ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4650


192/Unknown  87s 449ms/step - loss: 1.4614 - sparse_categorical_accuracy: 0.4656


193/Unknown  87s 449ms/step - loss: 1.4594 - sparse_categorical_accuracy: 0.4663


194/Unknown  88s 448ms/step - loss: 1.4574 - sparse_categorical_accuracy: 0.4670


195/Unknown  88s 448ms/step - loss: 1.4554 - sparse_categorical_accuracy: 0.4677


196/Unknown  88s 449ms/step - loss: 1.4535 - sparse_categorical_accuracy: 0.4684


197/Unknown  89s 449ms/step - loss: 1.4515 - sparse_categorical_accuracy: 0.4691


198/Unknown  89s 449ms/step - loss: 1.4496 - sparse_categorical_accuracy: 0.4697


199/Unknown  90s 449ms/step - loss: 1.4476 - sparse_categorical_accuracy: 0.4704


200/Unknown  90s 449ms/step - loss: 1.4457 - sparse_categorical_accuracy: 0.4711


201/Unknown  91s 449ms/step - loss: 1.4438 - sparse_categorical_accuracy: 0.4717


202/Unknown  91s 449ms/step - loss: 1.4419 - sparse_categorical_accuracy: 0.4724


203/Unknown  92s 449ms/step - loss: 1.4401 - sparse_categorical_accuracy: 0.4730


204/Unknown  92s 449ms/step - loss: 1.4382 - sparse_categorical_accuracy: 0.4737


205/Unknown  92s 448ms/step - loss: 1.4363 - sparse_categorical_accuracy: 0.4743


206/Unknown  93s 448ms/step - loss: 1.4345 - sparse_categorical_accuracy: 0.4749


207/Unknown  93s 447ms/step - loss: 1.4327 - sparse_categorical_accuracy: 0.4756


208/Unknown  94s 447ms/step - loss: 1.4308 - sparse_categorical_accuracy: 0.4762


209/Unknown  94s 447ms/step - loss: 1.4290 - sparse_categorical_accuracy: 0.4768


210/Unknown  94s 446ms/step - loss: 1.4272 - sparse_categorical_accuracy: 0.4774


211/Unknown  95s 446ms/step - loss: 1.4254 - sparse_categorical_accuracy: 0.4780


212/Unknown  95s 446ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4786


213/Unknown  95s 446ms/step - loss: 1.4219 - sparse_categorical_accuracy: 0.4793


214/Unknown  96s 445ms/step - loss: 1.4201 - sparse_categorical_accuracy: 0.4799


215/Unknown  96s 445ms/step - loss: 1.4184 - sparse_categorical_accuracy: 0.4805


216/Unknown  97s 445ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4811


217/Unknown  97s 445ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4816


218/Unknown  98s 445ms/step - loss: 1.4132 - sparse_categorical_accuracy: 0.4822


219/Unknown  98s 445ms/step - loss: 1.4115 - sparse_categorical_accuracy: 0.4828


220/Unknown  98s 445ms/step - loss: 1.4098 - sparse_categorical_accuracy: 0.4834


221/Unknown  99s 445ms/step - loss: 1.4081 - sparse_categorical_accuracy: 0.4840


222/Unknown  99s 445ms/step - loss: 1.4064 - sparse_categorical_accuracy: 0.4846


223/Unknown  100s 444ms/step - loss: 1.4047 - sparse_categorical_accuracy: 0.4851


224/Unknown  100s 444ms/step - loss: 1.4030 - sparse_categorical_accuracy: 0.4857


225/Unknown  100s 444ms/step - loss: 1.4014 - sparse_categorical_accuracy: 0.4863


226/Unknown  101s 443ms/step - loss: 1.3997 - sparse_categorical_accuracy: 0.4868


227/Unknown  101s 442ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4874


228/Unknown  101s 442ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4879


229/Unknown  102s 441ms/step - loss: 1.3948 - sparse_categorical_accuracy: 0.4885


230/Unknown  102s 441ms/step - loss: 1.3932 - sparse_categorical_accuracy: 0.4890


231/Unknown  102s 441ms/step - loss: 1.3916 - sparse_categorical_accuracy: 0.4896


232/Unknown  103s 440ms/step - loss: 1.3900 - sparse_categorical_accuracy: 0.4901


233/Unknown  103s 440ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4907


234/Unknown  103s 440ms/step - loss: 1.3868 - sparse_categorical_accuracy: 0.4912


235/Unknown  104s 439ms/step - loss: 1.3853 - sparse_categorical_accuracy: 0.4917


236/Unknown  104s 439ms/step - loss: 1.3837 - sparse_categorical_accuracy: 0.4923


237/Unknown  105s 439ms/step - loss: 1.3821 - sparse_categorical_accuracy: 0.4928


238/Unknown  105s 439ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4933


239/Unknown  105s 439ms/step - loss: 1.3791 - sparse_categorical_accuracy: 0.4939


240/Unknown  106s 439ms/step - loss: 1.3775 - sparse_categorical_accuracy: 0.4944


241/Unknown  106s 439ms/step - loss: 1.3760 - sparse_categorical_accuracy: 0.4949


242/Unknown  107s 439ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4954


243/Unknown  107s 440ms/step - loss: 1.3730 - sparse_categorical_accuracy: 0.4959


244/Unknown  108s 440ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4964


245/Unknown  108s 440ms/step - loss: 1.3700 - sparse_categorical_accuracy: 0.4969


246/Unknown  109s 440ms/step - loss: 1.3685 - sparse_categorical_accuracy: 0.4974


247/Unknown  109s 440ms/step - loss: 1.3670 - sparse_categorical_accuracy: 0.4979


248/Unknown  110s 440ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4984


249/Unknown  110s 440ms/step - loss: 1.3641 - sparse_categorical_accuracy: 0.4989


250/Unknown  111s 440ms/step - loss: 1.3626 - sparse_categorical_accuracy: 0.4994


251/Unknown  111s 440ms/step - loss: 1.3612 - sparse_categorical_accuracy: 0.4999


252/Unknown  111s 440ms/step - loss: 1.3597 - sparse_categorical_accuracy: 0.5004


253/Unknown  112s 440ms/step - loss: 1.3583 - sparse_categorical_accuracy: 0.5009


254/Unknown  112s 440ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.5014


255/Unknown  113s 440ms/step - loss: 1.3554 - sparse_categorical_accuracy: 0.5018


256/Unknown  113s 439ms/step - loss: 1.3540 - sparse_categorical_accuracy: 0.5023


257/Unknown  113s 439ms/step - loss: 1.3526 - sparse_categorical_accuracy: 0.5028


258/Unknown  114s 439ms/step - loss: 1.3512 - sparse_categorical_accuracy: 0.5032


259/Unknown  114s 439ms/step - loss: 1.3498 - sparse_categorical_accuracy: 0.5037


260/Unknown  115s 438ms/step - loss: 1.3484 - sparse_categorical_accuracy: 0.5042


261/Unknown  115s 438ms/step - loss: 1.3471 - sparse_categorical_accuracy: 0.5046


262/Unknown  115s 438ms/step - loss: 1.3457 - sparse_categorical_accuracy: 0.5051


263/Unknown  116s 438ms/step - loss: 1.3443 - sparse_categorical_accuracy: 0.5055


264/Unknown  116s 438ms/step - loss: 1.3430 - sparse_categorical_accuracy: 0.5060


265/Unknown  117s 438ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.5065


266/Unknown  117s 437ms/step - loss: 1.3403 - sparse_categorical_accuracy: 0.5069


267/Unknown  117s 437ms/step - loss: 1.3389 - sparse_categorical_accuracy: 0.5074


268/Unknown  118s 437ms/step - loss: 1.3376 - sparse_categorical_accuracy: 0.5078


269/Unknown  118s 438ms/step - loss: 1.3363 - sparse_categorical_accuracy: 0.5082


270/Unknown  119s 438ms/step - loss: 1.3349 - sparse_categorical_accuracy: 0.5087


271/Unknown  119s 438ms/step - loss: 1.3336 - sparse_categorical_accuracy: 0.5091


272/Unknown  120s 438ms/step - loss: 1.3323 - sparse_categorical_accuracy: 0.5096


273/Unknown  120s 438ms/step - loss: 1.3310 - sparse_categorical_accuracy: 0.5100


274/Unknown  121s 439ms/step - loss: 1.3297 - sparse_categorical_accuracy: 0.5104


275/Unknown  121s 439ms/step - loss: 1.3284 - sparse_categorical_accuracy: 0.5108


276/Unknown  122s 439ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.5113


277/Unknown  122s 439ms/step - loss: 1.3259 - sparse_categorical_accuracy: 0.5117


278/Unknown  123s 439ms/step - loss: 1.3246 - sparse_categorical_accuracy: 0.5121


279/Unknown  123s 439ms/step - loss: 1.3233 - sparse_categorical_accuracy: 0.5125


280/Unknown  123s 439ms/step - loss: 1.3221 - sparse_categorical_accuracy: 0.5130


281/Unknown  124s 439ms/step - loss: 1.3208 - sparse_categorical_accuracy: 0.5134


282/Unknown  124s 439ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5138


283/Unknown  125s 439ms/step - loss: 1.3183 - sparse_categorical_accuracy: 0.5142


284/Unknown  125s 439ms/step - loss: 1.3171 - sparse_categorical_accuracy: 0.5146


285/Unknown  126s 439ms/step - loss: 1.3158 - sparse_categorical_accuracy: 0.5150


286/Unknown  126s 438ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5154


287/Unknown  126s 438ms/step - loss: 1.3134 - sparse_categorical_accuracy: 0.5158


288/Unknown  127s 438ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5162


289/Unknown  127s 438ms/step - loss: 1.3110 - sparse_categorical_accuracy: 0.5166


290/Unknown  128s 438ms/step - loss: 1.3097 - sparse_categorical_accuracy: 0.5170


291/Unknown  128s 438ms/step - loss: 1.3085 - sparse_categorical_accuracy: 0.5174


292/Unknown  128s 438ms/step - loss: 1.3073 - sparse_categorical_accuracy: 0.5178


293/Unknown  129s 437ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5182


294/Unknown  129s 437ms/step - loss: 1.3050 - sparse_categorical_accuracy: 0.5186


295/Unknown  130s 437ms/step - loss: 1.3038 - sparse_categorical_accuracy: 0.5190


296/Unknown  130s 438ms/step - loss: 1.3026 - sparse_categorical_accuracy: 0.5194


297/Unknown  131s 438ms/step - loss: 1.3014 - sparse_categorical_accuracy: 0.5198


298/Unknown  131s 438ms/step - loss: 1.3003 - sparse_categorical_accuracy: 0.5202


299/Unknown  131s 438ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5205


300/Unknown  132s 438ms/step - loss: 1.2980 - sparse_categorical_accuracy: 0.5209


301/Unknown  132s 438ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5213


302/Unknown  133s 438ms/step - loss: 1.2957 - sparse_categorical_accuracy: 0.5217


303/Unknown  133s 438ms/step - loss: 1.2945 - sparse_categorical_accuracy: 0.5221


304/Unknown  134s 438ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5224


305/Unknown  134s 438ms/step - loss: 1.2923 - sparse_categorical_accuracy: 0.5228


306/Unknown  135s 439ms/step - loss: 1.2911 - sparse_categorical_accuracy: 0.5232


307/Unknown  135s 439ms/step - loss: 1.2900 - sparse_categorical_accuracy: 0.5235


308/Unknown  136s 439ms/step - loss: 1.2889 - sparse_categorical_accuracy: 0.5239


309/Unknown  136s 439ms/step - loss: 1.2878 - sparse_categorical_accuracy: 0.5243


310/Unknown  137s 439ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5246


311/Unknown  137s 439ms/step - loss: 1.2856 - sparse_categorical_accuracy: 0.5250


312/Unknown  137s 439ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5254


313/Unknown  138s 439ms/step - loss: 1.2834 - sparse_categorical_accuracy: 0.5257


314/Unknown  138s 439ms/step - loss: 1.2823 - sparse_categorical_accuracy: 0.5261


315/Unknown  139s 439ms/step - loss: 1.2812 - sparse_categorical_accuracy: 0.5264


316/Unknown  139s 439ms/step - loss: 1.2801 - sparse_categorical_accuracy: 0.5268


317/Unknown  140s 439ms/step - loss: 1.2790 - sparse_categorical_accuracy: 0.5271


318/Unknown  140s 439ms/step - loss: 1.2780 - sparse_categorical_accuracy: 0.5275


319/Unknown  141s 439ms/step - loss: 1.2769 - sparse_categorical_accuracy: 0.5278


320/Unknown  141s 439ms/step - loss: 1.2758 - sparse_categorical_accuracy: 0.5282


321/Unknown  142s 439ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5285


322/Unknown  142s 439ms/step - loss: 1.2737 - sparse_categorical_accuracy: 0.5289


323/Unknown  143s 439ms/step - loss: 1.2727 - sparse_categorical_accuracy: 0.5292


324/Unknown  143s 440ms/step - loss: 1.2716 - sparse_categorical_accuracy: 0.5296


325/Unknown  143s 440ms/step - loss: 1.2706 - sparse_categorical_accuracy: 0.5299


326/Unknown  144s 439ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5303


327/Unknown  144s 439ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5306


328/Unknown  145s 439ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5309


329/Unknown  145s 439ms/step - loss: 1.2664 - sparse_categorical_accuracy: 0.5313


330/Unknown  145s 439ms/step - loss: 1.2654 - sparse_categorical_accuracy: 0.5316


331/Unknown  146s 438ms/step - loss: 1.2644 - sparse_categorical_accuracy: 0.5319


332/Unknown  146s 438ms/step - loss: 1.2634 - sparse_categorical_accuracy: 0.5323


333/Unknown  147s 438ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5326


334/Unknown  147s 438ms/step - loss: 1.2614 - sparse_categorical_accuracy: 0.5329


335/Unknown  147s 438ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5333


336/Unknown  148s 438ms/step - loss: 1.2594 - sparse_categorical_accuracy: 0.5336


337/Unknown  148s 438ms/step - loss: 1.2584 - sparse_categorical_accuracy: 0.5339


338/Unknown  148s 438ms/step - loss: 1.2574 - sparse_categorical_accuracy: 0.5342


339/Unknown  149s 438ms/step - loss: 1.2564 - sparse_categorical_accuracy: 0.5345


340/Unknown  149s 438ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5349


341/Unknown  150s 438ms/step - loss: 1.2545 - sparse_categorical_accuracy: 0.5352


342/Unknown  150s 438ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5355


343/Unknown  151s 438ms/step - loss: 1.2525 - sparse_categorical_accuracy: 0.5358


344/Unknown  151s 438ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5361


345/Unknown  152s 438ms/step - loss: 1.2506 - sparse_categorical_accuracy: 0.5364


346/Unknown  152s 439ms/step - loss: 1.2496 - sparse_categorical_accuracy: 0.5368


347/Unknown  153s 439ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5371


348/Unknown  153s 439ms/step - loss: 1.2477 - sparse_categorical_accuracy: 0.5374


349/Unknown  154s 439ms/step - loss: 1.2468 - sparse_categorical_accuracy: 0.5377


350/Unknown  154s 439ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5380


351/Unknown  154s 438ms/step - loss: 1.2449 - sparse_categorical_accuracy: 0.5383


352/Unknown  155s 439ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5386


353/Unknown  155s 439ms/step - loss: 1.2430 - sparse_categorical_accuracy: 0.5389


354/Unknown  156s 439ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5392


355/Unknown  156s 439ms/step - loss: 1.2412 - sparse_categorical_accuracy: 0.5395


356/Unknown  157s 439ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5398


357/Unknown  157s 439ms/step - loss: 1.2393 - sparse_categorical_accuracy: 0.5401


358/Unknown  158s 439ms/step - loss: 1.2384 - sparse_categorical_accuracy: 0.5404


359/Unknown  158s 439ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5407


360/Unknown  159s 439ms/step - loss: 1.2366 - sparse_categorical_accuracy: 0.5410


361/Unknown  159s 439ms/step - loss: 1.2357 - sparse_categorical_accuracy: 0.5413


362/Unknown  160s 440ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5416


363/Unknown  160s 440ms/step - loss: 1.2339 - sparse_categorical_accuracy: 0.5419


364/Unknown  161s 440ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5421


365/Unknown  161s 440ms/step - loss: 1.2321 - sparse_categorical_accuracy: 0.5424


366/Unknown  162s 440ms/step - loss: 1.2312 - sparse_categorical_accuracy: 0.5427


367/Unknown  162s 441ms/step - loss: 1.2303 - sparse_categorical_accuracy: 0.5430


368/Unknown  163s 441ms/step - loss: 1.2294 - sparse_categorical_accuracy: 0.5433


369/Unknown  163s 441ms/step - loss: 1.2285 - sparse_categorical_accuracy: 0.5436


370/Unknown  164s 441ms/step - loss: 1.2277 - sparse_categorical_accuracy: 0.5439


371/Unknown  164s 441ms/step - loss: 1.2268 - sparse_categorical_accuracy: 0.5441


372/Unknown  165s 441ms/step - loss: 1.2259 - sparse_categorical_accuracy: 0.5444


373/Unknown  165s 441ms/step - loss: 1.2251 - sparse_categorical_accuracy: 0.5447


374/Unknown  165s 441ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5450


375/Unknown  166s 441ms/step - loss: 1.2233 - sparse_categorical_accuracy: 0.5453


376/Unknown  166s 441ms/step - loss: 1.2225 - sparse_categorical_accuracy: 0.5455


377/Unknown  167s 440ms/step - loss: 1.2216 - sparse_categorical_accuracy: 0.5458


378/Unknown  167s 440ms/step - loss: 1.2208 - sparse_categorical_accuracy: 0.5461


379/Unknown  167s 440ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5464


380/Unknown  168s 440ms/step - loss: 1.2191 - sparse_categorical_accuracy: 0.5466


381/Unknown  168s 440ms/step - loss: 1.2182 - sparse_categorical_accuracy: 0.5469


382/Unknown  169s 440ms/step - loss: 1.2174 - sparse_categorical_accuracy: 0.5472


383/Unknown  169s 440ms/step - loss: 1.2165 - sparse_categorical_accuracy: 0.5475


384/Unknown  169s 440ms/step - loss: 1.2157 - sparse_categorical_accuracy: 0.5477


385/Unknown  170s 439ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5480


386/Unknown  170s 440ms/step - loss: 1.2140 - sparse_categorical_accuracy: 0.5483


387/Unknown  171s 440ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5485


388/Unknown  171s 440ms/step - loss: 1.2124 - sparse_categorical_accuracy: 0.5488


389/Unknown  172s 440ms/step - loss: 1.2116 - sparse_categorical_accuracy: 0.5491


390/Unknown  172s 440ms/step - loss: 1.2108 - sparse_categorical_accuracy: 0.5493


391/Unknown  173s 440ms/step - loss: 1.2099 - sparse_categorical_accuracy: 0.5496


392/Unknown  173s 440ms/step - loss: 1.2091 - sparse_categorical_accuracy: 0.5499


393/Unknown  174s 440ms/step - loss: 1.2083 - sparse_categorical_accuracy: 0.5501


394/Unknown  174s 440ms/step - loss: 1.2075 - sparse_categorical_accuracy: 0.5504


395/Unknown  175s 440ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5506


396/Unknown  175s 441ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5509


397/Unknown  175s 441ms/step - loss: 1.2051 - sparse_categorical_accuracy: 0.5512


398/Unknown  176s 440ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5514


399/Unknown  176s 440ms/step - loss: 1.2035 - sparse_categorical_accuracy: 0.5517


400/Unknown  177s 440ms/step - loss: 1.2027 - sparse_categorical_accuracy: 0.5519


401/Unknown  177s 441ms/step - loss: 1.2019 - sparse_categorical_accuracy: 0.5522


402/Unknown  178s 441ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5524


403/Unknown  178s 441ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5527


404/Unknown  179s 441ms/step - loss: 1.1996 - sparse_categorical_accuracy: 0.5529


405/Unknown  179s 441ms/step - loss: 1.1988 - sparse_categorical_accuracy: 0.5532


406/Unknown  180s 441ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5534


407/Unknown  180s 441ms/step - loss: 1.1973 - sparse_categorical_accuracy: 0.5537


408/Unknown  181s 441ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5539


409/Unknown  181s 442ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5542


410/Unknown  182s 442ms/step - loss: 1.1950 - sparse_categorical_accuracy: 0.5544


411/Unknown  182s 442ms/step - loss: 1.1942 - sparse_categorical_accuracy: 0.5547


412/Unknown  183s 442ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5549


413/Unknown  183s 442ms/step - loss: 1.1927 - sparse_categorical_accuracy: 0.5552


414/Unknown  184s 442ms/step - loss: 1.1919 - sparse_categorical_accuracy: 0.5554


