作者: Khalid Salama
创建日期 2020/12/31
最后修改日期 2025/01/03
描述: 使用 Wide & Deep 和 Deep & Cross 网络进行结构化数据分类。
本示例演示如何使用以下两种建模技术进行结构化数据分类
请注意,本示例应在 TensorFlow 2.5 或更高版本上运行。
本示例使用来自 UCI 机器学习仓库的 Covertype 数据集。任务是从制图变量预测森林覆盖类型。该数据集包含 506,011 个实例,具有 12 个输入特征:10 个数值特征和 2 个类别特征。每个实例被分为 7 个类别之一。
import os
# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"
import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import keras
from keras import layers
首先,让我们从 UCI 机器学习仓库将数据集加载到 Pandas DataFrame 中
data_url = (
"https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
)
raw_data = pd.read_csv(data_url, header=None)
print(f"Dataset shape: {raw_data.shape}")
raw_data.head()
Dataset shape: (581012, 55)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2596 | 51 | 3 | 258 | 0 | 510 | 221 | 232 | 148 | 6279 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
1 | 2590 | 56 | 2 | 212 | -6 | 390 | 220 | 235 | 151 | 6225 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
2 | 2804 | 139 | 9 | 268 | 65 | 3180 | 234 | 238 | 135 | 6121 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
3 | 2785 | 155 | 18 | 242 | 118 | 3090 | 238 | 238 | 122 | 6211 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
4 | 2595 | 45 | 2 | 153 | -1 | 391 | 220 | 234 | 150 | 6172 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
5 行 × 55 列
数据集中的两个类别特征是二进制编码的。我们将把此数据集表示形式转换为典型的表示形式,其中每个类别特征都表示为单个整数值。
soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)]
wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)]
soil_type = raw_data.loc[:, 14:53].apply(
lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
wilderness_area = raw_data.loc[:, 10:13].apply(
lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
CSV_HEADER = [
"Elevation",
"Aspect",
"Slope",
"Horizontal_Distance_To_Hydrology",
"Vertical_Distance_To_Hydrology",
"Horizontal_Distance_To_Roadways",
"Hillshade_9am",
"Hillshade_Noon",
"Hillshade_3pm",
"Horizontal_Distance_To_Fire_Points",
"Wilderness_Area",
"Soil_Type",
"Cover_Type",
]
data = pd.concat(
[raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]],
axis=1,
ignore_index=True,
)
data.columns = CSV_HEADER
# Convert the target label indices into a range from 0 to 6 (there are 7 labels in total).
data["Cover_Type"] = data["Cover_Type"] - 1
print(f"Dataset shape: {data.shape}")
data.head().T
Dataset shape: (581012, 13)
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
海拔 | 2596 | 2590 | 2804 | 2785 | 2595 |
坡向 | 51 | 56 | 139 | 155 | 45 |
坡度 | 3 | 2 | 9 | 18 | 2 |
到水文设施的水平距离 | 258 | 212 | 268 | 242 | 153 |
到水文设施的垂直距离 | 0 | -6 | 65 | 118 | -1 |
到道路的水平距离 | 510 | 390 | 3180 | 3090 | 391 |
9am 山体阴影 | 221 | 220 | 234 | 238 | 220 |
中午山体阴影 | 232 | 235 | 238 | 238 | 234 |
3pm 山体阴影 | 148 | 151 | 135 | 122 | 150 |
到火源点的水平距离 | 6279 | 6225 | 6121 | 6211 | 6172 |
荒野区域 | 区域类型 1 | 区域类型 1 | 区域类型 1 | 区域类型 1 | 区域类型 1 |
土壤类型 | 土壤类型 29 | 土壤类型 29 | 土壤类型 12 | 土壤类型 30 | 土壤类型 29 |
覆盖类型 | 4 | 4 | 1 | 1 | 4 |
DataFrame 的形状显示每个样本有 13 列(12 列用于特征,1 列用于目标标签)。
让我们将数据拆分为训练集 (85%) 和测试集 (15%)。
train_splits = []
test_splits = []
for _, group_data in data.groupby("Cover_Type"):
random_selection = np.random.rand(len(group_data.index)) <= 0.85
train_splits.append(group_data[random_selection])
test_splits.append(group_data[~random_selection])
train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True)
test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True)
print(f"Train split size: {len(train_data.index)}")
print(f"Test split size: {len(test_data.index)}")
Train split size: 494149
Test split size: 86863
接下来,将训练和测试数据存储在单独的 CSV 文件中。
train_data_file = "train_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False)
test_data.to_csv(test_data_file, index=False)
在这里,我们定义数据集的元数据,这将有助于读取和解析数据为输入特征,并根据其类型对输入特征进行编码。
TARGET_FEATURE_NAME = "Cover_Type"
TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"]
NUMERIC_FEATURE_NAMES = [
"Aspect",
"Elevation",
"Hillshade_3pm",
"Hillshade_9am",
"Hillshade_Noon",
"Horizontal_Distance_To_Fire_Points",
"Horizontal_Distance_To_Hydrology",
"Horizontal_Distance_To_Roadways",
"Slope",
"Vertical_Distance_To_Hydrology",
]
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
"Soil_Type": list(data["Soil_Type"].unique()),
"Wilderness_Area": list(data["Wilderness_Area"].unique()),
}
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
COLUMN_DEFAULTS = [
[0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"]
for feature_name in CSV_HEADER
]
NUM_CLASSES = len(TARGET_FEATURE_LABELS)
接下来,让我们定义一个输入函数,该函数读取和解析文件,然后将特征和标签转换为 tf.data.Dataset
以进行训练或评估。
# To convert the datasets elements to from OrderedDict to Dictionary
def process(features, target):
return dict(features), target
def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False):
dataset = tf_data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=True,
shuffle=shuffle,
).map(process)
return dataset.cache()
在这里,我们配置参数并实现给定模型运行训练和评估实验的步骤。
learning_rate = 0.001
dropout_rate = 0.1
batch_size = 265
num_epochs = 1
hidden_units = [32, 32]
def run_experiment(model):
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)
test_dataset = get_dataset_from_csv(test_data_file, batch_size)
print("Start training the model...")
history = model.fit(train_dataset, epochs=num_epochs)
print("Model training finished")
_, accuracy = model.evaluate(test_dataset, verbose=0)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
现在,将模型的输入定义为一个字典,其中键是特征名称,值是具有相应特征形状和数据类型的 keras.layers.Input
张量。
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="float32"
)
else:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="string"
)
return inputs
我们创建输入特征的两种表示形式:稀疏和密集:1. 在稀疏表示形式中,类别特征使用 CategoryEncoding
层进行 one-hot 编码。这种表示形式对于模型记忆特定的特征值以进行某些预测可能很有用。 2. 在密集表示形式中,类别特征使用 Embedding
层进行低维嵌入编码。这种表示形式有助于模型很好地泛化到未见过的特征组合。
def encode_inputs(inputs, use_embedding=False):
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary,
mask_token=None,
num_oov_indices=0,
output_mode="int" if use_embedding else "binary",
)
if use_embedding:
# Convert the string input values into integer indices.
encoded_feature = lookup(inputs[feature_name])
embedding_dims = int(math.sqrt(len(vocabulary)))
# Create an embedding layer with the specified dimensions.
embedding = layers.Embedding(
input_dim=len(vocabulary), output_dim=embedding_dims
)
# Convert the index values to embedding representations.
encoded_feature = embedding(encoded_feature)
else:
# Convert the string input values into a one hot encoding.
encoded_feature = lookup(
keras.ops.expand_dims(inputs[feature_name], -1)
)
else:
# Use the numerical features as-is.
encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1)
encoded_features.append(encoded_feature)
all_features = layers.concatenate(encoded_features)
return all_features
在第一个实验中,让我们创建一个多层前馈网络,其中类别特征是 one-hot 编码的。
def create_baseline_model():
inputs = create_model_inputs()
features = encode_inputs(inputs)
for units in hidden_units:
features = layers.Dense(units)(features)
features = layers.BatchNormalization()(features)
features = layers.ReLU()(features)
features = layers.Dropout(dropout_rate)(features)
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
baseline_model = create_baseline_model()
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")
让我们运行它
run_experiment(baseline_model)
Start training the model...