415/Unknown  184s 442ms/step - loss: 1.1912 - sparse_categorical_accuracy: 0.5556


416/Unknown  185s 442ms/step - loss: 1.1904 - sparse_categorical_accuracy: 0.5559


417/Unknown  185s 443ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5561


418/Unknown  186s 443ms/step - loss: 1.1890 - sparse_categorical_accuracy: 0.5564


419/Unknown  186s 443ms/step - loss: 1.1882 - sparse_categorical_accuracy: 0.5566


420/Unknown  187s 443ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5568


421/Unknown  187s 443ms/step - loss: 1.1867 - sparse_categorical_accuracy: 0.5571


422/Unknown  187s 443ms/step - loss: 1.1860 - sparse_categorical_accuracy: 0.5573


423/Unknown  188s 443ms/step - loss: 1.1853 - sparse_categorical_accuracy: 0.5575


424/Unknown  188s 443ms/step - loss: 1.1846 - sparse_categorical_accuracy: 0.5578


425/Unknown  189s 443ms/step - loss: 1.1838 - sparse_categorical_accuracy: 0.5580


426/Unknown  190s 444ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5582


427/Unknown  190s 444ms/step - loss: 1.1824 - sparse_categorical_accuracy: 0.5585


428/Unknown  190s 444ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5587


429/Unknown  191s 444ms/step - loss: 1.1810 - sparse_categorical_accuracy: 0.5589


430/Unknown  191s 444ms/step - loss: 1.1802 - sparse_categorical_accuracy: 0.5592


431/Unknown  192s 444ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5594


432/Unknown  192s 444ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5596


433/Unknown  193s 444ms/step - loss: 1.1781 - sparse_categorical_accuracy: 0.5599


434/Unknown  193s 444ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5601


435/Unknown  195s 446ms/step - loss: 1.1767 - sparse_categorical_accuracy: 0.5603


436/Unknown  195s 447ms/step - loss: 1.1760 - sparse_categorical_accuracy: 0.5605


437/Unknown  196s 447ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5608


438/Unknown  196s 447ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5610


439/Unknown  197s 447ms/step - loss: 1.1739 - sparse_categorical_accuracy: 0.5612


440/Unknown  197s 447ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5614


441/Unknown  198s 447ms/step - loss: 1.1726 - sparse_categorical_accuracy: 0.5616


442/Unknown  198s 447ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5619


443/Unknown  199s 447ms/step - loss: 1.1712 - sparse_categorical_accuracy: 0.5621


444/Unknown  199s 447ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5623


445/Unknown  199s 447ms/step - loss: 1.1698 - sparse_categorical_accuracy: 0.5625


446/Unknown  200s 447ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5627


447/Unknown  200s 447ms/step - loss: 1.1685 - sparse_categorical_accuracy: 0.5629


448/Unknown  201s 447ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5632


449/Unknown  201s 447ms/step - loss: 1.1671 - sparse_categorical_accuracy: 0.5634


450/Unknown  202s 447ms/step - loss: 1.1665 - sparse_categorical_accuracy: 0.5636


451/Unknown  202s 447ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5638


452/Unknown  203s 448ms/step - loss: 1.1651 - sparse_categorical_accuracy: 0.5640


453/Unknown  203s 448ms/step - loss: 1.1645 - sparse_categorical_accuracy: 0.5642


454/Unknown  204s 448ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5644


455/Unknown  204s 448ms/step - loss: 1.1631 - sparse_categorical_accuracy: 0.5647


456/Unknown  205s 448ms/step - loss: 1.1625 - sparse_categorical_accuracy: 0.5649


457/Unknown  205s 448ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5651


458/Unknown  206s 448ms/step - loss: 1.1612 - sparse_categorical_accuracy: 0.5653


459/Unknown  206s 448ms/step - loss: 1.1605 - sparse_categorical_accuracy: 0.5655


460/Unknown  207s 448ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5657


461/Unknown  207s 448ms/step - loss: 1.1592 - sparse_categorical_accuracy: 0.5659


462/Unknown  208s 448ms/step - loss: 1.1586 - sparse_categorical_accuracy: 0.5661


463/Unknown  208s 448ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5663


464/Unknown  209s 448ms/step - loss: 1.1573 - sparse_categorical_accuracy: 0.5665


465/Unknown  209s 448ms/step - loss: 1.1566 - sparse_categorical_accuracy: 0.5667


466/Unknown  210s 448ms/step - loss: 1.1560 - sparse_categorical_accuracy: 0.5669


467/Unknown  210s 449ms/step - loss: 1.1554 - sparse_categorical_accuracy: 0.5671


468/Unknown  211s 449ms/step - loss: 1.1547 - sparse_categorical_accuracy: 0.5674


469/Unknown  211s 449ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5676


470/Unknown  212s 449ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5678


471/Unknown  212s 449ms/step - loss: 1.1528 - sparse_categorical_accuracy: 0.5680


472/Unknown  212s 449ms/step - loss: 1.1522 - sparse_categorical_accuracy: 0.5682


473/Unknown  213s 449ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5684


474/Unknown  213s 449ms/step - loss: 1.1510 - sparse_categorical_accuracy: 0.5686


475/Unknown  214s 449ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5688


476/Unknown  214s 449ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5690


477/Unknown  215s 449ms/step - loss: 1.1491 - sparse_categorical_accuracy: 0.5692


478/Unknown  215s 449ms/step - loss: 1.1485 - sparse_categorical_accuracy: 0.5694


479/Unknown  216s 449ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5695


480/Unknown  216s 450ms/step - loss: 1.1473 - sparse_categorical_accuracy: 0.5697


481/Unknown  217s 450ms/step - loss: 1.1466 - sparse_categorical_accuracy: 0.5699


482/Unknown  217s 450ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5701


483/Unknown  218s 450ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5703


484/Unknown  218s 450ms/step - loss: 1.1448 - sparse_categorical_accuracy: 0.5705


485/Unknown  219s 450ms/step - loss: 1.1442 - sparse_categorical_accuracy: 0.5707


486/Unknown  219s 450ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5709


487/Unknown  220s 450ms/step - loss: 1.1430 - sparse_categorical_accuracy: 0.5711


488/Unknown  220s 450ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5713


489/Unknown  221s 450ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5715


490/Unknown  221s 450ms/step - loss: 1.1412 - sparse_categorical_accuracy: 0.5717


491/Unknown  222s 450ms/step - loss: 1.1406 - sparse_categorical_accuracy: 0.5719


492/Unknown  222s 450ms/step - loss: 1.1400 - sparse_categorical_accuracy: 0.5720


493/Unknown  223s 450ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5722


494/Unknown  223s 451ms/step - loss: 1.1389 - sparse_categorical_accuracy: 0.5724


495/Unknown  224s 451ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5726


496/Unknown  224s 451ms/step - loss: 1.1377 - sparse_categorical_accuracy: 0.5728


497/Unknown  225s 451ms/step - loss: 1.1371 - sparse_categorical_accuracy: 0.5730


498/Unknown  225s 451ms/step - loss: 1.1365 - sparse_categorical_accuracy: 0.5732


499/Unknown  226s 451ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5734


500/Unknown  226s 451ms/step - loss: 1.1354 - sparse_categorical_accuracy: 0.5735


501/Unknown  227s 451ms/step - loss: 1.1348 - sparse_categorical_accuracy: 0.5737


502/Unknown  227s 451ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5739


503/Unknown  228s 451ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5741


504/Unknown  228s 451ms/step - loss: 1.1330 - sparse_categorical_accuracy: 0.5743


505/Unknown  229s 452ms/step - loss: 1.1325 - sparse_categorical_accuracy: 0.5745


506/Unknown  229s 452ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5746


507/Unknown  230s 452ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5748


508/Unknown  230s 452ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5750


509/Unknown  230s 451ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5752


510/Unknown  231s 452ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5754


511/Unknown  231s 452ms/step - loss: 1.1291 - sparse_categorical_accuracy: 0.5755


512/Unknown  232s 452ms/step - loss: 1.1285 - sparse_categorical_accuracy: 0.5757


513/Unknown  232s 452ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5759


514/Unknown  233s 452ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5761


515/Unknown  233s 452ms/step - loss: 1.1268 - sparse_categorical_accuracy: 0.5762


516/Unknown  234s 452ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5764


517/Unknown  234s 452ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5766


518/Unknown  235s 452ms/step - loss: 1.1252 - sparse_categorical_accuracy: 0.5768


519/Unknown  235s 452ms/step - loss: 1.1246 - sparse_categorical_accuracy: 0.5769


520/Unknown  236s 452ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5771


521/Unknown  236s 452ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5773


522/Unknown  237s 452ms/step - loss: 1.1230 - sparse_categorical_accuracy: 0.5775


523/Unknown  237s 452ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5776


524/Unknown  238s 452ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5778


525/Unknown  238s 452ms/step - loss: 1.1214 - sparse_categorical_accuracy: 0.5780


526/Unknown  239s 453ms/step - loss: 1.1208 - sparse_categorical_accuracy: 0.5782


527/Unknown  239s 453ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5783


528/Unknown  240s 453ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5785


529/Unknown  240s 453ms/step - loss: 1.1192 - sparse_categorical_accuracy: 0.5787


530/Unknown  241s 453ms/step - loss: 1.1187 - sparse_categorical_accuracy: 0.5788


531/Unknown  241s 453ms/step - loss: 1.1182 - sparse_categorical_accuracy: 0.5790


532/Unknown  242s 453ms/step - loss: 1.1176 - sparse_categorical_accuracy: 0.5792


533/Unknown  242s 453ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5793


534/Unknown  243s 453ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5795


535/Unknown  243s 453ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5797


536/Unknown  244s 453ms/step - loss: 1.1155 - sparse_categorical_accuracy: 0.5798


537/Unknown  244s 453ms/step - loss: 1.1150 - sparse_categorical_accuracy: 0.5800


538/Unknown  245s 454ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5802


539/Unknown  245s 454ms/step - loss: 1.1140 - sparse_categorical_accuracy: 0.5803


540/Unknown  245s 454ms/step - loss: 1.1135 - sparse_categorical_accuracy: 0.5805


541/Unknown  246s 454ms/step - loss: 1.1129 - sparse_categorical_accuracy: 0.5807


542/Unknown  246s 454ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5808


543/Unknown  247s 454ms/step - loss: 1.1119 - sparse_categorical_accuracy: 0.5810


544/Unknown  247s 454ms/step - loss: 1.1114 - sparse_categorical_accuracy: 0.5811


545/Unknown  248s 454ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5813


546/Unknown  248s 454ms/step - loss: 1.1104 - sparse_categorical_accuracy: 0.5815


547/Unknown  249s 454ms/step - loss: 1.1099 - sparse_categorical_accuracy: 0.5816


548/Unknown  249s 454ms/step - loss: 1.1093 - sparse_categorical_accuracy: 0.5818


549/Unknown  250s 454ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5820


550/Unknown  250s 454ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5821


551/Unknown  251s 454ms/step - loss: 1.1078 - sparse_categorical_accuracy: 0.5823


552/Unknown  251s 454ms/step - loss: 1.1073 - sparse_categorical_accuracy: 0.5824


553/Unknown  252s 454ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5826


554/Unknown  252s 454ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5828


555/Unknown  253s 454ms/step - loss: 1.1058 - sparse_categorical_accuracy: 0.5829


556/Unknown  253s 454ms/step - loss: 1.1053 - sparse_categorical_accuracy: 0.5831


557/Unknown  254s 454ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5832


558/Unknown  254s 455ms/step - loss: 1.1043 - sparse_categorical_accuracy: 0.5834


559/Unknown  255s 455ms/step - loss: 1.1038 - sparse_categorical_accuracy: 0.5835


560/Unknown  255s 455ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5837


561/Unknown  256s 455ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5839


562/Unknown  256s 455ms/step - loss: 1.1024 - sparse_categorical_accuracy: 0.5840


563/Unknown  257s 455ms/step - loss: 1.1019 - sparse_categorical_accuracy: 0.5842


564/Unknown  257s 455ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5843


565/Unknown  257s 455ms/step - loss: 1.1009 - sparse_categorical_accuracy: 0.5845


566/Unknown  258s 455ms/step - loss: 1.1004 - sparse_categorical_accuracy: 0.5846


567/Unknown  258s 455ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5848


568/Unknown  259s 455ms/step - loss: 1.0994 - sparse_categorical_accuracy: 0.5849


569/Unknown  259s 455ms/step - loss: 1.0990 - sparse_categorical_accuracy: 0.5851


570/Unknown  260s 455ms/step - loss: 1.0985 - sparse_categorical_accuracy: 0.5852


571/Unknown  260s 455ms/step - loss: 1.0980 - sparse_categorical_accuracy: 0.5854


572/Unknown  261s 455ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5855


573/Unknown  261s 455ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5857


574/Unknown  262s 455ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5859


575/Unknown  262s 455ms/step - loss: 1.0961 - sparse_categorical_accuracy: 0.5860


576/Unknown  263s 455ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5862


577/Unknown  263s 455ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5863


578/Unknown  264s 455ms/step - loss: 1.0947 - sparse_categorical_accuracy: 0.5865


579/Unknown  264s 455ms/step - loss: 1.0942 - sparse_categorical_accuracy: 0.5866


580/Unknown  265s 456ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5868


581/Unknown  265s 456ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5869


582/Unknown  266s 456ms/step - loss: 1.0928 - sparse_categorical_accuracy: 0.5870


583/Unknown  266s 456ms/step - loss: 1.0923 - sparse_categorical_accuracy: 0.5872


584/Unknown  267s 456ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5873


585/Unknown  267s 456ms/step - loss: 1.0914 - sparse_categorical_accuracy: 0.5875


586/Unknown  268s 456ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5876


587/Unknown  268s 456ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5878


588/Unknown  269s 456ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5879


589/Unknown  269s 456ms/step - loss: 1.0896 - sparse_categorical_accuracy: 0.5881


590/Unknown  270s 456ms/step - loss: 1.0891 - sparse_categorical_accuracy: 0.5882


591/Unknown  270s 456ms/step - loss: 1.0886 - sparse_categorical_accuracy: 0.5884


592/Unknown  271s 456ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5885


593/Unknown  271s 456ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5887


594/Unknown  271s 456ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5888


595/Unknown  272s 456ms/step - loss: 1.0868 - sparse_categorical_accuracy: 0.5889


596/Unknown  272s 456ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5891


597/Unknown  273s 456ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5892


598/Unknown  273s 456ms/step - loss: 1.0855 - sparse_categorical_accuracy: 0.5894


599/Unknown  274s 456ms/step - loss: 1.0850 - sparse_categorical_accuracy: 0.5895


600/Unknown  274s 456ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5897


601/Unknown  275s 456ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5898


602/Unknown  275s 456ms/step - loss: 1.0837 - sparse_categorical_accuracy: 0.5899


603/Unknown  276s 456ms/step - loss: 1.0832 - sparse_categorical_accuracy: 0.5901


604/Unknown  276s 456ms/step - loss: 1.0828 - sparse_categorical_accuracy: 0.5902


605/Unknown  277s 456ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5904


606/Unknown  277s 457ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5905


607/Unknown  278s 457ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5906


608/Unknown  278s 457ms/step - loss: 1.0810 - sparse_categorical_accuracy: 0.5908


609/Unknown  279s 457ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5909


610/Unknown  279s 457ms/step - loss: 1.0802 - sparse_categorical_accuracy: 0.5911


611/Unknown  280s 457ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5912


612/Unknown  280s 457ms/step - loss: 1.0793 - sparse_categorical_accuracy: 0.5913


613/Unknown  280s 457ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5915


614/Unknown  282s 458ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5916


615/Unknown  282s 458ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5917


616/Unknown  283s 458ms/step - loss: 1.0776 - sparse_categorical_accuracy: 0.5919


617/Unknown  283s 458ms/step - loss: 1.0771 - sparse_categorical_accuracy: 0.5920


618/Unknown  284s 458ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5921


619/Unknown  284s 458ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5923


620/Unknown  285s 459ms/step - loss: 1.0759 - sparse_categorical_accuracy: 0.5924


621/Unknown  285s 459ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5926


622/Unknown  286s 459ms/step - loss: 1.0750 - sparse_categorical_accuracy: 0.5927


623/Unknown  286s 459ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5928


624/Unknown  287s 459ms/step - loss: 1.0742 - sparse_categorical_accuracy: 0.5930


625/Unknown  287s 459ms/step - loss: 1.0737 - sparse_categorical_accuracy: 0.5931


626/Unknown  288s 459ms/step - loss: 1.0733 - sparse_categorical_accuracy: 0.5932


627/Unknown  288s 459ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5934


628/Unknown  289s 459ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5935


629/Unknown  289s 459ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5936


630/Unknown  290s 459ms/step - loss: 1.0716 - sparse_categorical_accuracy: 0.5937


631/Unknown  290s 459ms/step - loss: 1.0712 - sparse_categorical_accuracy: 0.5939


632/Unknown  291s 459ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5940


633/Unknown  291s 459ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5941


634/Unknown  292s 459ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5943


635/Unknown  292s 459ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5944


636/Unknown  293s 459ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5945


637/Unknown  293s 459ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5947


638/Unknown  294s 459ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5948


639/Unknown  294s 459ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5949


640/Unknown  295s 459ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5950


641/Unknown  295s 459ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5952


642/Unknown  296s 460ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5953


643/Unknown  296s 460ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5954


644/Unknown  297s 460ms/step - loss: 1.0659 - sparse_categorical_accuracy: 0.5956


645/Unknown  297s 460ms/step - loss: 1.0655 - sparse_categorical_accuracy: 0.5957


646/Unknown  297s 460ms/step - loss: 1.0651 - sparse_categorical_accuracy: 0.5958


647/Unknown  298s 460ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5959


648/Unknown  299s 460ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5961


649/Unknown  299s 460ms/step - loss: 1.0639 - sparse_categorical_accuracy: 0.5962


650/Unknown  299s 460ms/step - loss: 1.0635 - sparse_categorical_accuracy: 0.5963


651/Unknown  300s 460ms/step - loss: 1.0631 - sparse_categorical_accuracy: 0.5964


652/Unknown  300s 460ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5966


653/Unknown  301s 460ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5967


654/Unknown  301s 460ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5968


655/Unknown  302s 460ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5969


656/Unknown  302s 460ms/step - loss: 1.0611 - sparse_categorical_accuracy: 0.5971


657/Unknown  303s 460ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5972


658/Unknown  303s 460ms/step - loss: 1.0604 - sparse_categorical_accuracy: 0.5973


659/Unknown  304s 460ms/step - loss: 1.0600 - sparse_categorical_accuracy: 0.5974


660/Unknown  304s 460ms/step - loss: 1.0596 - sparse_categorical_accuracy: 0.5976


661/Unknown  305s 460ms/step - loss: 1.0592 - sparse_categorical_accuracy: 0.5977


662/Unknown  305s 460ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5978


663/Unknown  306s 460ms/step - loss: 1.0584 - sparse_categorical_accuracy: 0.5979


664/Unknown  306s 460ms/step - loss: 1.0580 - sparse_categorical_accuracy: 0.5980


665/Unknown  306s 460ms/step - loss: 1.0577 - sparse_categorical_accuracy: 0.5982


666/Unknown  307s 460ms/step - loss: 1.0573 - sparse_categorical_accuracy: 0.5983


667/Unknown  307s 460ms/step - loss: 1.0569 - sparse_categorical_accuracy: 0.5984


668/Unknown  308s 460ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5985


669/Unknown  308s 460ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5986


670/Unknown  309s 460ms/step - loss: 1.0557 - sparse_categorical_accuracy: 0.5988


671/Unknown  309s 460ms/step - loss: 1.0554 - sparse_categorical_accuracy: 0.5989


672/Unknown  310s 460ms/step - loss: 1.0550 - sparse_categorical_accuracy: 0.5990


673/Unknown  310s 460ms/step - loss: 1.0546 - sparse_categorical_accuracy: 0.5991


674/Unknown  310s 460ms/step - loss: 1.0542 - sparse_categorical_accuracy: 0.5992


675/Unknown  311s 460ms/step - loss: 1.0539 - sparse_categorical_accuracy: 0.5994


676/Unknown  311s 460ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5995


677/Unknown  312s 460ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5996


678/Unknown  312s 460ms/step - loss: 1.0527 - sparse_categorical_accuracy: 0.5997


679/Unknown  313s 460ms/step - loss: 1.0524 - sparse_categorical_accuracy: 0.5998


680/Unknown  313s 460ms/step - loss: 1.0520 - sparse_categorical_accuracy: 0.6000


681/Unknown  313s 459ms/step - loss: 1.0516 - sparse_categorical_accuracy: 0.6001


682/Unknown  314s 459ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.6002


683/Unknown  314s 459ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.6003


684/Unknown  315s 459ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.6004


685/Unknown  315s 459ms/step - loss: 1.0501 - sparse_categorical_accuracy: 0.6005


686/Unknown  315s 459ms/step - loss: 1.0498 - sparse_categorical_accuracy: 0.6006


687/Unknown  316s 459ms/step - loss: 1.0494 - sparse_categorical_accuracy: 0.6008