1/Unknown 6s 6s/step - loss: 2.2346 - sparse_categorical_accuracy: 0.1472
2/Unknown 6s 263ms/step - loss: 2.2343 - sparse_categorical_accuracy: 0.1519
3/Unknown 6s 267ms/step - loss: 2.2241 - sparse_categorical_accuracy: 0.1549
4/Unknown 7s 256ms/step - loss: 2.2228 - sparse_categorical_accuracy: 0.1544
5/Unknown 7s 256ms/step - loss: 2.2205 - sparse_categorical_accuracy: 0.1546
6/Unknown 7s 253ms/step - loss: 2.2183 - sparse_categorical_accuracy: 0.1556
7/Unknown 7s 250ms/step - loss: 2.2135 - sparse_categorical_accuracy: 0.1571
8/Unknown 8s 247ms/step - loss: 2.2093 - sparse_categorical_accuracy: 0.1584
9/Unknown 8s 242ms/step - loss: 2.2049 - sparse_categorical_accuracy: 0.1596
10/Unknown 8s 238ms/step - loss: 2.2003 - sparse_categorical_accuracy: 0.1610
11/Unknown 8s 236ms/step - loss: 2.1958 - sparse_categorical_accuracy: 0.1626
12/Unknown 8s 235ms/step - loss: 2.1911 - sparse_categorical_accuracy: 0.1641
13/Unknown 9s 231ms/step - loss: 2.1862 - sparse_categorical_accuracy: 0.1657
14/Unknown 9s 228ms/step - loss: 2.1811 - sparse_categorical_accuracy: 0.1676
15/Unknown 9s 224ms/step - loss: 2.1761 - sparse_categorical_accuracy: 0.1694
16/Unknown 9s 222ms/step - loss: 2.1707 - sparse_categorical_accuracy: 0.1713
17/Unknown 9s 220ms/step - loss: 2.1650 - sparse_categorical_accuracy: 0.1734
18/Unknown 10s 219ms/step - loss: 2.1592 - sparse_categorical_accuracy: 0.1754
19/Unknown 10s 218ms/step - loss: 2.1535 - sparse_categorical_accuracy: 0.1773
20/Unknown 10s 218ms/step - loss: 2.1476 - sparse_categorical_accuracy: 0.1792
21/Unknown 10s 218ms/step - loss: 2.1416 - sparse_categorical_accuracy: 0.1812
22/Unknown 10s 218ms/step - loss: 2.1355 - sparse_categorical_accuracy: 0.1834
23/Unknown 11s 218ms/step - loss: 2.1295 - sparse_categorical_accuracy: 0.1855
24/Unknown 11s 219ms/step - loss: 2.1235 - sparse_categorical_accuracy: 0.1876
25/Unknown 11s 219ms/step - loss: 2.1174 - sparse_categorical_accuracy: 0.1897
26/Unknown 11s 219ms/step - loss: 2.1114 - sparse_categorical_accuracy: 0.1918
27/Unknown 12s 219ms/step - loss: 2.1054 - sparse_categorical_accuracy: 0.1940
28/Unknown 12s 218ms/step - loss: 2.0995 - sparse_categorical_accuracy: 0.1961
29/Unknown 12s 218ms/step - loss: 2.0936 - sparse_categorical_accuracy: 0.1982
30/Unknown 12s 219ms/step - loss: 2.0878 - sparse_categorical_accuracy: 0.2004
31/Unknown 12s 219ms/step - loss: 2.0819 - sparse_categorical_accuracy: 0.2026
32/Unknown 13s 219ms/step - loss: 2.0761 - sparse_categorical_accuracy: 0.2049
33/Unknown 13s 219ms/step - loss: 2.0703 - sparse_categorical_accuracy: 0.2071
34/Unknown 13s 220ms/step - loss: 2.0645 - sparse_categorical_accuracy: 0.2094
35/Unknown 13s 220ms/step - loss: 2.0588 - sparse_categorical_accuracy: 0.2117
36/Unknown 14s 220ms/step - loss: 2.0531 - sparse_categorical_accuracy: 0.2140
37/Unknown 14s 221ms/step - loss: 2.0475 - sparse_categorical_accuracy: 0.2163
38/Unknown 14s 220ms/step - loss: 2.0419 - sparse_categorical_accuracy: 0.2186
39/Unknown 14s 221ms/step - loss: 2.0364 - sparse_categorical_accuracy: 0.2209
40/Unknown 14s 221ms/step - loss: 2.0308 - sparse_categorical_accuracy: 0.2233
41/Unknown 15s 220ms/step - loss: 2.0252 - sparse_categorical_accuracy: 0.2256
42/Unknown 15s 221ms/step - loss: 2.0198 - sparse_categorical_accuracy: 0.2280
43/Unknown 15s 221ms/step - loss: 2.0143 - sparse_categorical_accuracy: 0.2303
44/Unknown 15s 221ms/step - loss: 2.0089 - sparse_categorical_accuracy: 0.2326
45/Unknown 16s 221ms/step - loss: 2.0035 - sparse_categorical_accuracy: 0.2348
46/Unknown 16s 222ms/step - loss: 1.9982 - sparse_categorical_accuracy: 0.2371
47/Unknown 16s 221ms/step - loss: 1.9929 - sparse_categorical_accuracy: 0.2393
48/Unknown 16s 221ms/step - loss: 1.9877 - sparse_categorical_accuracy: 0.2416
49/Unknown 16s 222ms/step - loss: 1.9824 - sparse_categorical_accuracy: 0.2438
50/Unknown 17s 222ms/step - loss: 1.9773 - sparse_categorical_accuracy: 0.2460
51/Unknown 17s 223ms/step - loss: 1.9721 - sparse_categorical_accuracy: 0.2481
52/Unknown 17s 223ms/step - loss: 1.9670 - sparse_categorical_accuracy: 0.2503
53/Unknown 17s 224ms/step - loss: 1.9620 - sparse_categorical_accuracy: 0.2525
54/Unknown 18s 224ms/step - loss: 1.9569 - sparse_categorical_accuracy: 0.2546
55/Unknown 18s 225ms/step - loss: 1.9519 - sparse_categorical_accuracy: 0.2568
56/Unknown 18s 226ms/step - loss: 1.9470 - sparse_categorical_accuracy: 0.2589
57/Unknown 18s 226ms/step - loss: 1.9421 - sparse_categorical_accuracy: 0.2610
58/Unknown 19s 226ms/step - loss: 1.9373 - sparse_categorical_accuracy: 0.2631
59/Unknown 19s 226ms/step - loss: 1.9324 - sparse_categorical_accuracy: 0.2652
60/Unknown 19s 226ms/step - loss: 1.9276 - sparse_categorical_accuracy: 0.2673
61/Unknown 19s 227ms/step - loss: 1.9229 - sparse_categorical_accuracy: 0.2694
62/Unknown 20s 227ms/step - loss: 1.9182 - sparse_categorical_accuracy: 0.2714
63/Unknown 20s 227ms/step - loss: 1.9136 - sparse_categorical_accuracy: 0.2734
64/Unknown 20s 228ms/step - loss: 1.9090 - sparse_categorical_accuracy: 0.2754
65/Unknown 20s 228ms/step - loss: 1.9044 - sparse_categorical_accuracy: 0.2774
66/Unknown 21s 229ms/step - loss: 1.8999 - sparse_categorical_accuracy: 0.2794
67/Unknown 21s 229ms/step - loss: 1.8954 - sparse_categorical_accuracy: 0.2813
68/Unknown 21s 229ms/step - loss: 1.8910 - sparse_categorical_accuracy: 0.2832
69/Unknown 21s 229ms/step - loss: 1.8866 - sparse_categorical_accuracy: 0.2852
70/Unknown 22s 229ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.2870
71/Unknown 22s 229ms/step - loss: 1.8779 - sparse_categorical_accuracy: 0.2889
72/Unknown 22s 230ms/step - loss: 1.8736 - sparse_categorical_accuracy: 0.2908
73/Unknown 22s 230ms/step - loss: 1.8694 - sparse_categorical_accuracy: 0.2926
74/Unknown 23s 230ms/step - loss: 1.8652 - sparse_categorical_accuracy: 0.2945
75/Unknown 23s 230ms/step - loss: 1.8611 - sparse_categorical_accuracy: 0.2963
76/Unknown 23s 230ms/step - loss: 1.8569 - sparse_categorical_accuracy: 0.2980