688/Unknown  316s 459ms/step - loss: 1.0490 - sparse_categorical_accuracy: 0.6009


689/Unknown  317s 459ms/step - loss: 1.0487 - sparse_categorical_accuracy: 0.6010


690/Unknown  317s 459ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.6011


691/Unknown  318s 459ms/step - loss: 1.0479 - sparse_categorical_accuracy: 0.6012


692/Unknown  318s 459ms/step - loss: 1.0476 - sparse_categorical_accuracy: 0.6013


693/Unknown  319s 459ms/step - loss: 1.0472 - sparse_categorical_accuracy: 0.6015


694/Unknown  319s 459ms/step - loss: 1.0468 - sparse_categorical_accuracy: 0.6016


695/Unknown  320s 459ms/step - loss: 1.0465 - sparse_categorical_accuracy: 0.6017


696/Unknown  320s 459ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.6018


697/Unknown  320s 459ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.6019


698/Unknown  321s 459ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.6020


699/Unknown  321s 459ms/step - loss: 1.0450 - sparse_categorical_accuracy: 0.6021


700/Unknown  322s 459ms/step - loss: 1.0447 - sparse_categorical_accuracy: 0.6022


701/Unknown  322s 459ms/step - loss: 1.0443 - sparse_categorical_accuracy: 0.6024


702/Unknown  323s 459ms/step - loss: 1.0440 - sparse_categorical_accuracy: 0.6025


703/Unknown  323s 459ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.6026


704/Unknown  324s 459ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.6027


705/Unknown  324s 459ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.6028


706/Unknown  325s 459ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.6029


707/Unknown  325s 459ms/step - loss: 1.0422 - sparse_categorical_accuracy: 0.6030


708/Unknown  326s 459ms/step - loss: 1.0419 - sparse_categorical_accuracy: 0.6031


709/Unknown  326s 459ms/step - loss: 1.0415 - sparse_categorical_accuracy: 0.6032


710/Unknown  327s 459ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.6034


711/Unknown  327s 459ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.6035


712/Unknown  328s 459ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.6036


713/Unknown  328s 459ms/step - loss: 1.0401 - sparse_categorical_accuracy: 0.6037


714/Unknown  329s 459ms/step - loss: 1.0398 - sparse_categorical_accuracy: 0.6038


715/Unknown  329s 460ms/step - loss: 1.0394 - sparse_categorical_accuracy: 0.6039


716/Unknown  330s 460ms/step - loss: 1.0391 - sparse_categorical_accuracy: 0.6040


717/Unknown  330s 460ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.6041


718/Unknown  330s 460ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.6042


719/Unknown  331s 460ms/step - loss: 1.0380 - sparse_categorical_accuracy: 0.6043


720/Unknown  331s 460ms/step - loss: 1.0377 - sparse_categorical_accuracy: 0.6044


721/Unknown  332s 460ms/step - loss: 1.0373 - sparse_categorical_accuracy: 0.6046


722/Unknown  332s 460ms/step - loss: 1.0370 - sparse_categorical_accuracy: 0.6047


723/Unknown  333s 459ms/step - loss: 1.0367 - sparse_categorical_accuracy: 0.6048


724/Unknown  333s 459ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.6049


725/Unknown  333s 459ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.6050


726/Unknown  334s 459ms/step - loss: 1.0356 - sparse_categorical_accuracy: 0.6051


727/Unknown  334s 459ms/step - loss: 1.0353 - sparse_categorical_accuracy: 0.6052


728/Unknown  335s 459ms/step - loss: 1.0350 - sparse_categorical_accuracy: 0.6053


729/Unknown  335s 459ms/step - loss: 1.0346 - sparse_categorical_accuracy: 0.6054


730/Unknown  336s 459ms/step - loss: 1.0343 - sparse_categorical_accuracy: 0.6055


731/Unknown  336s 459ms/step - loss: 1.0340 - sparse_categorical_accuracy: 0.6056


732/Unknown  336s 459ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.6057


733/Unknown  337s 459ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.6058


734/Unknown  337s 459ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.6059


735/Unknown  338s 459ms/step - loss: 1.0326 - sparse_categorical_accuracy: 0.6060


736/Unknown  338s 459ms/step - loss: 1.0323 - sparse_categorical_accuracy: 0.6061


737/Unknown  339s 459ms/step - loss: 1.0320 - sparse_categorical_accuracy: 0.6062


738/Unknown  339s 459ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.6064


739/Unknown  340s 459ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.6065


740/Unknown  340s 459ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.6066


741/Unknown  340s 459ms/step - loss: 1.0306 - sparse_categorical_accuracy: 0.6067


742/Unknown  341s 459ms/step - loss: 1.0303 - sparse_categorical_accuracy: 0.6068


743/Unknown  341s 459ms/step - loss: 1.0300 - sparse_categorical_accuracy: 0.6069


744/Unknown  342s 459ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.6070


745/Unknown  342s 459ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.6071


746/Unknown  343s 459ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.6072


747/Unknown  343s 459ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.6073


748/Unknown  344s 459ms/step - loss: 1.0283 - sparse_categorical_accuracy: 0.6074


749/Unknown  344s 459ms/step - loss: 1.0280 - sparse_categorical_accuracy: 0.6075


750/Unknown  345s 459ms/step - loss: 1.0277 - sparse_categorical_accuracy: 0.6076


751/Unknown  345s 459ms/step - loss: 1.0274 - sparse_categorical_accuracy: 0.6077


752/Unknown  346s 459ms/step - loss: 1.0271 - sparse_categorical_accuracy: 0.6078


753/Unknown  346s 459ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.6079


754/Unknown  347s 459ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.6080


755/Unknown  347s 459ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.6081


756/Unknown  348s 459ms/step - loss: 1.0258 - sparse_categorical_accuracy: 0.6082


757/Unknown  348s 459ms/step - loss: 1.0255 - sparse_categorical_accuracy: 0.6083


758/Unknown  349s 459ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.6084


759/Unknown  349s 459ms/step - loss: 1.0248 - sparse_categorical_accuracy: 0.6085


760/Unknown  350s 459ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.6086


761/Unknown  350s 459ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.6087


762/Unknown  351s 459ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.6088


763/Unknown  351s 459ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.6089


764/Unknown  352s 459ms/step - loss: 1.0232 - sparse_categorical_accuracy: 0.6090


765/Unknown  352s 460ms/step - loss: 1.0229 - sparse_categorical_accuracy: 0.6091


766/Unknown  353s 460ms/step - loss: 1.0226 - sparse_categorical_accuracy: 0.6092


767/Unknown  353s 460ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.6093


768/Unknown  354s 460ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.6094


769/Unknown  354s 460ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.6095


770/Unknown  354s 460ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.6096


771/Unknown  355s 459ms/step - loss: 1.0211 - sparse_categorical_accuracy: 0.6097


772/Unknown  355s 459ms/step - loss: 1.0207 - sparse_categorical_accuracy: 0.6098


773/Unknown  356s 459ms/step - loss: 1.0204 - sparse_categorical_accuracy: 0.6099


774/Unknown  356s 459ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.6100


775/Unknown  357s 459ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.6101


776/Unknown  357s 459ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.6102


777/Unknown  358s 460ms/step - loss: 1.0192 - sparse_categorical_accuracy: 0.6103


778/Unknown  358s 460ms/step - loss: 1.0189 - sparse_categorical_accuracy: 0.6103


779/Unknown  359s 460ms/step - loss: 1.0186 - sparse_categorical_accuracy: 0.6104


780/Unknown  359s 460ms/step - loss: 1.0183 - sparse_categorical_accuracy: 0.6105


781/Unknown  360s 460ms/step - loss: 1.0180 - sparse_categorical_accuracy: 0.6106


782/Unknown  360s 460ms/step - loss: 1.0177 - sparse_categorical_accuracy: 0.6107


783/Unknown  360s 460ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.6108


784/Unknown  361s 460ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.6109


785/Unknown  361s 460ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.6110


786/Unknown  362s 460ms/step - loss: 1.0165 - sparse_categorical_accuracy: 0.6111


787/Unknown  362s 460ms/step - loss: 1.0162 - sparse_categorical_accuracy: 0.6112


788/Unknown  363s 460ms/step - loss: 1.0159 - sparse_categorical_accuracy: 0.6113


789/Unknown  363s 460ms/step - loss: 1.0156 - sparse_categorical_accuracy: 0.6114


790/Unknown  364s 460ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.6115


791/Unknown  364s 460ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.6116


792/Unknown  365s 460ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6117


793/Unknown  365s 460ms/step - loss: 1.0144 - sparse_categorical_accuracy: 0.6118


794/Unknown  366s 460ms/step - loss: 1.0141 - sparse_categorical_accuracy: 0.6119


795/Unknown  366s 460ms/step - loss: 1.0138 - sparse_categorical_accuracy: 0.6120


796/Unknown  367s 460ms/step - loss: 1.0135 - sparse_categorical_accuracy: 0.6120


797/Unknown  367s 460ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6121


798/Unknown  367s 460ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6122


799/Unknown  368s 460ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6123


800/Unknown  368s 460ms/step - loss: 1.0123 - sparse_categorical_accuracy: 0.6124


801/Unknown  369s 460ms/step - loss: 1.0120 - sparse_categorical_accuracy: 0.6125


802/Unknown  369s 460ms/step - loss: 1.0117 - sparse_categorical_accuracy: 0.6126


803/Unknown  370s 460ms/step - loss: 1.0114 - sparse_categorical_accuracy: 0.6127


804/Unknown  370s 460ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6128


805/Unknown  371s 460ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6129


806/Unknown  371s 460ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6130


807/Unknown  372s 460ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6131


808/Unknown  372s 460ms/step - loss: 1.0100 - sparse_categorical_accuracy: 0.6131


809/Unknown  372s 459ms/step - loss: 1.0097 - sparse_categorical_accuracy: 0.6132


810/Unknown  373s 459ms/step - loss: 1.0094 - sparse_categorical_accuracy: 0.6133


811/Unknown  373s 459ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6134


812/Unknown  373s 459ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6135


813/Unknown  374s 459ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6136


814/Unknown  374s 459ms/step - loss: 1.0082 - sparse_categorical_accuracy: 0.6137


815/Unknown  375s 459ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6138


816/Unknown  375s 459ms/step - loss: 1.0077 - sparse_categorical_accuracy: 0.6139


817/Unknown  375s 459ms/step - loss: 1.0074 - sparse_categorical_accuracy: 0.6140


818/Unknown  376s 459ms/step - loss: 1.0071 - sparse_categorical_accuracy: 0.6140


819/Unknown  376s 459ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6141


820/Unknown  377s 459ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6142


821/Unknown  377s 459ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6143


822/Unknown  378s 459ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6144


823/Unknown  378s 459ms/step - loss: 1.0057 - sparse_categorical_accuracy: 0.6145


824/Unknown  379s 459ms/step - loss: 1.0054 - sparse_categorical_accuracy: 0.6146


825/Unknown  379s 459ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6147


826/Unknown  380s 459ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6148


827/Unknown  380s 459ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6148


828/Unknown  381s 459ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6149


829/Unknown  381s 459ms/step - loss: 1.0040 - sparse_categorical_accuracy: 0.6150


830/Unknown  382s 459ms/step - loss: 1.0037 - sparse_categorical_accuracy: 0.6151


831/Unknown  382s 459ms/step - loss: 1.0034 - sparse_categorical_accuracy: 0.6152


832/Unknown  383s 459ms/step - loss: 1.0032 - sparse_categorical_accuracy: 0.6153


833/Unknown  383s 459ms/step - loss: 1.0029 - sparse_categorical_accuracy: 0.6154


834/Unknown  384s 459ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6155


835/Unknown  384s 459ms/step - loss: 1.0023 - sparse_categorical_accuracy: 0.6155


836/Unknown  385s 459ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6156


837/Unknown  385s 459ms/step - loss: 1.0018 - sparse_categorical_accuracy: 0.6157


838/Unknown  385s 459ms/step - loss: 1.0015 - sparse_categorical_accuracy: 0.6158


839/Unknown  386s 459ms/step - loss: 1.0012 - sparse_categorical_accuracy: 0.6159


840/Unknown  386s 459ms/step - loss: 1.0010 - sparse_categorical_accuracy: 0.6160


841/Unknown  387s 459ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6161


842/Unknown  387s 459ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6162


843/Unknown  388s 459ms/step - loss: 1.0001 - sparse_categorical_accuracy: 0.6162


844/Unknown  388s 459ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6163


845/Unknown  389s 459ms/step - loss: 0.9996 - sparse_categorical_accuracy: 0.6164


846/Unknown  389s 459ms/step - loss: 0.9993 - sparse_categorical_accuracy: 0.6165


847/Unknown  390s 459ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6166


848/Unknown  390s 460ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6167


849/Unknown  391s 460ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6167


850/Unknown  391s 460ms/step - loss: 0.9982 - sparse_categorical_accuracy: 0.6168


851/Unknown  392s 460ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6169


852/Unknown  392s 460ms/step - loss: 0.9977 - sparse_categorical_accuracy: 0.6170


853/Unknown  393s 460ms/step - loss: 0.9974 - sparse_categorical_accuracy: 0.6171


854/Unknown  393s 460ms/step - loss: 0.9972 - sparse_categorical_accuracy: 0.6172


855/Unknown  394s 460ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6173


856/Unknown  394s 460ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6173


857/Unknown  394s 460ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6174


858/Unknown  395s 460ms/step - loss: 0.9961 - sparse_categorical_accuracy: 0.6175


859/Unknown  395s 460ms/step - loss: 0.9958 - sparse_categorical_accuracy: 0.6176


860/Unknown  396s 460ms/step - loss: 0.9956 - sparse_categorical_accuracy: 0.6177


861/Unknown  396s 460ms/step - loss: 0.9953 - sparse_categorical_accuracy: 0.6178


862/Unknown  397s 460ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6178


863/Unknown  397s 459ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6179


864/Unknown  397s 459ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6180


865/Unknown  398s 459ms/step - loss: 0.9942 - sparse_categorical_accuracy: 0.6181


866/Unknown  398s 459ms/step - loss: 0.9940 - sparse_categorical_accuracy: 0.6182


867/Unknown  399s 459ms/step - loss: 0.9937 - sparse_categorical_accuracy: 0.6182


868/Unknown  399s 459ms/step - loss: 0.9935 - sparse_categorical_accuracy: 0.6183


869/Unknown  399s 459ms/step - loss: 0.9932 - sparse_categorical_accuracy: 0.6184


870/Unknown  400s 459ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6185


871/Unknown  400s 459ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6186


872/Unknown  401s 459ms/step - loss: 0.9924 - sparse_categorical_accuracy: 0.6187


873/Unknown  401s 459ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6187


874/Unknown  402s 459ms/step - loss: 0.9919 - sparse_categorical_accuracy: 0.6188


875/Unknown  402s 459ms/step - loss: 0.9916 - sparse_categorical_accuracy: 0.6189


876/Unknown  403s 459ms/step - loss: 0.9914 - sparse_categorical_accuracy: 0.6190


877/Unknown  403s 459ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6191


878/Unknown  404s 459ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6191


879/Unknown  404s 459ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6192


880/Unknown  404s 459ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6193


881/Unknown  405s 459ms/step - loss: 0.9901 - sparse_categorical_accuracy: 0.6194


882/Unknown  405s 459ms/step - loss: 0.9898 - sparse_categorical_accuracy: 0.6195


883/Unknown  406s 459ms/step - loss: 0.9896 - sparse_categorical_accuracy: 0.6195


884/Unknown  406s 459ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6196


885/Unknown  406s 459ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6197


886/Unknown  407s 459ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6198


887/Unknown  407s 458ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6199


888/Unknown  408s 458ms/step - loss: 0.9883 - sparse_categorical_accuracy: 0.6199


889/Unknown  408s 458ms/step - loss: 0.9881 - sparse_categorical_accuracy: 0.6200


890/Unknown  408s 458ms/step - loss: 0.9878 - sparse_categorical_accuracy: 0.6201


891/Unknown  409s 458ms/step - loss: 0.9876 - sparse_categorical_accuracy: 0.6202


892/Unknown  409s 458ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6203


893/Unknown  410s 458ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6203


894/Unknown  410s 458ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6204


895/Unknown  411s 458ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6205


896/Unknown  411s 458ms/step - loss: 0.9863 - sparse_categorical_accuracy: 0.6206


897/Unknown  412s 458ms/step - loss: 0.9861 - sparse_categorical_accuracy: 0.6206


898/Unknown  412s 458ms/step - loss: 0.9858 - sparse_categorical_accuracy: 0.6207


899/Unknown  413s 458ms/step - loss: 0.9856 - sparse_categorical_accuracy: 0.6208


900/Unknown  413s 459ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6209


901/Unknown  414s 459ms/step - loss: 0.9851 - sparse_categorical_accuracy: 0.6210


902/Unknown  414s 458ms/step - loss: 0.9848 - sparse_categorical_accuracy: 0.6210


903/Unknown  414s 458ms/step - loss: 0.9846 - sparse_categorical_accuracy: 0.6211


904/Unknown  415s 458ms/step - loss: 0.9843 - sparse_categorical_accuracy: 0.6212


905/Unknown  415s 458ms/step - loss: 0.9841 - sparse_categorical_accuracy: 0.6213


906/Unknown  416s 458ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6213


907/Unknown  416s 458ms/step - loss: 0.9836 - sparse_categorical_accuracy: 0.6214


908/Unknown  416s 458ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6215


909/Unknown  417s 458ms/step - loss: 0.9831 - sparse_categorical_accuracy: 0.6216


910/Unknown  417s 458ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6216


911/Unknown  418s 458ms/step - loss: 0.9826 - sparse_categorical_accuracy: 0.6217


912/Unknown  418s 458ms/step - loss: 0.9824 - sparse_categorical_accuracy: 0.6218


913/Unknown  418s 458ms/step - loss: 0.9821 - sparse_categorical_accuracy: 0.6219


914/Unknown  419s 458ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6219


915/Unknown  419s 457ms/step - loss: 0.9817 - sparse_categorical_accuracy: 0.6220


916/Unknown  420s 457ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6221


917/Unknown  420s 458ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6222


918/Unknown  421s 458ms/step - loss: 0.9809 - sparse_categorical_accuracy: 0.6222


919/Unknown  421s 458ms/step - loss: 0.9807 - sparse_categorical_accuracy: 0.6223


920/Unknown  421s 457ms/step - loss: 0.9805 - sparse_categorical_accuracy: 0.6224


921/Unknown  422s 458ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6225


922/Unknown  422s 458ms/step - loss: 0.9800 - sparse_categorical_accuracy: 0.6225


923/Unknown  423s 458ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6226


924/Unknown  423s 458ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6227


925/Unknown  424s 458ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6228


926/Unknown  424s 458ms/step - loss: 0.9790 - sparse_categorical_accuracy: 0.6228


927/Unknown  425s 458ms/step - loss: 0.9788 - sparse_categorical_accuracy: 0.6229


928/Unknown  425s 458ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6230


929/Unknown  426s 458ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6231


930/Unknown  426s 458ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6231


931/Unknown  427s 458ms/step - loss: 0.9778 - sparse_categorical_accuracy: 0.6232


932/Unknown  427s 458ms/step - loss: 0.9776 - sparse_categorical_accuracy: 0.6233


933/Unknown  428s 458ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6234


934/Unknown  428s 458ms/step - loss: 0.9771 - sparse_categorical_accuracy: 0.6234


935/Unknown  429s 458ms/step - loss: 0.9769 - sparse_categorical_accuracy: 0.6235


936/Unknown  429s 458ms/step - loss: 0.9767 - sparse_categorical_accuracy: 0.6236


937/Unknown  429s 458ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6236


938/Unknown  430s 458ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6237


939/Unknown  430s 458ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6238


940/Unknown  431s 458ms/step - loss: 0.9757 - sparse_categorical_accuracy: 0.6239


941/Unknown  431s 458ms/step - loss: 0.9755 - sparse_categorical_accuracy: 0.6239


942/Unknown  432s 458ms/step - loss: 0.9753 - sparse_categorical_accuracy: 0.6240


943/Unknown  432s 458ms/step - loss: 0.9750 - sparse_categorical_accuracy: 0.6241


944/Unknown  433s 458ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6242


945/Unknown  433s 458ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6242


946/Unknown  434s 458ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6243


947/Unknown  434s 458ms/step - loss: 0.9741 - sparse_categorical_accuracy: 0.6244


948/Unknown  435s 458ms/step - loss: 0.9739 - sparse_categorical_accuracy: 0.6244


949/Unknown  435s 458ms/step - loss: 0.9737 - sparse_categorical_accuracy: 0.6245


950/Unknown  436s 458ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6246


951/Unknown  436s 458ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6247


952/Unknown  437s 458ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6247


953/Unknown  437s 458ms/step - loss: 0.9727 - sparse_categorical_accuracy: 0.6248


954/Unknown  438s 458ms/step - loss: 0.9725 - sparse_categorical_accuracy: 0.6249