77/Unknown 23s 230ms/step - loss: 1.8529 - sparse_categorical_accuracy: 0.2998
78/Unknown 23s 229ms/step - loss: 1.8488 - sparse_categorical_accuracy: 0.3015
79/Unknown 24s 229ms/step - loss: 1.8448 - sparse_categorical_accuracy: 0.3033
80/Unknown 24s 229ms/step - loss: 1.8408 - sparse_categorical_accuracy: 0.3050
81/Unknown 24s 228ms/step - loss: 1.8369 - sparse_categorical_accuracy: 0.3067
82/Unknown 24s 228ms/step - loss: 1.8329 - sparse_categorical_accuracy: 0.3084
83/Unknown 24s 228ms/step - loss: 1.8290 - sparse_categorical_accuracy: 0.3100
84/Unknown 25s 227ms/step - loss: 1.8251 - sparse_categorical_accuracy: 0.3117
85/Unknown 25s 227ms/step - loss: 1.8213 - sparse_categorical_accuracy: 0.3133
86/Unknown 25s 227ms/step - loss: 1.8175 - sparse_categorical_accuracy: 0.3149
87/Unknown 25s 227ms/step - loss: 1.8137 - sparse_categorical_accuracy: 0.3165
88/Unknown 26s 227ms/step - loss: 1.8099 - sparse_categorical_accuracy: 0.3181
89/Unknown 26s 227ms/step - loss: 1.8062 - sparse_categorical_accuracy: 0.3197
90/Unknown 26s 226ms/step - loss: 1.8025 - sparse_categorical_accuracy: 0.3213
91/Unknown 26s 226ms/step - loss: 1.7988 - sparse_categorical_accuracy: 0.3228
92/Unknown 26s 226ms/step - loss: 1.7952 - sparse_categorical_accuracy: 0.3243
93/Unknown 27s 226ms/step - loss: 1.7916 - sparse_categorical_accuracy: 0.3258
94/Unknown 27s 226ms/step - loss: 1.7880 - sparse_categorical_accuracy: 0.3273
95/Unknown 27s 226ms/step - loss: 1.7845 - sparse_categorical_accuracy: 0.3288
96/Unknown 27s 226ms/step - loss: 1.7810 - sparse_categorical_accuracy: 0.3303
97/Unknown 28s 226ms/step - loss: 1.7775 - sparse_categorical_accuracy: 0.3317
98/Unknown 28s 226ms/step - loss: 1.7741 - sparse_categorical_accuracy: 0.3331
99/Unknown 28s 227ms/step - loss: 1.7706 - sparse_categorical_accuracy: 0.3345
100/Unknown 28s 227ms/step - loss: 1.7672 - sparse_categorical_accuracy: 0.3359
101/Unknown 29s 227ms/step - loss: 1.7639 - sparse_categorical_accuracy: 0.3373
102/Unknown 29s 228ms/step - loss: 1.7605 - sparse_categorical_accuracy: 0.3387
103/Unknown 29s 228ms/step - loss: 1.7572 - sparse_categorical_accuracy: 0.3401
104/Unknown 29s 228ms/step - loss: 1.7539 - sparse_categorical_accuracy: 0.3414
105/Unknown 30s 228ms/step - loss: 1.7507 - sparse_categorical_accuracy: 0.3428
106/Unknown 30s 229ms/step - loss: 1.7474 - sparse_categorical_accuracy: 0.3441
107/Unknown 30s 228ms/step - loss: 1.7442 - sparse_categorical_accuracy: 0.3454
108/Unknown 30s 228ms/step - loss: 1.7411 - sparse_categorical_accuracy: 0.3467
109/Unknown 30s 228ms/step - loss: 1.7379 - sparse_categorical_accuracy: 0.3480
110/Unknown 31s 228ms/step - loss: 1.7348 - sparse_categorical_accuracy: 0.3493
111/Unknown 31s 228ms/step - loss: 1.7317 - sparse_categorical_accuracy: 0.3505
112/Unknown 31s 228ms/step - loss: 1.7286 - sparse_categorical_accuracy: 0.3518
113/Unknown 31s 228ms/step - loss: 1.7255 - sparse_categorical_accuracy: 0.3530
114/Unknown 32s 228ms/step - loss: 1.7225 - sparse_categorical_accuracy: 0.3543