955/Unknown  438s 458ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6249


956/Unknown  439s 458ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6250


957/Unknown  439s 458ms/step - loss: 0.9718 - sparse_categorical_accuracy: 0.6251


958/Unknown  439s 458ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6252


959/Unknown  440s 458ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6252


960/Unknown  440s 458ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6253


961/Unknown  441s 458ms/step - loss: 0.9709 - sparse_categorical_accuracy: 0.6254


962/Unknown  441s 458ms/step - loss: 0.9707 - sparse_categorical_accuracy: 0.6254


963/Unknown  442s 458ms/step - loss: 0.9705 - sparse_categorical_accuracy: 0.6255


964/Unknown  442s 458ms/step - loss: 0.9703 - sparse_categorical_accuracy: 0.6256


965/Unknown  443s 458ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6256


966/Unknown  443s 458ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6257


967/Unknown  444s 458ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6258


968/Unknown  444s 458ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6259


969/Unknown  445s 458ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6259


970/Unknown  445s 458ms/step - loss: 0.9689 - sparse_categorical_accuracy: 0.6260


971/Unknown  446s 458ms/step - loss: 0.9687 - sparse_categorical_accuracy: 0.6261


972/Unknown  446s 459ms/step - loss: 0.9685 - sparse_categorical_accuracy: 0.6261


973/Unknown  447s 458ms/step - loss: 0.9683 - sparse_categorical_accuracy: 0.6262


974/Unknown  447s 458ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6263


975/Unknown  447s 458ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6263


976/Unknown  448s 458ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6264


977/Unknown  448s 458ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6265


978/Unknown  449s 458ms/step - loss: 0.9672 - sparse_categorical_accuracy: 0.6265


979/Unknown  449s 458ms/step - loss: 0.9669 - sparse_categorical_accuracy: 0.6266


980/Unknown  449s 458ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6267


981/Unknown  450s 458ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6268


982/Unknown  450s 458ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6268


983/Unknown  451s 458ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6269


984/Unknown  451s 458ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6270


985/Unknown  451s 458ms/step - loss: 0.9656 - sparse_categorical_accuracy: 0.6270


986/Unknown  452s 458ms/step - loss: 0.9654 - sparse_categorical_accuracy: 0.6271


987/Unknown  452s 458ms/step - loss: 0.9652 - sparse_categorical_accuracy: 0.6272


988/Unknown  453s 458ms/step - loss: 0.9650 - sparse_categorical_accuracy: 0.6272


989/Unknown  453s 458ms/step - loss: 0.9648 - sparse_categorical_accuracy: 0.6273


990/Unknown  454s 458ms/step - loss: 0.9646 - sparse_categorical_accuracy: 0.6274


991/Unknown  454s 458ms/step - loss: 0.9643 - sparse_categorical_accuracy: 0.6274


992/Unknown  455s 458ms/step - loss: 0.9641 - sparse_categorical_accuracy: 0.6275


993/Unknown  455s 458ms/step - loss: 0.9639 - sparse_categorical_accuracy: 0.6276


994/Unknown  456s 458ms/step - loss: 0.9637 - sparse_categorical_accuracy: 0.6276


995/Unknown  456s 458ms/step - loss: 0.9635 - sparse_categorical_accuracy: 0.6277


996/Unknown  457s 458ms/step - loss: 0.9633 - sparse_categorical_accuracy: 0.6278


997/Unknown  457s 458ms/step - loss: 0.9631 - sparse_categorical_accuracy: 0.6278


998/Unknown  458s 458ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6279


999/Unknown  458s 458ms/step - loss: 0.9626 - sparse_categorical_accuracy: 0.6280