115/Unknown 32s 228ms/step - loss: 1.7195 - sparse_categorical_accuracy: 0.3555
116/Unknown 32s 228ms/step - loss: 1.7165 - sparse_categorical_accuracy: 0.3567
117/Unknown 32s 229ms/step - loss: 1.7135 - sparse_categorical_accuracy: 0.3579
118/Unknown 33s 229ms/step - loss: 1.7106 - sparse_categorical_accuracy: 0.3591
119/Unknown 33s 229ms/step - loss: 1.7077 - sparse_categorical_accuracy: 0.3602
120/Unknown 33s 229ms/step - loss: 1.7048 - sparse_categorical_accuracy: 0.3614
121/Unknown 33s 230ms/step - loss: 1.7019 - sparse_categorical_accuracy: 0.3626
122/Unknown 34s 229ms/step - loss: 1.6991 - sparse_categorical_accuracy: 0.3637
123/Unknown 34s 229ms/step - loss: 1.6962 - sparse_categorical_accuracy: 0.3648
124/Unknown 34s 229ms/step - loss: 1.6934 - sparse_categorical_accuracy: 0.3660
125/Unknown 34s 229ms/step - loss: 1.6907 - sparse_categorical_accuracy: 0.3671
126/Unknown 34s 229ms/step - loss: 1.6879 - sparse_categorical_accuracy: 0.3682
127/Unknown 35s 229ms/step - loss: 1.6851 - sparse_categorical_accuracy: 0.3693
128/Unknown 35s 229ms/step - loss: 1.6824 - sparse_categorical_accuracy: 0.3704
129/Unknown 35s 229ms/step - loss: 1.6797 - sparse_categorical_accuracy: 0.3715
130/Unknown 35s 228ms/step - loss: 1.6770 - sparse_categorical_accuracy: 0.3725
131/Unknown 35s 228ms/step - loss: 1.6743 - sparse_categorical_accuracy: 0.3736
132/Unknown 36s 228ms/step - loss: 1.6717 - sparse_categorical_accuracy: 0.3746
133/Unknown 36s 227ms/step - loss: 1.6691 - sparse_categorical_accuracy: 0.3757
134/Unknown 36s 227ms/step - loss: 1.6665 - sparse_categorical_accuracy: 0.3767
135/Unknown 36s 227ms/step - loss: 1.6639 - sparse_categorical_accuracy: 0.3777
136/Unknown 36s 227ms/step - loss: 1.6613 - sparse_categorical_accuracy: 0.3788
137/Unknown 37s 227ms/step - loss: 1.6587 - sparse_categorical_accuracy: 0.3798
138/Unknown 37s 227ms/step - loss: 1.6562 - sparse_categorical_accuracy: 0.3808
139/Unknown 37s 227ms/step - loss: 1.6537 - sparse_categorical_accuracy: 0.3818
140/Unknown 37s 227ms/step - loss: 1.6512 - sparse_categorical_accuracy: 0.3828
141/Unknown 38s 227ms/step - loss: 1.6487 - sparse_categorical_accuracy: 0.3837
142/Unknown 38s 227ms/step - loss: 1.6463 - sparse_categorical_accuracy: 0.3847
143/Unknown 38s 227ms/step - loss: 1.6438 - sparse_categorical_accuracy: 0.3857
144/Unknown 38s 227ms/step - loss: 1.6414 - sparse_categorical_accuracy: 0.3866
145/Unknown 39s 227ms/step - loss: 1.6390 - sparse_categorical_accuracy: 0.3876
146/Unknown 39s 227ms/step - loss: 1.6366 - sparse_categorical_accuracy: 0.3885
147/Unknown 39s 227ms/step - loss: 1.6342 - sparse_categorical_accuracy: 0.3894
148/Unknown 39s 227ms/step - loss: 1.6318 - sparse_categorical_accuracy: 0.3904
149/Unknown 39s 228ms/step - loss: 1.6295 - sparse_categorical_accuracy: 0.3913
150/Unknown 40s 228ms/step - loss: 1.6271 - sparse_categorical_accuracy: 0.3922
151/Unknown 40s 228ms/step - loss: 1.6248 - sparse_categorical_accuracy: 0.3931