1000/未知 459秒 458毫秒/步 - 损失: 0.9624 - 稀疏分类准确率: 0.6280



1001/未知 459秒 458毫秒/步 - 损失: 0.9622 - 稀疏分类准确率: 0.6281



1002/未知 460秒 458毫秒/步 - 损失: 0.9620 - 稀疏分类准确率: 0.6282



1003/未知 460秒 458毫秒/步 - 损失: 0.9618 - 稀疏分类准确率: 0.6282



1004/未知 461秒 458毫秒/步 - 损失: 0.9616 - 稀疏分类准确率: 0.6283



1005/未知 461秒 458毫秒/步 - 损失: 0.9614 - 稀疏分类准确率: 0.6284



1006/未知 462秒 458毫秒/步 - 损失: 0.9612 - 稀疏分类准确率: 0.6284



1007/未知 462秒 458毫秒/步 - 损失: 0.9609 - 稀疏分类准确率: 0.6285



1008/未知 462秒 458毫秒/步 - 损失: 0.9607 - 稀疏分类准确率: 0.6286



1009/未知 463秒 458毫秒/步 - 损失: 0.9605 - 稀疏分类准确率: 0.6286



1010/未知 463秒 458毫秒/步 - 损失: 0.9603 - 稀疏分类准确率: 0.6287



1011/未知 464秒 458毫秒/步 - 损失: 0.9601 - 稀疏分类准确率: 0.6287



1012/未知 465秒 458毫秒/步 - 损失: 0.9599 - 稀疏分类准确率: 0.6288



1013/未知 465秒 458毫秒/步 - 损失: 0.9597 - 稀疏分类准确率: 0.6289



1014/未知 465秒 459毫秒/步 - 损失: 0.9595 - 稀疏分类准确率: 0.6289



1015/未知 466秒 459毫秒/步 - 损失: 0.9593 - 稀疏分类准确率: 0.6290



1016/未知 466秒 459毫秒/步 - 损失: 0.9591 - 稀疏分类准确率: 0.6291



1017/未知 467秒 459毫秒/步 - 损失: 0.9589 - 稀疏分类准确率: 0.6291



1018/未知 467秒 459毫秒/步 - 损失: 0.9587 - 稀疏分类准确率: 0.6292



1019/未知 468秒 459毫秒/步 - 损失: 0.9584 - 稀疏分类准确率: 0.6293



1020/未知 468秒 459毫秒/步 - 损失: 0.9582 - 稀疏分类准确率: 0.6293



1021/未知 469秒 459毫秒/步 - 损失: 0.9580 - 稀疏分类准确率: 0.6294



1022/未知 469秒 459毫秒/步 - 损失: 0.9578 - 稀疏分类准确率: 0.6295



1023/未知 470秒 459毫秒/步 - 损失: 0.9576 - 稀疏分类准确率: 0.6295



1024/未知 470秒 459毫秒/步 - 损失: 0.9574 - 稀疏分类准确率: 0.6296



1025/未知 471秒 459毫秒/步 - 损失: 0.9572 - 稀疏分类准确率: 0.6297



1026/未知 471秒 459毫秒/步 - 损失: 0.9570 - 稀疏分类准确率: 0.6297



1027/未知 472秒 459毫秒/步 - 损失: 0.9568 - 稀疏分类准确率: 0.6298



1028/未知 472秒 459毫秒/步 - 损失: 0.9566 - 稀疏分类准确率: 0.6298



1029/未知 473秒 459毫秒/步 - 损失: 0.9564 - 稀疏分类准确率: 0.6299



1030/未知 473秒 459毫秒/步 - 损失: 0.9562 - 稀疏分类准确率: 0.6300



1031/未知 474秒 459毫秒/步 - 损失: 0.9560 - 稀疏分类准确率: 0.6300



1032/未知 474秒 459毫秒/步 - 损失: 0.9558 - 稀疏分类准确率: 0.6301



1033/未知 475秒 459毫秒/步 - 损失: 0.9556 - 稀疏分类准确率: 0.6302



1034/未知 475秒 459毫秒/步 - 损失: 0.9554 - 稀疏分类准确率: 0.6302



1035/未知 476秒 459毫秒/步 - 损失: 0.9552 - 稀疏分类准确率: 0.6303



1036/未知 476秒 459毫秒/步 - 损失: 0.9550 - 稀疏分类准确率: 0.6304



1037/未知 477秒 459毫秒/步 - 损失: 0.9548 - 稀疏分类准确率: 0.6304



1038/未知 477秒 459毫秒/步 - 损失: 0.9546 - 稀疏分类准确率: 0.6305



1039/未知 478秒 459毫秒/步 - 损失: 0.9544 - 稀疏分类准确率: 0.6305



1040/未知 478秒 459毫秒/步 - 损失: 0.9542 - 稀疏分类准确率: 0.6306



1041/未知 479秒 459毫秒/步 - 损失: 0.9540 - 稀疏分类准确率: 0.6307



1042/未知 479秒 459毫秒/步 - 损失: 0.9538 - 稀疏分类准确率: 0.6307



1043/未知 480秒 459毫秒/步 - 损失: 0.9536 - 稀疏分类准确率: 0.6308



1044/未知 480秒 459毫秒/步 - 损失: 0.9534 - 稀疏分类准确率: 0.6309



1045/未知 481秒 459毫秒/步 - 损失: 0.9532 - 稀疏分类准确率: 0.6309



1046/未知 481秒 459毫秒/步 - 损失: 0.9530 - 稀疏分类准确率: 0.6310



1047/未知 482秒 459毫秒/步 - 损失: 0.9528 - 稀疏分类准确率: 0.6310



1048/未知 482秒 459毫秒/步 - 损失: 0.9526 - 稀疏分类准确率: 0.6311



1049/未知 483秒 459毫秒/步 - 损失: 0.9524 - 稀疏分类准确率: 0.6312



1050/未知 483秒 460毫秒/步 - 损失: 0.9522 - 稀疏分类准确率: 0.6312



1051/未知 484秒 460毫秒/步 - 损失: 0.9520 - 稀疏分类准确率: 0.6313



1052/未知 484秒 460毫秒/步 - 损失: 0.9518 - 稀疏分类准确率: 0.6314



1053/未知 484秒 460毫秒/步 - 损失: 0.9516 - 稀疏分类准确率: 0.6314



1054/未知 485秒 460毫秒/步 - 损失: 0.9514 - 稀疏分类准确率: 0.6315



1055/未知 485秒 460毫秒/步 - 损失: 0.9512 - 稀疏分类准确率: 0.6315



1056/未知 486秒 460毫秒/步 - 损失: 0.9510 - 稀疏分类准确率: 0.6316



1057/未知 486秒 460毫秒/步 - 损失: 0.9508 - 稀疏分类准确率: 0.6317



1058/未知 487秒 460毫秒/步 - 损失: 0.9506 - 稀疏分类准确率: 0.6317



1059/未知 487秒 460毫秒/步 - 损失: 0.9504 - 稀疏分类准确率: 0.6318



1060/未知 488秒 460毫秒/步 - 损失: 0.9502 - 稀疏分类准确率: 0.6318



1061/未知 488秒 460毫秒/步 - 损失: 0.9500 - 稀疏分类准确率: 0.6319



1062/未知 489秒 460毫秒/步 - 损失: 0.9498 - 稀疏分类准确率: 0.6320



1063/未知 489秒 460毫秒/步 - 损失: 0.9496 - 稀疏分类准确率: 0.6320



1064/未知 490秒 460毫秒/步 - 损失: 0.9495 - 稀疏分类准确率: 0.6321



1065/未知 490秒 460毫秒/步 - 损失: 0.9493 - 稀疏分类准确率: 0.6321



1066/未知 491秒 460毫秒/步 - 损失: 0.9491 - 稀疏分类准确率: 0.6322



1067/未知 491秒 460毫秒/步 - 损失: 0.9489 - 稀疏分类准确率: 0.6323



1068/未知 492秒 460毫秒/步 - 损失: 0.9487 - 稀疏分类准确率: 0.6323



1069/未知 492秒 460毫秒/步 - 损失: 0.9485 - 稀疏分类准确率: 0.6324



1070/未知 493秒 460毫秒/步 - 损失: 0.9483 - 稀疏分类准确率: 0.6324



1071/未知 493秒 460毫秒/步 - 损失: 0.9481 - 稀疏分类准确率: 0.6325



1072/未知 494秒 460毫秒/步 - 损失: 0.9479 - 稀疏分类准确率: 0.6326



1073/未知 494秒 460毫秒/步 - 损失: 0.9477 - 稀疏分类准确率: 0.6326



1074/未知 495秒 460毫秒/步 - 损失: 0.9475 - 稀疏分类准确率: 0.6327



1075/未知 495秒 460毫秒/步 - 损失: 0.9473 - 稀疏分类准确率: 0.6327



1076/未知 496秒 460毫秒/步 - 损失: 0.9471 - 稀疏分类准确率: 0.6328



1077/未知 496秒 460毫秒/步 - 损失: 0.9470 - 稀疏分类准确率: 0.6329



1078/未知 496秒 460毫秒/步 - 损失: 0.9468 - 稀疏分类准确率: 0.6329



1079/未知 497秒 460毫秒/步 - 损失: 0.9466 - 稀疏分类准确率: 0.6330



1080/未知 497秒 460毫秒/步 - 损失: 0.9464 - 稀疏分类准确率: 0.6330



1081/未知 498秒 460毫秒/步 - 损失: 0.9462 - 稀疏分类准确率: 0.6331



1082/未知 498秒 460毫秒/步 - 损失: 0.9460 - 稀疏分类准确率: 0.6332



1083/未知 499秒 460毫秒/步 - 损失: 0.9458 - 稀疏分类准确率: 0.6332



1084/未知 499秒 460毫秒/步 - 损失: 0.9456 - 稀疏分类准确率: 0.6333



1085/未知 500秒 460毫秒/步 - 损失: 0.9454 - 稀疏分类准确率: 0.6333



1086/未知 500秒 460毫秒/步 - 损失: 0.9453 - 稀疏分类准确率: 0.6334



1087/未知 501秒 460毫秒/步 - 损失: 0.9451 - 稀疏分类准确率: 0.6335



1088/未知 501秒 460毫秒/步 - 损失: 0.9449 - 稀疏分类准确率: 0.6335



1089/未知 502秒 460毫秒/步 - 损失: 0.9447 - 稀疏分类准确率: 0.6336



1090/未知 502秒 460毫秒/步 - 损失: 0.9445 - 稀疏分类准确率: 0.6336



1091/未知 503秒 460毫秒/步 - 损失: 0.9443 - 稀疏分类准确率: 0.6337



1092/未知 503秒 460毫秒/步 - 损失: 0.9441 - 稀疏分类准确率: 0.6337



1093/未知 503秒 460毫秒/步 - 损失: 0.9439 - 稀疏分类准确率: 0.6338



1094/未知 504秒 460毫秒/步 - 损失: 0.9438 - 稀疏分类准确率: 0.6339



1095/未知 504秒 460毫秒/步 - 损失: 0.9436 - 稀疏分类准确率: 0.6339



1096/未知 505秒 460毫秒/步 - 损失: 0.9434 - 稀疏分类准确率: 0.6340



1097/未知 505秒 460毫秒/步 - 损失: 0.9432 - 稀疏分类准确率: 0.6340



1098/未知 506秒 460毫秒/步 - 损失: 0.9430 - 稀疏分类准确率: 0.6341



1099/未知 506秒 460毫秒/步 - 损失: 0.9428 - 稀疏分类准确率: 0.6342



1100/未知 507秒 460毫秒/步 - 损失: 0.9427 - 稀疏分类准确率: 0.6342



1101/未知 507秒 460毫秒/步 - 损失: 0.9425 - 稀疏分类准确率: 0.6343



1102/未知 508秒 460毫秒/步 - 损失: 0.9423 - 稀疏分类准确率: 0.6343



1103/未知 508秒 460毫秒/步 - 损失: 0.9421 - 稀疏分类准确率: 0.6344



1104/未知 508秒 460毫秒/步 - 损失: 0.9419 - 稀疏分类准确率: 0.6344



1105/未知 509秒 460毫秒/步 - 损失: 0.9417 - 稀疏分类准确率: 0.6345



1106/未知 509秒 460毫秒/步 - 损失: 0.9416 - 稀疏分类准确率: 0.6346



1107/未知 510秒 460毫秒/步 - 损失: 0.9414 - 稀疏分类准确率: 0.6346



1108/未知 510秒 460毫秒/步 - 损失: 0.9412 - 稀疏分类准确率: 0.6347



1109/未知 510秒 460毫秒/步 - 损失: 0.9410 - 稀疏分类准确率: 0.6347



1110/未知 511秒 459毫秒/步 - 损失: 0.9408 - 稀疏分类准确率: 0.6348



1111/未知 511秒 459毫秒/步 - 损失: 0.9406 - 稀疏分类准确率: 0.6348



1112/未知 511秒 459毫秒/步 - 损失: 0.9405 - 稀疏分类准确率: 0.6349



1113/未知 512秒 459毫秒/步 - 损失: 0.9403 - 稀疏分类准确率: 0.6349



1114/未知 512秒 459毫秒/步 - 损失: 0.9401 - 稀疏分类准确率: 0.6350



1115/未知 512秒 459毫秒/步 - 损失: 0.9399 - 稀疏分类准确率: 0.6351



1116/未知 513秒 459毫秒/步 - 损失: 0.9397 - 稀疏分类准确率: 0.6351



1117/未知 513秒 459毫秒/步 - 损失: 0.9396 - 稀疏分类准确率: 0.6352



1118/未知 513秒 459毫秒/步 - 损失: 0.9394 - 稀疏分类准确率: 0.6352



1119/未知 514秒 459毫秒/步 - 损失: 0.9392 - 稀疏分类准确率: 0.6353



1120/未知 514秒 458毫秒/步 - 损失: 0.9390 - 稀疏分类准确率: 0.6353



1121/未知 515秒 458毫秒/步 - 损失: 0.9388 - 稀疏分类准确率: 0.6354



1122/未知 515秒 459毫秒/步 - 损失: 0.9387 - 稀疏分类准确率: 0.6355



1123/未知 515秒 459毫秒/步 - 损失: 0.9385 - 稀疏分类准确率: 0.6355



1124/未知 516秒 459毫秒/步 - 损失: 0.9383 - 稀疏分类准确率: 0.6356



1125/未知 516秒 459毫秒/步 - 损失: 0.9381 - 稀疏分类准确率: 0.6356



1126/未知 517秒 458毫秒/步 - 损失: 0.9379 - 稀疏分类准确率: 0.6357



1127/未知 517秒 458毫秒/步 - 损失: 0.9378 - 稀疏分类准确率: 0.6357



1128/未知 518秒 458毫秒/步 - 损失: 0.9376 - 稀疏分类准确率: 0.6358



1129/未知 518秒 458毫秒/步 - 损失: 0.9374 - 稀疏分类准确率: 0.6358



1130/未知 519秒 458毫秒/步 - 损失: 0.9372 - 稀疏分类准确率: 0.6359



1131/未知 519秒 458毫秒/步 - 损失: 0.9371 - 稀疏分类准确率: 0.6360



1132/未知 519秒 458毫秒/步 - 损失: 0.9369 - 稀疏分类准确率: 0.6360



1133/未知 520秒 458毫秒/步 - 损失: 0.9367 - 稀疏分类准确率: 0.6361



1134/未知 520秒 458毫秒/步 - 损失: 0.9365 - 稀疏分类准确率: 0.6361



1135/未知 521秒 458毫秒/步 - loss: 0.9364 - sparse_categorical_accuracy: 0.6362



1136/未知 521秒 458毫秒/步 - loss: 0.9362 - sparse_categorical_accuracy: 0.6362



1137/未知 522秒 458毫秒/步 - loss: 0.9360 - sparse_categorical_accuracy: 0.6363



1138/未知 522秒 458毫秒/步 - loss: 0.9358 - sparse_categorical_accuracy: 0.6363



1139/未知 523秒 458毫秒/步 - loss: 0.9356 - sparse_categorical_accuracy: 0.6364



1140/未知 523秒 458毫秒/步 - loss: 0.9355 - sparse_categorical_accuracy: 0.6364



1141/未知 524秒 458毫秒/步 - loss: 0.9353 - sparse_categorical_accuracy: 0.6365



1142/未知 524秒 458毫秒/步 - loss: 0.9351 - sparse_categorical_accuracy: 0.6366



1143/未知 525秒 458毫秒/步 - loss: 0.9350 - sparse_categorical_accuracy: 0.6366



1144/未知 525秒 458毫秒/步 - loss: 0.9348 - sparse_categorical_accuracy: 0.6367



1145/未知 525秒 458毫秒/步 - loss: 0.9346 - sparse_categorical_accuracy: 0.6367



1146/未知 526秒 458毫秒/步 - loss: 0.9344 - sparse_categorical_accuracy: 0.6368



1147/未知 526秒 458毫秒/步 - loss: 0.9343 - sparse_categorical_accuracy: 0.6368



1148/未知 527秒 458毫秒/步 - loss: 0.9341 - sparse_categorical_accuracy: 0.6369



1149/未知 527秒 458毫秒/步 - loss: 0.9339 - sparse_categorical_accuracy: 0.6369



1150/未知 528秒 458毫秒/步 - loss: 0.9337 - sparse_categorical_accuracy: 0.6370



1151/未知 528秒 458毫秒/步 - loss: 0.9336 - sparse_categorical_accuracy: 0.6370



1152/未知 528秒 458毫秒/步 - loss: 0.9334 - sparse_categorical_accuracy: 0.6371



1153/未知 529秒 458毫秒/步 - loss: 0.9332 - sparse_categorical_accuracy: 0.6372



1154/未知 529秒 458毫秒/步 - loss: 0.9330 - sparse_categorical_accuracy: 0.6372



1155/未知 530秒 458毫秒/步 - loss: 0.9329 - sparse_categorical_accuracy: 0.6373



1156/未知 530秒 458毫秒/步 - loss: 0.9327 - sparse_categorical_accuracy: 0.6373



1157/未知 530秒 458毫秒/步 - loss: 0.9325 - sparse_categorical_accuracy: 0.6374



1158/未知 531秒 458毫秒/步 - loss: 0.9324 - sparse_categorical_accuracy: 0.6374



1159/未知 531秒 458毫秒/步 - loss: 0.9322 - sparse_categorical_accuracy: 0.6375



1160/未知 532秒 458毫秒/步 - loss: 0.9320 - sparse_categorical_accuracy: 0.6375



1161/未知 532秒 458毫秒/步 - loss: 0.9318 - sparse_categorical_accuracy: 0.6376



1162/未知 532秒 458毫秒/步 - loss: 0.9317 - sparse_categorical_accuracy: 0.6376



1163/未知 533秒 458毫秒/步 - loss: 0.9315 - sparse_categorical_accuracy: 0.6377



1164/未知 533秒 458毫秒/步 - loss: 0.9313 - sparse_categorical_accuracy: 0.6377



1165/未知 534秒 458毫秒/步 - loss: 0.9312 - sparse_categorical_accuracy: 0.6378



1166/未知 534秒 458毫秒/步 - loss: 0.9310 - sparse_categorical_accuracy: 0.6378



1167/未知 535秒 458毫秒/步 - loss: 0.9308 - sparse_categorical_accuracy: 0.6379



1168/未知 535秒 458毫秒/步 - loss: 0.9307 - sparse_categorical_accuracy: 0.6380



1169/未知 536秒 458毫秒/步 - loss: 0.9305 - sparse_categorical_accuracy: 0.6380



1170/未知 536秒 458毫秒/步 - loss: 0.9303 - sparse_categorical_accuracy: 0.6381



1171/未知 537秒 458毫秒/步 - loss: 0.9302 - sparse_categorical_accuracy: 0.6381



1172/未知 537秒 458毫秒/步 - loss: 0.9300 - sparse_categorical_accuracy: 0.6382



1173/未知 538秒 458毫秒/步 - loss: 0.9298 - sparse_categorical_accuracy: 0.6382



1174/未知 538秒 458毫秒/步 - loss: 0.9297 - sparse_categorical_accuracy: 0.6383



1175/未知 538秒 458毫秒/步 - loss: 0.9295 - sparse_categorical_accuracy: 0.6383



1176/未知 539秒 458毫秒/步 - loss: 0.9293 - sparse_categorical_accuracy: 0.6384



1177/未知 539秒 458毫秒/步 - loss: 0.9292 - sparse_categorical_accuracy: 0.6384



1178/未知 540秒 458毫秒/步 - loss: 0.9290 - sparse_categorical_accuracy: 0.6385



1179/未知 540秒 458毫秒/步 - loss: 0.9288 - sparse_categorical_accuracy: 0.6385



1180/未知 541秒 458毫秒/步 - loss: 0.9287 - sparse_categorical_accuracy: 0.6386



1181/未知 541秒 458毫秒/步 - loss: 0.9285 - sparse_categorical_accuracy: 0.6386



1182/未知 542秒 458毫秒/步 - loss: 0.9283 - sparse_categorical_accuracy: 0.6387



1183/未知 542秒 458毫秒/步 - loss: 0.9282 - sparse_categorical_accuracy: 0.6387



1184/未知 543秒 458毫秒/步 - loss: 0.9280 - sparse_categorical_accuracy: 0.6388



1185/未知 543秒 458毫秒/步 - loss: 0.9278 - sparse_categorical_accuracy: 0.6388



1186/未知 543秒 458毫秒/步 - loss: 0.9277 - sparse_categorical_accuracy: 0.6389



1187/未知 544秒 458毫秒/步 - loss: 0.9275 - sparse_categorical_accuracy: 0.6389



1188/未知 544秒 458毫秒/步 - loss: 0.9273 - sparse_categorical_accuracy: 0.6390



1189/未知 545秒 458毫秒/步 - loss: 0.9272 - sparse_categorical_accuracy: 0.6390



1190/未知 545秒 458毫秒/步 - loss: 0.9270 - sparse_categorical_accuracy: 0.6391



1191/未知 546秒 458毫秒/步 - loss: 0.9268 - sparse_categorical_accuracy: 0.6391



1192/未知 546秒 458毫秒/步 - loss: 0.9267 - sparse_categorical_accuracy: 0.6392



1193/未知 547秒 458毫秒/步 - loss: 0.9265 - sparse_categorical_accuracy: 0.6392



1194/未知 547秒 458毫秒/步 - loss: 0.9263 - sparse_categorical_accuracy: 0.6393



1195/未知 548秒 458毫秒/步 - loss: 0.9262 - sparse_categorical_accuracy: 0.6394



1196/未知 548秒 458毫秒/步 - loss: 0.9260 - sparse_categorical_accuracy: 0.6394



1197/未知 548秒 458毫秒/步 - loss: 0.9259 - sparse_categorical_accuracy: 0.6395



1198/未知 549秒 458毫秒/步 - loss: 0.9257 - sparse_categorical_accuracy: 0.6395



1199/未知 549秒 458毫秒/步 - loss: 0.9255 - sparse_categorical_accuracy: 0.6396



1200/未知 550秒 458毫秒/步 - loss: 0.9254 - sparse_categorical_accuracy: 0.6396



1201/未知 550秒 458毫秒/步 - loss: 0.9252 - sparse_categorical_accuracy: 0.6397



1202/未知 551秒 458毫秒/步 - loss: 0.9250 - sparse_categorical_accuracy: 0.6397



1203/未知 551秒 458毫秒/步 - loss: 0.9249 - sparse_categorical_accuracy: 0.6398



1204/未知 552秒 458毫秒/步 - loss: 0.9247 - sparse_categorical_accuracy: 0.6398



1205/未知 552秒 458毫秒/步 - loss: 0.9246 - sparse_categorical_accuracy: 0.6399



1206/未知 553秒 458毫秒/步 - loss: 0.9244 - sparse_categorical_accuracy: 0.6399



1207/未知 553秒 458毫秒/步 - loss: 0.9242 - sparse_categorical_accuracy: 0.6400



1208/未知 554秒 458毫秒/步 - loss: 0.9241 - sparse_categorical_accuracy: 0.6400



1209/未知 554秒 458毫秒/步 - loss: 0.9239 - sparse_categorical_accuracy: 0.6401



1210/未知 555秒 458毫秒/步 - loss: 0.9238 - sparse_categorical_accuracy: 0.6401



1211/未知 555秒 458毫秒/步 - loss: 0.9236 - sparse_categorical_accuracy: 0.6402



1212/未知 556秒 458毫秒/步 - loss: 0.9234 - sparse_categorical_accuracy: 0.6402



1213/未知 556秒 458毫秒/步 - loss: 0.9233 - sparse_categorical_accuracy: 0.6403



1214/未知 557秒 458毫秒/步 - loss: 0.9231 - sparse_categorical_accuracy: 0.6403



1215/未知 557秒 458毫秒/步 - loss: 0.9230 - sparse_categorical_accuracy: 0.6404



1216/未知 558秒 458毫秒/步 - loss: 0.9228 - sparse_categorical_accuracy: 0.6404



1217/未知 558秒 458毫秒/步 - loss: 0.9226 - sparse_categorical_accuracy: 0.6405



1218/未知 559秒 458毫秒/步 - loss: 0.9225 - sparse_categorical_accuracy: 0.6405



1219/未知 559秒 458毫秒/步 - loss: 0.9223 - sparse_categorical_accuracy: 0.6406



1220/未知 560秒 458毫秒/步 - loss: 0.9222 - sparse_categorical_accuracy: 0.6406



1221/未知 560秒 458毫秒/步 - loss: 0.9220 - sparse_categorical_accuracy: 0.6407



1222/未知 560秒 458毫秒/步 - loss: 0.9218 - sparse_categorical_accuracy: 0.6407



1223/未知 561秒 458毫秒/步 - loss: 0.9217 - sparse_categorical_accuracy: 0.6408