152/Unknown 40s 228ms/step - loss: 1.6225 - sparse_categorical_accuracy: 0.3940
153/Unknown 40s 228ms/step - loss: 1.6202 - sparse_categorical_accuracy: 0.3949
154/Unknown 41s 228ms/step - loss: 1.6179 - sparse_categorical_accuracy: 0.3958
155/Unknown 41s 228ms/step - loss: 1.6156 - sparse_categorical_accuracy: 0.3967
156/Unknown 41s 228ms/step - loss: 1.6134 - sparse_categorical_accuracy: 0.3975
157/Unknown 41s 229ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.3984
158/Unknown 42s 229ms/step - loss: 1.6089 - sparse_categorical_accuracy: 0.3993
159/Unknown 42s 229ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4001
160/Unknown 42s 229ms/step - loss: 1.6045 - sparse_categorical_accuracy: 0.4010
161/Unknown 42s 229ms/step - loss: 1.6023 - sparse_categorical_accuracy: 0.4018
162/Unknown 43s 229ms/step - loss: 1.6002 - sparse_categorical_accuracy: 0.4027
163/Unknown 43s 229ms/step - loss: 1.5980 - sparse_categorical_accuracy: 0.4035
164/Unknown 43s 229ms/step - loss: 1.5959 - sparse_categorical_accuracy: 0.4043
165/Unknown 43s 229ms/step - loss: 1.5938 - sparse_categorical_accuracy: 0.4051
166/Unknown 44s 230ms/step - loss: 1.5916 - sparse_categorical_accuracy: 0.4060
167/Unknown 44s 230ms/step - loss: 1.5895 - sparse_categorical_accuracy: 0.4068
168/Unknown 44s 230ms/step - loss: 1.5875 - sparse_categorical_accuracy: 0.4076
169/Unknown 44s 230ms/step - loss: 1.5854 - sparse_categorical_accuracy: 0.4084
170/Unknown 45s 230ms/step - loss: 1.5833 - sparse_categorical_accuracy: 0.4092
171/Unknown 45s 230ms/step - loss: 1.5813 - sparse_categorical_accuracy: 0.4099
172/Unknown 45s 230ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4107
173/Unknown 45s 230ms/step - loss: 1.5772 - sparse_categorical_accuracy: 0.4115
174/Unknown 46s 230ms/step - loss: 1.5752 - sparse_categorical_accuracy: 0.4123
175/Unknown 46s 229ms/step - loss: 1.5732 - sparse_categorical_accuracy: 0.4130
176/Unknown 46s 229ms/step - loss: 1.5712 - sparse_categorical_accuracy: 0.4138
177/Unknown 46s 229ms/step - loss: 1.5692 - sparse_categorical_accuracy: 0.4146
178/Unknown 46s 230ms/step - loss: 1.5673 - sparse_categorical_accuracy: 0.4153
179/Unknown 47s 230ms/step - loss: 1.5653 - sparse_categorical_accuracy: 0.4160
180/Unknown 47s 230ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4168
181/Unknown 47s 230ms/step - loss: 1.5615 - sparse_categorical_accuracy: 0.4175
182/Unknown 47s 230ms/step - loss: 1.5596 - sparse_categorical_accuracy: 0.4182
183/Unknown 48s 230ms/step - loss: 1.5577 - sparse_categorical_accuracy: 0.4189
184/Unknown 48s 230ms/step - loss: 1.5558 - sparse_categorical_accuracy: 0.4197
185/Unknown 48s 230ms/step - loss: 1.5539 - sparse_categorical_accuracy: 0.4204
186/Unknown 48s 230ms/step - loss: 1.5520 - sparse_categorical_accuracy: 0.4211
187/Unknown 49s 230ms/step - loss: 1.5502 - sparse_categorical_accuracy: 0.4218
188/Unknown 49s 230ms/step - loss: 1.5483 - sparse_categorical_accuracy: 0.4225