1224/未知 561秒 458毫秒/步 - loss: 0.9215 - sparse_categorical_accuracy: 0.6408



1225/未知 562秒 458毫秒/步 - loss: 0.9214 - sparse_categorical_accuracy: 0.6409



1226/未知 562秒 458毫秒/步 - loss: 0.9212 - sparse_categorical_accuracy: 0.6409



1227/未知 563秒 458毫秒/步 - loss: 0.9211 - sparse_categorical_accuracy: 0.6410



1228/未知 563秒 458毫秒/步 - loss: 0.9209 - sparse_categorical_accuracy: 0.6410



1229/未知 564秒 458毫秒/步 - loss: 0.9207 - sparse_categorical_accuracy: 0.6410



1230/未知 564秒 458毫秒/步 - loss: 0.9206 - sparse_categorical_accuracy: 0.6411



1231/未知 565秒 458毫秒/步 - loss: 0.9204 - sparse_categorical_accuracy: 0.6411



1232/未知 565秒 458毫秒/步 - loss: 0.9203 - sparse_categorical_accuracy: 0.6412



1233/未知 566秒 458毫秒/步 - loss: 0.9201 - sparse_categorical_accuracy: 0.6412



1234/未知 566秒 458毫秒/步 - loss: 0.9200 - sparse_categorical_accuracy: 0.6413



1235/未知 567秒 458毫秒/步 - loss: 0.9198 - sparse_categorical_accuracy: 0.6413



1236/未知 567秒 458毫秒/步 - loss: 0.9197 - sparse_categorical_accuracy: 0.6414



1237/未知 568秒 458毫秒/步 - loss: 0.9195 - sparse_categorical_accuracy: 0.6414



1238/未知 568秒 458毫秒/步 - loss: 0.9193 - sparse_categorical_accuracy: 0.6415



1239/未知 569秒 458毫秒/步 - loss: 0.9192 - sparse_categorical_accuracy: 0.6415



1240/未知 569秒 458毫秒/步 - loss: 0.9190 - sparse_categorical_accuracy: 0.6416



1241/未知 569秒 458毫秒/步 - loss: 0.9189 - sparse_categorical_accuracy: 0.6416



1242/未知 570秒 458毫秒/步 - loss: 0.9187 - sparse_categorical_accuracy: 0.6417



1243/未知 570秒 458毫秒/步 - loss: 0.9186 - sparse_categorical_accuracy: 0.6417



1244/未知 571秒 458毫秒/步 - loss: 0.9184 - sparse_categorical_accuracy: 0.6418



1245/未知 571秒 458毫秒/步 - loss: 0.9183 - sparse_categorical_accuracy: 0.6418



1246/未知 572秒 458毫秒/步 - loss: 0.9181 - sparse_categorical_accuracy: 0.6419



1247/未知 572秒 458毫秒/步 - loss: 0.9180 - sparse_categorical_accuracy: 0.6419



1248/未知 573秒 458毫秒/步 - loss: 0.9178 - sparse_categorical_accuracy: 0.6420



1249/未知 573秒 458毫秒/步 - loss: 0.9177 - sparse_categorical_accuracy: 0.6420



1250/未知 574秒 458毫秒/步 - loss: 0.9175 - sparse_categorical_accuracy: 0.6421



1251/未知 574秒 458毫秒/步 - loss: 0.9173 - sparse_categorical_accuracy: 0.6421



1252/未知 574秒 458毫秒/步 - loss: 0.9172 - sparse_categorical_accuracy: 0.6422



1253/未知 575秒 458毫秒/步 - loss: 0.9170 - sparse_categorical_accuracy: 0.6422



1254/未知 575秒 458毫秒/步 - loss: 0.9169 - sparse_categorical_accuracy: 0.6423



1255/未知 576秒 458毫秒/步 - loss: 0.9167 - sparse_categorical_accuracy: 0.6423



1256/未知 576秒 458毫秒/步 - loss: 0.9166 - sparse_categorical_accuracy: 0.6424



1257/未知 577秒 458毫秒/步 - loss: 0.9164 - sparse_categorical_accuracy: 0.6424



1258/未知 577秒 458毫秒/步 - loss: 0.9163 - sparse_categorical_accuracy: 0.6424



1259/未知 578秒 458毫秒/步 - loss: 0.9161 - sparse_categorical_accuracy: 0.6425



1260/未知 578秒 459毫秒/步 - loss: 0.9160 - sparse_categorical_accuracy: 0.6425



1261/未知 579秒 459毫秒/步 - loss: 0.9158 - sparse_categorical_accuracy: 0.6426



1262/未知 579秒 458毫秒/步 - loss: 0.9157 - sparse_categorical_accuracy: 0.6426



1263/未知 580秒 459毫秒/步 - loss: 0.9155 - sparse_categorical_accuracy: 0.6427



1264/未知 580秒 459毫秒/步 - loss: 0.9154 - sparse_categorical_accuracy: 0.6427



1265/未知 581秒 459毫秒/步 - loss: 0.9152 - sparse_categorical_accuracy: 0.6428



1266/未知 581秒 459毫秒/步 - loss: 0.9151 - sparse_categorical_accuracy: 0.6428



1267/未知 582秒 459毫秒/步 - loss: 0.9149 - sparse_categorical_accuracy: 0.6429



1268/未知 582秒 459毫秒/步 - loss: 0.9148 - sparse_categorical_accuracy: 0.6429



1269/未知 583秒 459毫秒/步 - loss: 0.9146 - sparse_categorical_accuracy: 0.6430



1270/未知 583秒 459毫秒/步 - loss: 0.9145 - sparse_categorical_accuracy: 0.6430



1271/未知 584秒 459毫秒/步 - loss: 0.9143 - sparse_categorical_accuracy: 0.6431



1272/未知 584秒 459毫秒/步 - loss: 0.9142 - sparse_categorical_accuracy: 0.6431



1273/未知 584秒 459毫秒/步 - loss: 0.9140 - sparse_categorical_accuracy: 0.6432



1274/未知 585秒 459毫秒/步 - loss: 0.9139 - sparse_categorical_accuracy: 0.6432



1275/未知 585秒 459毫秒/步 - loss: 0.9137 - sparse_categorical_accuracy: 0.6432



1276/未知 586秒 459毫秒/步 - loss: 0.9136 - sparse_categorical_accuracy: 0.6433



1277/未知 586秒 459毫秒/步 - loss: 0.9134 - sparse_categorical_accuracy: 0.6433



1278/未知 587秒 459毫秒/步 - loss: 0.9133 - sparse_categorical_accuracy: 0.6434



1279/未知 587秒 459毫秒/步 - loss: 0.9131 - sparse_categorical_accuracy: 0.6434



1280/未知 588秒 459毫秒/步 - loss: 0.9130 - sparse_categorical_accuracy: 0.6435



1281/未知 588秒 459毫秒/步 - loss: 0.9128 - sparse_categorical_accuracy: 0.6435



1282/未知 589秒 459毫秒/步 - loss: 0.9127 - sparse_categorical_accuracy: 0.6436



1283/未知 589秒 459毫秒/步 - loss: 0.9126 - sparse_categorical_accuracy: 0.6436



1284/未知 589秒 459毫秒/步 - loss: 0.9124 - sparse_categorical_accuracy: 0.6437



1285/未知 590秒 458毫秒/步 - loss: 0.9123 - sparse_categorical_accuracy: 0.6437



1286/未知 590秒 458毫秒/步 - loss: 0.9121 - sparse_categorical_accuracy: 0.6438



1287/未知 591秒 458毫秒/步 - loss: 0.9120 - sparse_categorical_accuracy: 0.6438



1288/未知 591秒 458毫秒/步 - loss: 0.9118 - sparse_categorical_accuracy: 0.6438



1289/未知 591秒 458毫秒/步 - loss: 0.9117 - sparse_categorical_accuracy: 0.6439



1290/未知 592秒 458毫秒/步 - loss: 0.9115 - sparse_categorical_accuracy: 0.6439



1291/未知 592秒 458毫秒/步 - loss: 0.9114 - sparse_categorical_accuracy: 0.6440



1292/未知 593秒 458毫秒/步 - loss: 0.9112 - sparse_categorical_accuracy: 0.6440



1293/未知 593秒 458毫秒/步 - loss: 0.9111 - sparse_categorical_accuracy: 0.6441



1294/未知 594秒 458毫秒/步 - loss: 0.9109 - sparse_categorical_accuracy: 0.6441



1295/未知 594秒 458毫秒/步 - loss: 0.9108 - sparse_categorical_accuracy: 0.6442



1296/未知 595秒 458毫秒/步 - loss: 0.9107 - sparse_categorical_accuracy: 0.6442



1297/未知 595秒 458毫秒/步 - loss: 0.9105 - sparse_categorical_accuracy: 0.6443



1298/未知 596秒 458毫秒/步 - loss: 0.9104 - sparse_categorical_accuracy: 0.6443



1299/未知 596秒 458毫秒/步 - loss: 0.9102 - sparse_categorical_accuracy: 0.6443



1300/未知 596秒 458毫秒/步 - loss: 0.9101 - sparse_categorical_accuracy: 0.6444



1301/未知 597秒 458毫秒/步 - loss: 0.9099 - sparse_categorical_accuracy: 0.6444



1302/未知 597秒 458毫秒/步 - loss: 0.9098 - sparse_categorical_accuracy: 0.6445



1303/未知 598秒 458毫秒/步 - loss: 0.9096 - sparse_categorical_accuracy: 0.6445



1304/未知 598秒 458毫秒/步 - loss: 0.9095 - sparse_categorical_accuracy: 0.6446



1305/未知 599秒 458毫秒/步 - loss: 0.9094 - sparse_categorical_accuracy: 0.6446



1306/未知 599秒 458毫秒/步 - loss: 0.9092 - sparse_categorical_accuracy: 0.6447



1307/未知 600秒 458毫秒/步 - loss: 0.9091 - sparse_categorical_accuracy: 0.6447



1308/未知 600秒 458毫秒/步 - loss: 0.9089 - sparse_categorical_accuracy: 0.6448



1309/未知 601秒 458毫秒/步 - loss: 0.9088 - sparse_categorical_accuracy: 0.6448



1310/未知 601秒 458毫秒/步 - loss: 0.9086 - sparse_categorical_accuracy: 0.6448



1311/未知 602秒 458毫秒/步 - loss: 0.9085 - sparse_categorical_accuracy: 0.6449



1312/未知 602秒 458毫秒/步 - loss: 0.9084 - sparse_categorical_accuracy: 0.6449



1313/未知 602秒 458毫秒/步 - loss: 0.9082 - sparse_categorical_accuracy: 0.6450



1314/未知 603秒 458毫秒/步 - loss: 0.9081 - sparse_categorical_accuracy: 0.6450



1315/未知 603秒 458毫秒/步 - loss: 0.9079 - sparse_categorical_accuracy: 0.6451



1316/未知 604秒 458毫秒/步 - loss: 0.9078 - sparse_categorical_accuracy: 0.6451



1317/未知 604秒 458毫秒/步 - loss: 0.9076 - sparse_categorical_accuracy: 0.6452



1318/未知 604秒 458毫秒/步 - loss: 0.9075 - sparse_categorical_accuracy: 0.6452



1319/未知 605秒 458毫秒/步 - loss: 0.9074 - sparse_categorical_accuracy: 0.6452



1320/未知 605秒 458毫秒/步 - loss: 0.9072 - sparse_categorical_accuracy: 0.6453



1321/未知 605秒 458毫秒/步 - loss: 0.9071 - sparse_categorical_accuracy: 0.6453



1322/未知 606秒 458毫秒/步 - loss: 0.9069 - sparse_categorical_accuracy: 0.6454



1323/未知 606秒 458毫秒/步 - loss: 0.9068 - sparse_categorical_accuracy: 0.6454



1324/未知 607秒 458毫秒/步 - loss: 0.9067 - sparse_categorical_accuracy: 0.6455



1325/未知 607秒 458毫秒/步 - loss: 0.9065 - sparse_categorical_accuracy: 0.6455



1326/未知 608秒 458毫秒/步 - loss: 0.9064 - sparse_categorical_accuracy: 0.6455



1327/未知 608秒 458毫秒/步 - loss: 0.9062 - sparse_categorical_accuracy: 0.6456



1328/未知 609秒 458毫秒/步 - loss: 0.9061 - sparse_categorical_accuracy: 0.6456



1329/未知 609秒 458毫秒/步 - loss: 0.9060 - sparse_categorical_accuracy: 0.6457



1330/未知 609秒 458毫秒/步 - loss: 0.9058 - sparse_categorical_accuracy: 0.6457



1331/未知 610秒 458毫秒/步 - loss: 0.9057 - sparse_categorical_accuracy: 0.6458



1332/未知 610秒 458毫秒/步 - loss: 0.9055 - sparse_categorical_accuracy: 0.6458



1333/未知 611秒 458毫秒/步 - loss: 0.9054 - sparse_categorical_accuracy: 0.6459



1334/未知 611秒 458毫秒/步 - loss: 0.9053 - sparse_categorical_accuracy: 0.6459



1335/未知 612秒 458毫秒/步 - loss: 0.9051 - sparse_categorical_accuracy: 0.6459



1336/未知 612秒 458毫秒/步 - loss: 0.9050 - sparse_categorical_accuracy: 0.6460



1337/未知 613秒 458毫秒/步 - loss: 0.9048 - sparse_categorical_accuracy: 0.6460



1338/未知 613秒 458毫秒/步 - loss: 0.9047 - sparse_categorical_accuracy: 0.6461



1339/未知 614秒 458毫秒/步 - loss: 0.9046 - sparse_categorical_accuracy: 0.6461



1340/未知 614秒 458毫秒/步 - loss: 0.9044 - sparse_categorical_accuracy: 0.6462



1341/未知 614秒 458毫秒/步 - loss: 0.9043 - sparse_categorical_accuracy: 0.6462



1342/未知 615秒 458毫秒/步 - loss: 0.9042 - sparse_categorical_accuracy: 0.6462



1343/未知 615秒 458毫秒/步 - loss: 0.9040 - sparse_categorical_accuracy: 0.6463



1344/未知 615秒 458毫秒/步 - loss: 0.9039 - sparse_categorical_accuracy: 0.6463



1345/未知 616秒 458毫秒/步 - loss: 0.9037 - sparse_categorical_accuracy: 0.6464



1346/未知 616秒 458毫秒/步 - loss: 0.9036 - sparse_categorical_accuracy: 0.6464



1347/未知 617秒 457毫秒/步 - loss: 0.9035 - sparse_categorical_accuracy: 0.6465



1348/未知 617秒 457毫秒/步 - loss: 0.9033 - sparse_categorical_accuracy: 0.6465



1349/未知 618秒 457毫秒/步 - loss: 0.9032 - sparse_categorical_accuracy: 0.6465



1350/未知 618秒 457毫秒/步 - loss: 0.9031 - sparse_categorical_accuracy: 0.6466



1351/未知 618秒 457毫秒/步 - loss: 0.9029 - sparse_categorical_accuracy: 0.6466



1352/未知 619秒 457毫秒/步 - loss: 0.9028 - sparse_categorical_accuracy: 0.6467



1353/未知 619秒 457毫秒/步 - loss: 0.9026 - sparse_categorical_accuracy: 0.6467



1354/未知 620秒 457毫秒/步 - loss: 0.9025 - sparse_categorical_accuracy: 0.6468



1355/未知 620秒 457毫秒/步 - loss: 0.9024 - sparse_categorical_accuracy: 0.6468



1356/未知 621秒 457毫秒/步 - loss: 0.9022 - sparse_categorical_accuracy: 0.6468



1357/未知 621秒 457毫秒/步 - loss: 0.9021 - sparse_categorical_accuracy: 0.6469



1358/未知 622秒 457毫秒/步 - loss: 0.9020 - sparse_categorical_accuracy: 0.6469



1359/未知 622秒 457毫秒/步 - loss: 0.9018 - sparse_categorical_accuracy: 0.6470



1360/未知 623秒 457毫秒/步 - loss: 0.9017 - sparse_categorical_accuracy: 0.6470



1361/未知 623秒 457毫秒/步 - loss: 0.9016 - sparse_categorical_accuracy: 0.6471



1362/未知 624秒 457毫秒/步 - loss: 0.9014 - sparse_categorical_accuracy: 0.6471



1363/未知 624秒 457毫秒/步 - loss: 0.9013 - sparse_categorical_accuracy: 0.6471



1364/未知 624秒 457毫秒/步 - loss: 0.9012 - sparse_categorical_accuracy: 0.6472



1365/未知 625秒 457毫秒/步 - loss: 0.9010 - sparse_categorical_accuracy: 0.6472



1366/未知 625秒 457毫秒/步 - loss: 0.9009 - sparse_categorical_accuracy: 0.6473



1367/未知 625秒 457毫秒/步 - loss: 0.9008 - sparse_categorical_accuracy: 0.6473



1368/未知 626秒 457毫秒/步 - loss: 0.9006 - sparse_categorical_accuracy: 0.6474



1369/未知 626秒 457毫秒/步 - loss: 0.9005 - sparse_categorical_accuracy: 0.6474



1370/未知 627秒 457毫秒/步 - loss: 0.9004 - sparse_categorical_accuracy: 0.6474



1371/未知 627秒 457毫秒/步 - loss: 0.9002 - sparse_categorical_accuracy: 0.6475



1372/未知 627秒 457毫秒/步 - loss: 0.9001 - sparse_categorical_accuracy: 0.6475



1373/未知 628秒 457毫秒/步 - loss: 0.9000 - sparse_categorical_accuracy: 0.6476



1374/未知 628秒 457毫秒/步 - loss: 0.8998 - sparse_categorical_accuracy: 0.6476



1375/未知 629秒 457毫秒/步 - loss: 0.8997 - sparse_categorical_accuracy: 0.6476



1376/未知 629秒 457毫秒/步 - loss: 0.8996 - sparse_categorical_accuracy: 0.6477



1377/未知 630秒 457毫秒/步 - loss: 0.8994 - sparse_categorical_accuracy: 0.6477



1378/未知 630秒 457毫秒/步 - loss: 0.8993 - sparse_categorical_accuracy: 0.6478



1379/未知 631秒 457毫秒/步 - loss: 0.8992 - sparse_categorical_accuracy: 0.6478



1380/未知 631秒 457毫秒/步 - loss: 0.8990 - sparse_categorical_accuracy: 0.6479



1381/未知 632秒 457毫秒/步 - loss: 0.8989 - sparse_categorical_accuracy: 0.6479



1382/未知 632秒 457毫秒/步 - loss: 0.8988 - sparse_categorical_accuracy: 0.6479



1383/未知 633秒 457毫秒/步 - loss: 0.8986 - sparse_categorical_accuracy: 0.6480



1384/未知 633秒 457毫秒/步 - loss: 0.8985 - sparse_categorical_accuracy: 0.6480



1385/未知 633秒 457毫秒/步 - loss: 0.8984 - sparse_categorical_accuracy: 0.6481



1386/未知 634秒 457毫秒/步 - loss: 0.8982 - sparse_categorical_accuracy: 0.6481



1387/未知 634秒 457毫秒/步 - loss: 0.8981 - sparse_categorical_accuracy: 0.6481



1388/未知 634秒 457毫秒/步 - loss: 0.8980 - sparse_categorical_accuracy: 0.6482



1389/未知 635秒 457毫秒/步 - loss: 0.8978 - sparse_categorical_accuracy: 0.6482



1390/未知 635秒 457毫秒/步 - loss: 0.8977 - sparse_categorical_accuracy: 0.6483



1391/未知 636秒 457毫秒/步 - loss: 0.8976 - sparse_categorical_accuracy: 0.6483



1392/未知 636秒 457毫秒/步 - loss: 0.8974 - sparse_categorical_accuracy: 0.6483



1393/未知 636秒 456毫秒/步 - loss: 0.8973 - sparse_categorical_accuracy: 0.6484



1394/未知 637秒 456毫秒/步 - loss: 0.8972 - sparse_categorical_accuracy: 0.6484



1395/未知 637秒 456毫秒/步 - loss: 0.8971 - sparse_categorical_accuracy: 0.6485



1396/未知 638秒 456毫秒/步 - loss: 0.8969 - sparse_categorical_accuracy: 0.6485



1397/未知 638秒 456毫秒/步 - loss: 0.8968 - sparse_categorical_accuracy: 0.6485



1398/未知 639秒 456毫秒/步 - loss: 0.8967 - sparse_categorical_accuracy: 0.6486



1399/未知 639秒 456毫秒/步 - loss: 0.8965 - sparse_categorical_accuracy: 0.6486



1400/未知 640秒 456毫秒/步 - loss: 0.8964 - sparse_categorical_accuracy: 0.6487



1401/未知 640秒 456毫秒/步 - loss: 0.8963 - sparse_categorical_accuracy: 0.6487



1402/未知 640秒 456毫秒/步 - loss: 0.8962 - sparse_categorical_accuracy: 0.6488



1403/未知 641秒 456毫秒/步 - loss: 0.8960 - sparse_categorical_accuracy: 0.6488



1404/未知 641秒 456毫秒/步 - loss: 0.8959 - sparse_categorical_accuracy: 0.6488



1405/未知 642秒 456毫秒/步 - loss: 0.8958 - sparse_categorical_accuracy: 0.6489



1406/未知 642秒 456毫秒/步 - loss: 0.8956 - sparse_categorical_accuracy: 0.6489



1407/未知 643秒 456毫秒/步 - loss: 0.8955 - sparse_categorical_accuracy: 0.6490



1408/未知 643秒 456毫秒/步 - loss: 0.8954 - sparse_categorical_accuracy: 0.6490



1409/未知 644秒 457毫秒/步 - loss: 0.8953 - sparse_categorical_accuracy: 0.6490



1410/未知 644秒 457毫秒/步 - loss: 0.8951 - sparse_categorical_accuracy: 0.6491



1411/未知 645秒 457毫秒/步 - loss: 0.8950 - sparse_categorical_accuracy: 0.6491



1412/未知 645秒 457毫秒/步 - loss: 0.8949 - sparse_categorical_accuracy: 0.6492



1413/未知 646秒 457毫秒/步 - loss: 0.8947 - sparse_categorical_accuracy: 0.6492



1414/未知 646秒 457毫秒/步 - loss: 0.8946 - sparse_categorical_accuracy: 0.6492



1415/未知 647秒 457毫秒/步 - loss: 0.8945 - sparse_categorical_accuracy: 0.6493



1416/未知 647秒 457毫秒/步 - loss: 0.8944 - sparse_categorical_accuracy: 0.6493



1417/未知 647秒 457毫秒/步 - loss: 0.8942 - sparse_categorical_accuracy: 0.6494



1418/未知 648秒 457毫秒/步 - loss: 0.8941 - sparse_categorical_accuracy: 0.6494



1419/未知 648秒 457毫秒/步 - loss: 0.8940 - sparse_categorical_accuracy: 0.6494



1420/未知 649秒 456毫秒/步 - loss: 0.8939 - sparse_categorical_accuracy: 0.6495



1421/未知 649秒 456毫秒/步 - loss: 0.8937 - sparse_categorical_accuracy: 0.6495



1422/未知 650秒 456毫秒/步 - loss: 0.8936 - sparse_categorical_accuracy: 0.6495



1423/未知 650秒 456毫秒/步 - loss: 0.8935 - sparse_categorical_accuracy: 0.6496



1424/未知 651秒 456毫秒/步 - loss: 0.8933 - sparse_categorical_accuracy: 0.6496



1425/未知 651秒 456毫秒/步 - loss: 0.8932 - sparse_categorical_accuracy: 0.6497



1426/未知 651秒 456毫秒/步 - loss: 0.8931 - sparse_categorical_accuracy: 0.6497



1427/未知 652秒 456毫秒/步 - loss: 0.8930 - sparse_categorical_accuracy: 0.6497



1428/未知 652秒 456毫秒/步 - loss: 0.8928 - sparse_categorical_accuracy: 0.6498



1429/未知 653秒 456毫秒/步 - loss: 0.8927 - sparse_categorical_accuracy: 0.6498



1430/未知 653秒 456毫秒/步 - loss: 0.8926 - sparse_categorical_accuracy: 0.6499



1431/未知 653秒 456毫秒/步 - loss: 0.8925 - sparse_categorical_accuracy: 0.6499



1432/未知 654秒 456毫秒/步 - loss: 0.8923 - sparse_categorical_accuracy: 0.6499



1433/未知 654秒 456毫秒/步 - loss: 0.8922 - sparse_categorical_accuracy: 0.6500



1434/未知 655秒 456毫秒/步 - loss: 0.8921 - sparse_categorical_accuracy: 0.6500



1435/未知 655秒 456毫秒/步 - loss: 0.8920 - sparse_categorical_accuracy: 0.6501



1436/未知 655秒 456毫秒/步 - loss: 0.8918 - sparse_categorical_accuracy: 0.6501



1437/未知 656秒 456毫秒/步 - loss: 0.8917 - sparse_categorical_accuracy: 0.6501



1438/未知 656秒 456毫秒/步 - loss: 0.8916 - sparse_categorical_accuracy: 0.6502



1439/未知 657秒 456毫秒/步 - loss: 0.8915 - sparse_categorical_accuracy: 0.6502



1440/未知 657秒 456毫秒/步 - loss: 0.8913 - sparse_categorical_accuracy: 0.6503



1441/未知 657秒 456毫秒/步 - loss: 0.8912 - sparse_categorical_accuracy: 0.6503



1442/未知 658秒 456毫秒/步 - loss: 0.8911 - sparse_categorical_accuracy: 0.6503



1443/未知 658秒 456毫秒/步 - loss: 0.8910 - sparse_categorical_accuracy: 0.6504



1444/未知 659秒 456毫秒/步 - loss: 0.8909 - sparse_categorical_accuracy: 0.6504



1445/未知 659秒 456毫秒/步 - loss: 0.8907 - sparse_categorical_accuracy: 0.6504



1446/未知 660秒 456毫秒/步 - loss: 0.8906 - sparse_categorical_accuracy: 0.6505



1447/未知 660秒 456毫秒/步 - loss: 0.8905 - sparse_categorical_accuracy: 0.6505



1448/未知 661秒 456毫秒/步 - loss: 0.8904 - sparse_categorical_accuracy: 0.6506



1449/未知 661秒 456毫秒/步 - loss: 0.8902 - sparse_categorical_accuracy: 0.6506



1450/未知 662秒 456毫秒/步 - loss: 0.8901 - sparse_categorical_accuracy: 0.6506



1451/未知 662秒 456毫秒/步 - loss: 0.8900 - sparse_categorical_accuracy: 0.6507



1452/未知 662秒 456毫秒/步 - loss: 0.8899 - sparse_categorical_accuracy: 0.6507



1453/未知 663秒 456毫秒/步 - loss: 0.8897 - sparse_categorical_accuracy: 0.6508



1454/未知 663秒 456毫秒/步 - loss: 0.8896 - sparse_categorical_accuracy: 0.6508



1455/未知 664秒 456毫秒/步 - loss: 0.8895 - sparse_categorical_accuracy: 0.6508



1456/未知 664秒 456毫秒/步 - loss: 0.8894 - sparse_categorical_accuracy: 0.6509



1457/未知 665秒 456毫秒/步 - loss: 0.8893 - sparse_categorical_accuracy: 0.6509



1458/未知 665秒 456毫秒/步 - loss: 0.8891 - sparse_categorical_accuracy: 0.6509



1459/未知 665秒 456毫秒/步 - loss: 0.8890 - sparse_categorical_accuracy: 0.6510



1460/未知 666秒 456毫秒/步 - loss: 0.8889 - sparse_categorical_accuracy: 0.6510



1461/未知 666秒 456毫秒/步 - loss: 0.8888 - sparse_categorical_accuracy: 0.6511



1462/未知 667秒 456毫秒/步 - loss: 0.8887 - sparse_categorical_accuracy: 0.6511



1463/未知 667秒 455毫秒/步 - loss: 0.8885 - sparse_categorical_accuracy: 0.6511



1464/未知 667秒 455毫秒/步 - loss: 0.8884 - sparse_categorical_accuracy: 0.6512



1465/未知 668秒 455毫秒/步 - loss: 0.8883 - sparse_categorical_accuracy: 0.6512



1466/未知 668秒 455毫秒/步 - loss: 0.8882 - sparse_categorical_accuracy: 0.6512



1467/未知 669秒 455毫秒/步 - loss: 0.8880 - sparse_categorical_accuracy: 0.6513



1468/未知 669秒 455毫秒/步 - loss: 0.8879 - sparse_categorical_accuracy: 0.6513



1469/未知 669秒 455毫秒/步 - loss: 0.8878 - sparse_categorical_accuracy: 0.6514



1470/未知 670秒 455毫秒/步 - loss: 0.8877 - sparse_categorical_accuracy: 0.6514



1471/未知 670秒 455毫秒/步 - loss: 0.8876 - sparse_categorical_accuracy: 0.6514



1472/未知 671秒 455毫秒/步 - loss: 0.8874 - sparse_categorical_accuracy: 0.6515



1473/未知 671秒 455毫秒/步 - loss: 0.8873 - sparse_categorical_accuracy: 0.6515



1474/未知 672秒 455毫秒/步 - loss: 0.8872 - sparse_categorical_accuracy: 0.6515



1475/未知 672秒 455毫秒/步 - loss: 0.8871 - sparse_categorical_accuracy: 0.6516



1476/未知 673秒 455毫秒/步 - loss: 0.8870 - sparse_categorical_accuracy: 0.6516



1477/未知 673秒 455毫秒/步 - loss: 0.8868 - sparse_categorical_accuracy: 0.6517



1478/未知 673秒 455毫秒/步 - loss: 0.8867 - sparse_categorical_accuracy: 0.6517



1479/未知 674秒 455毫秒/步 - loss: 0.8866 - sparse_categorical_accuracy: 0.6517



1480/未知 674秒 455毫秒/步 - loss: 0.8865 - sparse_categorical_accuracy: 0.6518



1481/未知 674秒 455毫秒/步 - loss: 0.8864 - sparse_categorical_accuracy: 0.6518



1482/未知 675秒 455毫秒/步 - loss: 0.8863 - sparse_categorical_accuracy: 0.6518



1483/未知 675秒 455毫秒/步 - loss: 0.8861 - sparse_categorical_accuracy: 0.6519



1484/未知 676秒 455毫秒/步 - loss: 0.8860 - sparse_categorical_accuracy: 0.6519



1485/未知 676秒 455毫秒/步 - loss: 0.8859 - sparse_categorical_accuracy: 0.6520



1486/未知 677秒 455毫秒/步 - loss: 0.8858 - sparse_categorical_accuracy: 0.6520



1487/未知 677秒 455毫秒/步 - loss: 0.8857 - sparse_categorical_accuracy: 0.6520



1488/未知 677秒 455毫秒/步 - loss: 0.8855 - sparse_categorical_accuracy: 0.6521



1489/未知 678秒 455毫秒/步 - loss: 0.8854 - sparse_categorical_accuracy: 0.6521



1490/未知 678秒 455毫秒/步 - loss: 0.8853 - sparse_categorical_accuracy: 0.6521



1491/未知 679秒 455毫秒/步 - loss: 0.8852 - sparse_categorical_accuracy: 0.6522



1492/未知 679秒 455毫秒/步 - loss: 0.8851 - sparse_categorical_accuracy: 0.6522



1493/未知 679秒 455毫秒/步 - loss: 0.8850 - sparse_categorical_accuracy: 0.6523



1494/未知 680秒 455毫秒/步 - loss: 0.8848 - sparse_categorical_accuracy: 0.6523



1495/未知 680秒 455毫秒/步 - loss: 0.8847 - sparse_categorical_accuracy: 0.6523



1496/未知 681秒 455毫秒/步 - loss: 0.8846 - sparse_categorical_accuracy: 0.6524



1497/未知 681秒 455毫秒/步 - loss: 0.8845 - sparse_categorical_accuracy: 0.6524



1498/未知 682秒 455毫秒/步 - loss: 0.8844 - sparse_categorical_accuracy: 0.6524



1499/未知 682秒 455毫秒/步 - loss: 0.8843 - sparse_categorical_accuracy: 0.6525



1500/未知 683秒 455毫秒/步 - loss: 0.8841 - sparse_categorical_accuracy: 0.6525



1501/未知 683秒 455毫秒/步 - loss: 0.8840 - sparse_categorical_accuracy: 0.6525



1502/未知 684秒 455毫秒/步 - loss: 0.8839 - sparse_categorical_accuracy: 0.6526



1503/未知 684秒 455毫秒/步 - loss: 0.8838 - sparse_categorical_accuracy: 0.6526



1504/未知 685秒 455毫秒/步 - loss: 0.8837 - sparse_categorical_accuracy: 0.6527



1505/未知 685秒 455毫秒/步 - loss: 0.8836 - sparse_categorical_accuracy: 0.6527



1506/未知 685秒 455毫秒/步 - loss: 0.8834 - sparse_categorical_accuracy: 0.6527



1507/未知 686秒 455毫秒/步 - loss: 0.8833 - sparse_categorical_accuracy: 0.6528



1508/未知 686秒 455毫秒/步 - loss: 0.8832 - sparse_categorical_accuracy: 0.6528



1509/未知 687秒 455毫秒/步 - loss: 0.8831 - sparse_categorical_accuracy: 0.6528



1510/未知 687秒 455毫秒/步 - loss: 0.8830 - sparse_categorical_accuracy: 0.6529



1511/未知 687秒 455毫秒/步 - loss: 0.8829 - sparse_categorical_accuracy: 0.6529



1512/未知 688秒 454毫秒/步 - loss: 0.8827 - sparse_categorical_accuracy: 0.6529



1513/未知 688秒 454毫秒/步 - loss: 0.8826 - sparse_categorical_accuracy: 0.6530



1514/未知 688秒 454毫秒/步 - loss: 0.8825 - sparse_categorical_accuracy: 0.6530



1515/未知 689秒 454毫秒/步 - loss: 0.8824 - sparse_categorical_accuracy: 0.6531



1516/未知 689秒 454毫秒/步 - loss: 0.8823 - sparse_categorical_accuracy: 0.6531



1517/未知 690秒 454毫秒/步 - loss: 0.8822 - sparse_categorical_accuracy: 0.6531



1518/未知 690秒 454毫秒/步 - loss: 0.8821 - sparse_categorical_accuracy: 0.6532



1519/未知 690秒 454毫秒/步 - loss: 0.8819 - sparse_categorical_accuracy: 0.6532



1520/未知 691秒 454毫秒/步 - loss: 0.8818 - sparse_categorical_accuracy: 0.6532



1521/未知 691秒 454毫秒/步 - loss: 0.8817 - sparse_categorical_accuracy: 0.6533



1522/未知 692秒 454毫秒/步 - loss: 0.8816 - sparse_categorical_accuracy: 0.6533



1523/未知 692秒 454毫秒/步 - loss: 0.8815 - sparse_categorical_accuracy: 0.6533



1524/未知 693秒 454毫秒/步 - loss: 0.8814 - sparse_categorical_accuracy: 0.6534



1525/未知 693秒 454毫秒/步 - loss: 0.8813 - sparse_categorical_accuracy: 0.6534



1526/未知 694秒 454毫秒/步 - loss: 0.8811 - sparse_categorical_accuracy: 0.6534



1527/未知 694秒 454毫秒/步 - loss: 0.8810 - sparse_categorical_accuracy: 0.6535



1528/未知 695秒 454毫秒/步 - loss: 0.8809 - sparse_categorical_accuracy: 0.6535



1529/未知 695秒 454毫秒/步 - loss: 0.8808 - sparse_categorical_accuracy: 0.6536



1530/未知 695秒 454毫秒/步 - loss: 0.8807 - sparse_categorical_accuracy: 0.6536



1531/未知 696秒 454毫秒/步 - loss: 0.8806 - sparse_categorical_accuracy: 0.6536



1532/未知 696秒 454毫秒/步 - loss: 0.8805 - sparse_categorical_accuracy: 0.6537



1533/未知 697秒 454毫秒/步 - loss: 0.8803 - sparse_categorical_accuracy: 0.6537



1534/未知 697秒 454毫秒/步 - loss: 0.8802 - sparse_categorical_accuracy: 0.6537



1535/未知 697秒 454毫秒/步 - loss: 0.8801 - sparse_categorical_accuracy: 0.6538



1536/未知 698秒 454毫秒/步 - loss: 0.8800 - sparse_categorical_accuracy: 0.6538



1537/未知 698秒 454毫秒/步 - loss: 0.8799 - sparse_categorical_accuracy: 0.6538



1538/未知 699秒 454毫秒/步 - loss: 0.8798 - sparse_categorical_accuracy: 0.6539



1539/未知 699秒 454毫秒/步 - loss: 0.8797 - sparse_categorical_accuracy: 0.6539



1540/未知 699秒 454毫秒/步 - loss: 0.8796 - sparse_categorical_accuracy: 0.6539



1541/未知 700秒 454毫秒/步 - loss: 0.8794 - sparse_categorical_accuracy: 0.6540



1542/未知 700秒 454毫秒/步 - loss: 0.8793 - sparse_categorical_accuracy: 0.6540



1543/未知 701秒 454毫秒/步 - loss: 0.8792 - sparse_categorical_accuracy: 0.6540



1544/未知 701秒 454毫秒/步 - loss: 0.8791 - sparse_categorical_accuracy: 0.6541



1545/未知 702秒 454毫秒/步 - loss: 0.8790 - sparse_categorical_accuracy: 0.6541



1546/未知 702秒 454毫秒/步 - loss: 0.8789 - sparse_categorical_accuracy: 0.6542



1547/未知 702秒 454毫秒/步 - loss: 0.8788 - sparse_categorical_accuracy: 0.6542



1548/未知 703秒 454毫秒/步 - 损失: 0.8787 - 稀疏分类准确率: 0.6542



1549/未知 703秒 454毫秒/步 - 损失: 0.8786 - 稀疏分类准确率: 0.6543



1550/未知 704秒 454毫秒/步 - 损失: 0.8784 - 稀疏分类准确率: 0.6543



1551/未知 704秒 454毫秒/步 - 损失: 0.8783 - 稀疏分类准确率: 0.6543



1552/未知 705秒 454毫秒/步 - 损失: 0.8782 - 稀疏分类准确率: 0.6544



1553/未知 705秒 454毫秒/步 - 损失: 0.8781 - 稀疏分类准确率: 0.6544



1554/未知 705秒 454毫秒/步 - 损失: 0.8780 - 稀疏分类准确率: 0.6544



1555/未知 706秒 453毫秒/步 - 损失: 0.8779 - 稀疏分类准确率: 0.6545



1556/未知 706秒 453毫秒/步 - 损失: 0.8778 - 稀疏分类准确率: 0.6545



1557/未知 706秒 453毫秒/步 - 损失: 0.8777 - 稀疏分类准确率: 0.6545



1558/未知 707秒 453毫秒/步 - 损失: 0.8776 - 稀疏分类准确率: 0.6546



1559/未知 707秒 453毫秒/步 - 损失: 0.8774 - 稀疏分类准确率: 0.6546



1560/未知 708秒 453毫秒/步 - 损失: 0.8773 - 稀疏分类准确率: 0.6546



1561/未知 708秒 453毫秒/步 - 损失: 0.8772 - 稀疏分类准确率: 0.6547



1562/未知 708秒 453毫秒/步 - 损失: 0.8771 - 稀疏分类准确率: 0.6547



1563/未知 709秒 453毫秒/步 - 损失: 0.8770 - 稀疏分类准确率: 0.6547



1564/未知 709秒 453毫秒/步 - 损失: 0.8769 - 稀疏分类准确率: 0.6548



1565/未知 710秒 453毫秒/步 - 损失: 0.8768 - 稀疏分类准确率: 0.6548



1566/未知 710秒 453毫秒/步 - 损失: 0.8767 - 稀疏分类准确率: 0.6548



1567/未知 711秒 453毫秒/步 - 损失: 0.8766 - 稀疏分类准确率: 0.6549



1568/未知 711秒 453毫秒/步 - 损失: 0.8765 - 稀疏分类准确率: 0.6549



1569/未知 711秒 453毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6549



1570/未知 712秒 453毫秒/步 - 损失: 0.8762 - 稀疏分类准确率: 0.6550



1571/未知 712秒 453毫秒/步 - 损失: 0.8761 - 稀疏分类准确率: 0.6550



1572/未知 713秒 453毫秒/步 - 损失: 0.8760 - 稀疏分类准确率: 0.6550



1573/未知 713秒 453毫秒/步 - 损失: 0.8759 - 稀疏分类准确率: 0.6551



1574/未知 714秒 453毫秒/步 - 损失: 0.8758 - 稀疏分类准确率: 0.6551



1575/未知 714秒 453毫秒/步 - 损失: 0.8757 - 稀疏分类准确率: 0.6552



1576/未知 715秒 453毫秒/步 - 损失: 0.8756 - 稀疏分类准确率: 0.6552



1577/未知 715秒 453毫秒/步 - 损失: 0.8755 - 稀疏分类准确率: 0.6552



1578/未知 715秒 453毫秒/步 - 损失: 0.8754 - 稀疏分类准确率: 0.6553



1579/未知 716秒 453毫秒/步 - 损失: 0.8753 - 稀疏分类准确率: 0.6553



1580/未知 716秒 453毫秒/步 - 损失: 0.8752 - 稀疏分类准确率: 0.6553



1581/未知 716秒 453毫秒/步 - 损失: 0.8750 - 稀疏分类准确率: 0.6554



1582/未知 717秒 453毫秒/步 - 损失: 0.8749 - 稀疏分类准确率: 0.6554



1583/未知 717秒 453毫秒/步 - 损失: 0.8748 - 稀疏分类准确率: 0.6554



1584/未知 718秒 453毫秒/步 - 损失: 0.8747 - 稀疏分类准确率: 0.6555



1585/未知 718秒 453毫秒/步 - 损失: 0.8746 - 稀疏分类准确率: 0.6555



1586/未知 718秒 453毫秒/步 - 损失: 0.8745 - 稀疏分类准确率: 0.6555



1587/未知 719秒 453毫秒/步 - 损失: 0.8744 - 稀疏分类准确率: 0.6556



1588/未知 719秒 453毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6556



1589/未知 720秒 453毫秒/步 - 损失: 0.8742 - 稀疏分类准确率: 0.6556



1590/未知 720秒 453毫秒/步 - 损失: 0.8741 - 稀疏分类准确率: 0.6557



1591/未知 721秒 453毫秒/步 - 损失: 0.8740 - 稀疏分类准确率: 0.6557



1592/未知 721秒 452毫秒/步 - 损失: 0.8739 - 稀疏分类准确率: 0.6557



1593/未知 721秒 452毫秒/步 - 损失: 0.8738 - 稀疏分类准确率: 0.6558



1594/未知 722秒 452毫秒/步 - 损失: 0.8737 - 稀疏分类准确率: 0.6558



1595/未知 722秒 452毫秒/步 - 损失: 0.8735 - 稀疏分类准确率: 0.6558



1596/未知 723秒 452毫秒/步 - 损失: 0.8734 - 稀疏分类准确率: 0.6559



1597/未知 723秒 453毫秒/步 - 损失: 0.8733 - 稀疏分类准确率: 0.6559



1598/未知 724秒 453毫秒/步 - 损失: 0.8732 - 稀疏分类准确率: 0.6559



1599/未知 724秒 453毫秒/步 - 损失: 0.8731 - 稀疏分类准确率: 0.6560



1600/未知 725秒 453毫秒/步 - 损失: 0.8730 - 稀疏分类准确率: 0.6560



1601/未知 725秒 452毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6560



1602/未知 725秒 452毫秒/步 - 损失: 0.8728 - 稀疏分类准确率: 0.6561



1603/未知 726秒 452毫秒/步 - 损失: 0.8727 - 稀疏分类准确率: 0.6561



1604/未知 726秒 452毫秒/步 - 损失: 0.8726 - 稀疏分类准确率: 0.6561



1605/未知 726秒 452毫秒/步 - 损失: 0.8725 - 稀疏分类准确率: 0.6562



1606/未知 727秒 452毫秒/步 - 损失: 0.8724 - 稀疏分类准确率: 0.6562



1607/未知 727秒 452毫秒/步 - 损失: 0.8723 - 稀疏分类准确率: 0.6562



1608/未知 728秒 452毫秒/步 - 损失: 0.8722 - 稀疏分类准确率: 0.6563



1609/未知 728秒 452毫秒/步 - 损失: 0.8721 - 稀疏分类准确率: 0.6563



1610/未知 728秒 452毫秒/步 - 损失: 0.8720 - 稀疏分类准确率: 0.6563



1611/未知 729秒 452毫秒/步 - 损失: 0.8719 - 稀疏分类准确率: 0.6564



1612/未知 729秒 452毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6564



1613/未知 730秒 452毫秒/步 - 损失: 0.8716 - 稀疏分类准确率: 0.6564



1614/未知 730秒 452毫秒/步 - 损失: 0.8715 - 稀疏分类准确率: 0.6565



1615/未知 730秒 452毫秒/步 - 损失: 0.8714 - 稀疏分类准确率: 0.6565



1616/未知 731秒 452毫秒/步 - 损失: 0.8713 - 稀疏分类准确率: 0.6565



1617/未知 731秒 452毫秒/步 - 损失: 0.8712 - 稀疏分类准确率: 0.6566



1618/未知 732秒 452毫秒/步 - 损失: 0.8711 - 稀疏分类准确率: 0.6566



1619/未知 732秒 452毫秒/步 - 损失: 0.8710 - 稀疏分类准确率: 0.6566



1620/未知 733秒 452毫秒/步 - 损失: 0.8709 - 稀疏分类准确率: 0.6567



1621/未知 733秒 452毫秒/步 - 损失: 0.8708 - 稀疏分类准确率: 0.6567



1622/未知 734秒 452毫秒/步 - 损失: 0.8707 - 稀疏分类准确率: 0.6567



1623/未知 734秒 452毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6567



1624/未知 734秒 452毫秒/步 - 损失: 0.8705 - 稀疏分类准确率: 0.6568



1625/未知 735秒 452毫秒/步 - 损失: 0.8704 - 稀疏分类准确率: 0.6568



1626/未知 735秒 452毫秒/步 - 损失: 0.8703 - 稀疏分类准确率: 0.6568



1627/未知 736秒 452毫秒/步 - 损失: 0.8702 - 稀疏分类准确率: 0.6569



1628/未知 736秒 452毫秒/步 - 损失: 0.8701 - 稀疏分类准确率: 0.6569



1629/未知 736秒 452毫秒/步 - 损失: 0.8700 - 稀疏分类准确率: 0.6569



1630/未知 737秒 452毫秒/步 - 损失: 0.8699 - 稀疏分类准确率: 0.6570



1631/未知 737秒 452毫秒/步 - 损失: 0.8698 - 稀疏分类准确率: 0.6570



1632/未知 738秒 452毫秒/步 - 损失: 0.8697 - 稀疏分类准确率: 0.6570



1633/未知 738秒 452毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6571



1634/未知 738秒 451毫秒/步 - 损失: 0.8695 - 稀疏分类准确率: 0.6571



1635/未知 739秒 451毫秒/步 - 损失: 0.8694 - 稀疏分类准确率: 0.6571



1636/未知 739秒 451毫秒/步 - 损失: 0.8693 - 稀疏分类准确率: 0.6572



1637/未知 739秒 451毫秒/步 - 损失: 0.8692 - 稀疏分类准确率: 0.6572



1638/未知 740秒 451毫秒/步 - 损失: 0.8690 - 稀疏分类准确率: 0.6572



1639/未知 740秒 451毫秒/步 - 损失: 0.8689 - 稀疏分类准确率: 0.6573



1640/未知 741秒 451毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6573



1641/未知 741秒 451毫秒/步 - 损失: 0.8687 - 稀疏分类准确率: 0.6573



1642/未知 742秒 451毫秒/步 - 损失: 0.8686 - 稀疏分类准确率: 0.6574



1643/未知 742秒 451毫秒/步 - 损失: 0.8685 - 稀疏分类准确率: 0.6574



1644/未知 743秒 451毫秒/步 - 损失: 0.8684 - 稀疏分类准确率: 0.6574



1645/未知 743秒 451毫秒/步 - 损失: 0.8683 - 稀疏分类准确率: 0.6575



1646/未知 743秒 451毫秒/步 - 损失: 0.8682 - 稀疏分类准确率: 0.6575



1647/未知 744秒 451毫秒/步 - 损失: 0.8681 - 稀疏分类准确率: 0.6575



1648/未知 744秒 451毫秒/步 - 损失: 0.8680 - 稀疏分类准确率: 0.6576



1649/未知 744秒 451毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6576



1650/未知 745秒 451毫秒/步 - 损失: 0.8678 - 稀疏分类准确率: 0.6576



1651/未知 745秒 451毫秒/步 - 损失: 0.8677 - 稀疏分类准确率: 0.6577



1652/未知 746秒 451毫秒/步 - 损失: 0.8676 - 稀疏分类准确率: 0.6577



1653/未知 746秒 451毫秒/步 - 损失: 0.8675 - 稀疏分类准确率: 0.6577



1654/未知 746秒 451毫秒/步 - 损失: 0.8674 - 稀疏分类准确率: 0.6577



1655/未知 747秒 451毫秒/步 - 损失: 0.8673 - 稀疏分类准确率: 0.6578



1656/未知 747秒 451毫秒/步 - 损失: 0.8672 - 稀疏分类准确率: 0.6578



1657/未知 748秒 451毫秒/步 - 损失: 0.8671 - 稀疏分类准确率: 0.6578



1658/未知 748秒 451毫秒/步 - 损失: 0.8670 - 稀疏分类准确率: 0.6579



1659/未知 749秒 451毫秒/步 - 损失: 0.8669 - 稀疏分类准确率: 0.6579



1660/未知 749秒 451毫秒/步 - 损失: 0.8668 - 稀疏分类准确率: 0.6579



1661/未知 749秒 451毫秒/步 - 损失: 0.8667 - 稀疏分类准确率: 0.6580



1662/未知 750秒 451毫秒/步 - 损失: 0.8666 - 稀疏分类准确率: 0.6580



1663/未知 750秒 451毫秒/步 - 损失: 0.8665 - 稀疏分类准确率: 0.6580



1664/未知 750秒 451毫秒/步 - 损失: 0.8664 - 稀疏分类准确率: 0.6581



1665/未知 751秒 451毫秒/步 - 损失: 0.8663 - 稀疏分类准确率: 0.6581



1666/未知 751秒 451毫秒/步 - 损失: 0.8662 - 稀疏分类准确率: 0.6581



1667/未知 752秒 451毫秒/步 - 损失: 0.8661 - 稀疏分类准确率: 0.6582



1668/未知 752秒 451毫秒/步 - 损失: 0.8660 - 稀疏分类准确率: 0.6582



1669/未知 753秒 451毫秒/步 - 损失: 0.8659 - 稀疏分类准确率: 0.6582



1670/未知 753秒 451毫秒/步 - 损失: 0.8658 - 稀疏分类准确率: 0.6583



1671/未知 754秒 451毫秒/步 - 损失: 0.8657 - 稀疏分类准确率: 0.6583



1672/未知 754秒 451毫秒/步 - 损失: 0.8656 - 稀疏分类准确率: 0.6583



1673/未知 755秒 451毫秒/步 - 损失: 0.8655 - 稀疏分类准确率: 0.6583



1674/未知 755秒 451毫秒/步 - 损失: 0.8654 - 稀疏分类准确率: 0.6584



1675/未知 755秒 451毫秒/步 - 损失: 0.8653 - 稀疏分类准确率: 0.6584



1676/未知 756秒 451毫秒/步 - 损失: 0.8652 - 稀疏分类准确率: 0.6584



1677/未知 756秒 451毫秒/步 - 损失: 0.8651 - 稀疏分类准确率: 0.6585



1678/未知 757秒 451毫秒/步 - 损失: 0.8650 - 稀疏分类准确率: 0.6585



1679/未知 757秒 450毫秒/步 - 损失: 0.8649 - 稀疏分类准确率: 0.6585



1680/未知 757秒 450毫秒/步 - 损失: 0.8648 - 稀疏分类准确率: 0.6586



1681/未知 758秒 450毫秒/步 - 损失: 0.8647 - 稀疏分类准确率: 0.6586



1682/未知 758秒 450毫秒/步 - 损失: 0.8646 - 稀疏分类准确率: 0.6586



1683/未知 758秒 450毫秒/步 - 损失: 0.8645 - 稀疏分类准确率: 0.6587



1684/未知 759秒 450毫秒/步 - 损失: 0.8644 - 稀疏分类准确率: 0.6587



1685/未知 759秒 450毫秒/步 - 损失: 0.8643 - 稀疏分类准确率: 0.6587



1686/未知 760秒 450毫秒/步 - 损失: 0.8642 - 稀疏分类准确率: 0.6587



1687/未知 760秒 450毫秒/步 - 损失: 0.8641 - 稀疏分类准确率: 0.6588



1688/未知 760秒 450毫秒/步 - 损失: 0.8640 - 稀疏分类准确率: 0.6588



1689/未知 761秒 450毫秒/步 - 损失: 0.8639 - 稀疏分类准确率: 0.6588



1690/未知 761秒 450毫秒/步 - 损失: 0.8638 - 稀疏分类准确率: 0.6589



1691/未知 762秒 450毫秒/步 - 损失: 0.8637 - 稀疏分类准确率: 0.6589



1692/未知 762秒 450毫秒/步 - 损失: 0.8636 - 稀疏分类准确率: 0.6589



1693/未知 762秒 450毫秒/步 - 损失: 0.8635 - 稀疏分类准确率: 0.6590



1694/未知 763秒 450毫秒/步 - 损失: 0.8634 - 稀疏分类准确率: 0.6590



1695/未知 763秒 450毫秒/步 - 损失: 0.8633 - 稀疏分类准确率: 0.6590



1696/未知 764秒 450毫秒/步 - 损失: 0.8632 - 稀疏分类准确率: 0.6591



1697/未知 764秒 450毫秒/步 - 损失: 0.8632 - 稀疏分类准确率: 0.6591



1698/未知 765秒 450毫秒/步 - 损失: 0.8631 - 稀疏分类准确率: 0.6591



1699/未知 765秒 450毫秒/步 - 损失: 0.8630 - 稀疏分类准确率: 0.6591



1700/未知 766秒 450毫秒/步 - 损失: 0.8629 - 稀疏分类准确率: 0.6592



1701/未知 766秒 450毫秒/步 - 损失: 0.8628 - 稀疏分类准确率: 0.6592



1702/未知 766秒 450毫秒/步 - 损失: 0.8627 - 稀疏分类准确率: 0.6592



1703/未知 767秒 450毫秒/步 - 损失: 0.8626 - 稀疏分类准确率: 0.6593



1704/未知 767秒 450毫秒/步 - 损失: 0.8625 - 稀疏分类准确率: 0.6593



1705/未知 768秒 450毫秒/步 - 损失: 0.8624 - 稀疏分类准确率: 0.6593



1706/未知 768秒 450毫秒/步 - 损失: 0.8623 - 稀疏分类准确率: 0.6594



1707/未知 768秒 450毫秒/步 - 损失: 0.8622 - 稀疏分类准确率: 0.6594



1708/未知 769秒 450毫秒/步 - 损失: 0.8621 - 稀疏分类准确率: 0.6594



1709/未知 769秒 450毫秒/步 - 损失: 0.8620 - 稀疏分类准确率: 0.6595



1710/未知 770秒 450毫秒/步 - 损失: 0.8619 - 稀疏分类准确率: 0.6595



1711/未知 770秒 450毫秒/步 - 损失: 0.8618 - 稀疏分类准确率: 0.6595



1712/未知 770秒 450毫秒/步 - 损失: 0.8617 - 稀疏分类准确率: 0.6595



1713/未知 771秒 450毫秒/步 - 损失: 0.8616 - 稀疏分类准确率: 0.6596



1714/未知 771秒 450毫秒/步 - 损失: 0.8615 - 稀疏分类准确率: 0.6596



1715/未知 772秒 450毫秒/步 - 损失: 0.8614 - 稀疏分类准确率: 0.6596



1716/未知 772秒 450毫秒/步 - 损失: 0.8613 - 稀疏分类准确率: 0.6597



1717/未知 773秒 450毫秒/步 - 损失: 0.8612 - 稀疏分类准确率: 0.6597



1718/未知 773秒 450毫秒/步 - 损失: 0.8611 - 稀疏分类准确率: 0.6597



1719/未知 774秒 450毫秒/步 - 损失: 0.8610 - 稀疏分类准确率: 0.6598



1720/未知 774秒 450毫秒/步 - 损失: 0.8609 - 稀疏分类准确率: 0.6598



1721/未知 774秒 450毫秒/步 - 损失: 0.8608 - 稀疏分类准确率: 0.6598



1722/未知 775秒 450毫秒/步 - 损失: 0.8607 - 稀疏分类准确率: 0.6598



1723/未知 775秒 450毫秒/步 - 损失: 0.8606 - 稀疏分类准确率: 0.6599



1724/未知 776秒 450毫秒/步 - 损失: 0.8606 - 稀疏分类准确率: 0.6599



1725/未知 776秒 450毫秒/步 - 损失: 0.8605 - 稀疏分类准确率: 0.6599



1726/未知 777秒 450毫秒/步 - 损失: 0.8604 - 稀疏分类准确率: 0.6600



1727/未知 777秒 450毫秒/步 - 损失: 0.8603 - 稀疏分类准确率: 0.6600



1728/未知 777秒 450毫秒/步 - 损失: 0.8602 - 稀疏分类准确率: 0.6600



1729/未知 778秒 450毫秒/步 - 损失: 0.8601 - 稀疏分类准确率: 0.6601



1730/未知 778秒 449毫秒/步 - 损失: 0.8600 - 稀疏分类准确率: 0.6601



1731/未知 779秒 449毫秒/步 - 损失: 0.8599 - 稀疏分类准确率: 0.6601



1732/未知 779秒 449毫秒/步 - 损失: 0.8598 - 稀疏分类准确率: 0.6601



1733/未知 779秒 449毫秒/步 - 损失: 0.8597 - 稀疏分类准确率: 0.6602



1734/未知 780秒 449毫秒/步 - 损失: 0.8596 - 稀疏分类准确率: 0.6602



1735/未知 780秒 449毫秒/步 - 损失: 0.8595 - 稀疏分类准确率: 0.6602



1736/未知 780秒 449毫秒/步 - 损失: 0.8594 - 稀疏分类准确率: 0.6603



1737/未知 781秒 449毫秒/步 - 损失: 0.8593 - 稀疏分类准确率: 0.6603



1738/未知 781秒 449毫秒/步 - 损失: 0.8592 - 稀疏分类准确率: 0.6603



1739/未知 782秒 449毫秒/步 - 损失: 0.8591 - 稀疏分类准确率: 0.6603



1740/未知 782秒 449毫秒/步 - 损失: 0.8590 - 稀疏分类准确率: 0.6604



1741/未知 782秒 449毫秒/步 - 损失: 0.8589 - 稀疏分类准确率: 0.6604



1742/未知 783秒 449毫秒/步 - 损失: 0.8589 - 稀疏分类准确率: 0.6604



1743/未知 783秒 449毫秒/步 - 损失: 0.8588 - 稀疏分类准确率: 0.6605



1744/未知 784秒 449毫秒/步 - 损失: 0.8587 - 稀疏分类准确率: 0.6605



1745/未知 784秒 449毫秒/步 - 损失: 0.8586 - 稀疏分类准确率: 0.6605



1746/未知 785秒 449毫秒/步 - 损失: 0.8585 - 稀疏分类准确率: 0.6606



1747/未知 785秒 449毫秒/步 - 损失: 0.8584 - 稀疏分类准确率: 0.6606



1748/未知 786秒 449毫秒/步 - 损失: 0.8583 - 稀疏分类准确率: 0.6606



1749/未知 786秒 449毫秒/步 - 损失: 0.8582 - 稀疏分类准确率: 0.6606



1750/未知 787秒 449毫秒/步 - 损失: 0.8581 - 稀疏分类准确率: 0.6607



1751/未知 787秒 449毫秒/步 - 损失: 0.8580 - 稀疏分类准确率: 0.6607



1752/未知 787秒 449毫秒/步 - 损失: 0.8579 - 稀疏分类准确率: 0.6607



1753/未知 788秒 449毫秒/步 - 损失: 0.8578 - 稀疏分类准确率: 0.6608



1754/未知 788秒 449毫秒/步 - 损失: 0.8577 - 稀疏分类准确率: 0.6608



1755/未知 789秒 449毫秒/步 - 损失: 0.8576 - 稀疏分类准确率: 0.6608



1756/未知 789秒 449毫秒/步 - 损失: 0.8576 - 稀疏分类准确率: 0.6608



1757/未知 789秒 449毫秒/步 - 损失: 0.8575 - 稀疏分类准确率: 0.6609



1758/未知 790秒 449毫秒/步 - 损失: 0.8574 - 稀疏分类准确率: 0.6609



1759/未知 790秒 449毫秒/步 - 损失: 0.8573 - 稀疏分类准确率: 0.6609



1760/未知 791秒 449毫秒/步 - 损失: 0.8572 - 稀疏分类准确率: 0.6610



1761/未知 791秒 449毫秒/步 - 损失: 0.8571 - 稀疏分类准确率: 0.6610



1762/未知 792秒 449毫秒/步 - 损失: 0.8570 - 稀疏分类准确率: 0.6610



1763/未知 792秒 449毫秒/步 - 损失: 0.8569 - 稀疏分类准确率: 0.6610



1764/未知 792秒 449毫秒/步 - 损失: 0.8568 - 稀疏分类准确率: 0.6611



1765/未知 793秒 449毫秒/步 - 损失: 0.8567 - 稀疏分类准确率: 0.6611



1766/未知 793秒 449毫秒/步 - 损失: 0.8566 - 稀疏分类准确率: 0.6611



1767/未知 794秒 449毫秒/步 - 损失: 0.8565 - 稀疏分类准确率: 0.6612



1768/未知 794秒 449毫秒/步 - 损失: 0.8564 - 稀疏分类准确率: 0.6612



1769/未知 795秒 449毫秒/步 - 损失: 0.8564 - 稀疏分类准确率: 0.6612



1770/未知 795秒 449毫秒/步 - 损失: 0.8563 - 稀疏分类准确率: 0.6612



1771/未知 796秒 449毫秒/步 - 损失: 0.8562 - 稀疏分类准确率: 0.6613



1772/未知 796秒 449毫秒/步 - 损失: 0.8561 - 稀疏分类准确率: 0.6613



1773/未知 796秒 449毫秒/步 - 损失: 0.8560 - 稀疏分类准确率: 0.6613



1774/未知 797秒 449毫秒/步 - 损失: 0.8559 - 稀疏分类准确率: 0.6614



1775/未知 797秒 449毫秒/步 - 损失: 0.8558 - 稀疏分类准确率: 0.6614



1776/未知 797秒 449毫秒/步 - 损失: 0.8557 - 稀疏分类准确率: 0.6614



1777/未知 798秒 449毫秒/步 - 损失: 0.8556 - 稀疏分类准确率: 0.6614



1778/未知 798秒 449毫秒/步 - 损失: 0.8555 - 稀疏分类准确率: 0.6615



1779/未知 799秒 449毫秒/步 - 损失: 0.8554 - 稀疏分类准确率: 0.6615



1780/未知 799秒 449毫秒/步 - 损失: 0.8554 - 稀疏分类准确率: 0.6615



1781/未知 799秒 449毫秒/步 - 损失: 0.8553 - 稀疏分类准确率: 0.6616



1782/未知 800秒 449毫秒/步 - 损失: 0.8552 - 稀疏分类准确率: 0.6616



1783/未知 800秒 448毫秒/步 - 损失: 0.8551 - 稀疏分类准确率: 0.6616



1784/未知 801秒 448毫秒/步 - 损失: 0.8550 - 稀疏分类准确率: 0.6616



1785/未知 801秒 448毫秒/步 - 损失: 0.8549 - 稀疏分类准确率: 0.6617



1786/未知 801秒 448毫秒/步 - 损失: 0.8548 - 稀疏分类准确率: 0.6617



1787/未知 802秒 448毫秒/步 - 损失: 0.8547 - 稀疏分类准确率: 0.6617



1788/未知 802秒 448毫秒/步 - 损失: 0.8546 - 稀疏分类准确率: 0.6618



1789/未知 803秒 448毫秒/步 - 损失: 0.8545 - 稀疏分类准确率: 0.6618



1790/未知 803秒 448毫秒/步 - 损失: 0.8545 - 稀疏分类准确率: 0.6618



1791/未知 803秒 448毫秒/步 - 损失: 0.8544 - 稀疏分类准确率: 0.6618



1792/未知 804秒 448毫秒/步 - 损失: 0.8543 - 稀疏分类准确率: 0.6619



1793/未知 804秒 448毫秒/步 - 损失: 0.8542 - 稀疏分类准确率: 0.6619



1794/未知 805秒 448毫秒/步 - 损失: 0.8541 - 稀疏分类准确率: 0.6619



1795/未知 805秒 448毫秒/步 - 损失: 0.8540 - 稀疏分类准确率: 0.6620



1796/未知 805秒 448毫秒/步 - 损失: 0.8539 - 稀疏分类准确率: 0.6620



1797/未知 806秒 448毫秒/步 - 损失: 0.8538 - 稀疏分类准确率: 0.6620



1798/未知 806秒 448毫秒/步 - 损失: 0.8537 - 稀疏分类准确率: 0.6620



1799/未知 807秒 448毫秒/步 - 损失: 0.8536 - 稀疏分类准确率: 0.6621



1800/未知 807秒 448毫秒/步 - 损失: 0.8536 - 稀疏分类准确率: 0.6621



1801/未知 808秒 448毫秒/步 - 损失: 0.8535 - 稀疏分类准确率: 0.6621



1802/未知 808秒 448毫秒/步 - 损失: 0.8534 - 稀疏分类准确率: 0.6622



1803/未知 808秒 448毫秒/步 - 损失: 0.8533 - 稀疏分类准确率: 0.6622



1804/未知 809秒 448毫秒/步 - 损失: 0.8532 - 稀疏分类准确率: 0.6622



1805/未知 809秒 448毫秒/步 - 损失: 0.8531 - 稀疏分类准确率: 0.6622



1806/未知 810秒 448毫秒/步 - 损失: 0.8530 - 稀疏分类准确率: 0.6623



1807/未知 810秒 448毫秒/步 - 损失: 0.8529 - 稀疏分类准确率: 0.6623



1808/未知 811秒 448毫秒/步 - 损失: 0.8528 - 稀疏分类准确率: 0.6623



1809/未知 811秒 448毫秒/步 - 损失: 0.8528 - 稀疏分类准确率: 0.6623



1810/未知 811秒 448毫秒/步 - 损失: 0.8527 - 稀疏分类准确率: 0.6624



1811/未知 812秒 448毫秒/步 - 损失: 0.8526 - 稀疏分类准确率: 0.6624



1812/未知 812秒 448毫秒/步 - 损失: 0.8525 - 稀疏分类准确率: 0.6624



1813/未知 812秒 448毫秒/步 - 损失: 0.8524 - 稀疏分类准确率: 0.6625



1814/未知 813秒 448毫秒/步 - 损失: 0.8523 - 稀疏分类准确率: 0.6625



1815/未知 813秒 448毫秒/步 - 损失: 0.8522 - 稀疏分类准确率: 0.6625



1816/未知 814秒 448毫秒/步 - 损失: 0.8521 - 稀疏分类准确率: 0.6625



1817/未知 814秒 448毫秒/步 - 损失: 0.8520 - 稀疏分类准确率: 0.6626



1818/未知 814秒 448毫秒/步 - 损失: 0.8520 - 稀疏分类准确率: 0.6626



1819/未知 815秒 448毫秒/步 - 损失: 0.8519 - 稀疏分类准确率: 0.6626



1820/未知 815秒 448毫秒/步 - 损失: 0.8518 - 稀疏分类准确率: 0.6627



1821/未知 816秒 448毫秒/步 - 损失: 0.8517 - 稀疏分类准确率: 0.6627



1822/未知 816秒 448毫秒/步 - 损失: 0.8516 - 稀疏分类准确率: 0.6627



1823/未知 817秒 448毫秒/步 - 损失: 0.8515 - 稀疏分类准确率: 0.6627



1824/未知 817秒 448毫秒/步 - 损失: 0.8514 - 稀疏分类准确率: 0.6628



1825/未知 818秒 448毫秒/步 - 损失: 0.8513 - 稀疏分类准确率: 0.6628



1826/未知 818秒 448毫秒/步 - 损失: 0.8513 - 稀疏分类准确率: 0.6628



1827/未知 819秒 448毫秒/步 - 损失: 0.8512 - 稀疏分类准确率: 0.6628



1828/未知 819秒 448毫秒/步 - 损失: 0.8511 - 稀疏分类准确率: 0.6629



1829/未知 819秒 448毫秒/步 - 损失: 0.8510 - 稀疏分类准确率: 0.6629



1830/未知 820秒 448毫秒/步 - 损失: 0.8509 - 稀疏分类准确率: 0.6629



1831/未知 820秒 448毫秒/步 - 损失: 0.8508 - 稀疏分类准确率: 0.6630



1832/未知 821秒 448毫秒/步 - 损失: 0.8507 - 稀疏分类准确率: 0.6630



1833/未知 821秒 448毫秒/步 - 损失: 0.8507 - 稀疏分类准确率: 0.6630



1834/未知 821秒 448毫秒/步 - 损失: 0.8506 - 稀疏分类准确率: 0.6630



1835/未知 822秒 447毫秒/步 - 损失: 0.8505 - 稀疏分类准确率: 0.6631



1836/未知 822秒 447毫秒/步 - 损失: 0.8504 - 稀疏分类准确率: 0.6631



1837/未知 822秒 447毫秒/步 - 损失: 0.8503 - 稀疏分类准确率: 0.6631



1838/未知 823秒 447毫秒/步 - 损失: 0.8502 - 稀疏分类准确率: 0.6631



1839/未知 823秒 447毫秒/步 - 损失: 0.8501 - 稀疏分类准确率: 0.6632



1840/未知 823秒 447毫秒/步 - 损失: 0.8500 - 稀疏分类准确率: 0.6632



1841/未知 824秒 447毫秒/步 - 损失: 0.8500 - 稀疏分类准确率: 0.6632



1842/未知 824秒 447毫秒/步 - 损失: 0.8499 - 稀疏分类准确率: 0.6633



1843/未知 825秒 447毫秒/步 - 损失: 0.8498 - 稀疏分类准确率: 0.6633



1844/未知 825秒 447毫秒/步 - 损失: 0.8497 - 稀疏分类准确率: 0.6633



1845/未知 825秒 447毫秒/步 - 损失: 0.8496 - 稀疏分类准确率: 0.6633



1846/未知 826秒 447毫秒/步 - 损失: 0.8495 - 稀疏分类准确率: 0.6634



1847/未知 826秒 447毫秒/步 - 损失: 0.8494 - 稀疏分类准确率: 0.6634



1848/未知 827秒 447毫秒/步 - 损失: 0.8494 - 稀疏分类准确率: 0.6634



1849/未知 827秒 447毫秒/步 - 损失: 0.8493 - 稀疏分类准确率: 0.6634



1850/未知 828秒 447毫秒/步 - 损失: 0.8492 - 稀疏分类准确率: 0.6635



1851/未知 828秒 447毫秒/步 - 损失: 0.8491 - 稀疏分类准确率: 0.6635



1852/未知 828秒 447毫秒/步 - 损失: 0.8490 - 稀疏分类准确率: 0.6635



1853/未知 829秒 447毫秒/步 - 损失: 0.8489 - 稀疏分类准确率: 0.6636



1854/未知 829秒 447毫秒/步 - 损失: 0.8488 - 稀疏分类准确率: 0.6636



1855/未知 830秒 447毫秒/步 - 损失: 0.8488 - 稀疏分类准确率: 0.6636



1856/未知 830秒 447毫秒/步 - 损失: 0.8487 - 稀疏分类准确率: 0.6636



1857/未知 830秒 447毫秒/步 - 损失: 0.8486 - 稀疏分类准确率: 0.6637



1858/未知 831秒 447毫秒/步 - 损失: 0.8485 - 稀疏分类准确率: 0.6637



1859/未知 831秒 447毫秒/步 - 损失: 0.8484 - 稀疏分类准确率: 0.6637



1860/未知 832秒 447毫秒/步 - 损失: 0.8483 - 稀疏分类准确率: 0.6637



1861/未知 832秒 447毫秒/步 - 损失: 0.8482 - 稀疏分类准确率: 0.6638



1862/未知 832秒 447毫秒/步 - 损失: 0.8482 - 稀疏分类准确率: 0.6638



1863/未知 833秒 447毫秒/步 - 损失: 0.8481 - 稀疏分类准确率: 0.6638



1864/未知 833秒 447毫秒/步 - 损失: 0.8480 - 稀疏分类准确率: 0.6638



1865/未知 834秒 447毫秒/步 - 损失: 0.8479 - 稀疏分类准确率: 0.6639



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 834秒 447毫秒/步 - 损失: 0.8478 - 稀疏分类准确率: 0.6639

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 75.0%

Deep & Cross 模型达到了约 81% 的测试准确率。


结论

你可以使用 Keras 预处理层轻松处理具有不同编码机制的类别特征,包括 one-hot 编码和特征嵌入。此外,不同的模型架构(如 Wide、Deep 和 Cross 网络)在不同的数据集属性方面具有不同的优势。你可以探索独立使用或组合使用它们,以便为你的数据集获得最佳结果。