189/Unknown 49s 230ms/step - loss: 1.5465 - sparse_categorical_accuracy: 0.4232
190/Unknown 49s 230ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4239
191/Unknown 50s 231ms/step - loss: 1.5428 - sparse_categorical_accuracy: 0.4245
192/Unknown 50s 231ms/step - loss: 1.5410 - sparse_categorical_accuracy: 0.4252
193/Unknown 50s 231ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4259
194/Unknown 50s 231ms/step - loss: 1.5375 - sparse_categorical_accuracy: 0.4266
195/Unknown 51s 231ms/step - loss: 1.5357 - sparse_categorical_accuracy: 0.4272
196/Unknown 51s 231ms/step - loss: 1.5339 - sparse_categorical_accuracy: 0.4279
197/Unknown 51s 232ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4286
198/Unknown 51s 232ms/step - loss: 1.5304 - sparse_categorical_accuracy: 0.4292
199/Unknown 52s 232ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4299
200/Unknown 52s 232ms/step - loss: 1.5270 - sparse_categorical_accuracy: 0.4305
201/Unknown 52s 232ms/step - loss: 1.5252 - sparse_categorical_accuracy: 0.4312
202/Unknown 52s 232ms/step - loss: 1.5235 - sparse_categorical_accuracy: 0.4318
203/Unknown 53s 232ms/step - loss: 1.5218 - sparse_categorical_accuracy: 0.4324
204/Unknown 53s 232ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4331
205/Unknown 53s 232ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4337
206/Unknown 53s 232ms/step - loss: 1.5168 - sparse_categorical_accuracy: 0.4343
207/Unknown 54s 232ms/step - loss: 1.5151 - sparse_categorical_accuracy: 0.4349
208/Unknown 54s 232ms/step - loss: 1.5135 - sparse_categorical_accuracy: 0.4355
209/Unknown 54s 232ms/step - loss: 1.5118 - sparse_categorical_accuracy: 0.4361
210/Unknown 54s 232ms/step - loss: 1.5102 - sparse_categorical_accuracy: 0.4368
211/Unknown 54s 232ms/step - loss: 1.5086 - sparse_categorical_accuracy: 0.4374
212/Unknown 55s 232ms/step - loss: 1.5069 - sparse_categorical_accuracy: 0.4380
213/Unknown 55s 232ms/step - loss: 1.5053 - sparse_categorical_accuracy: 0.4385
214/Unknown 55s 232ms/step - loss: 1.5037 - sparse_categorical_accuracy: 0.4391
215/Unknown 55s 232ms/step - loss: 1.5021 - sparse_categorical_accuracy: 0.4397
216/Unknown 56s 232ms/step - loss: 1.5005 - sparse_categorical_accuracy: 0.4403
217/Unknown 56s 232ms/step - loss: 1.4990 - sparse_categorical_accuracy: 0.4409
218/Unknown 56s 232ms/step - loss: 1.4974 - sparse_categorical_accuracy: 0.4415
219/Unknown 56s 232ms/step - loss: 1.4958 - sparse_categorical_accuracy: 0.4420
220/Unknown 57s 232ms/step - loss: 1.4943 - sparse_categorical_accuracy: 0.4426
221/Unknown 57s 232ms/step - loss: 1.4927 - sparse_categorical_accuracy: 0.4432
222/Unknown 57s 232ms/step - loss: 1.4912 - sparse_categorical_accuracy: 0.4438
223/Unknown 57s 232ms/step - loss: 1.4896 - sparse_categorical_accuracy: 0.4443
224/Unknown 58s 232ms/step - loss: 1.4881 - sparse_categorical_accuracy: 0.4449
225/Unknown 58s 232ms/step - loss: 1.4866 - sparse_categorical_accuracy: 0.4454
226/Unknown 58s 232ms/step - loss: 1.4851 - sparse_categorical_accuracy: 0.4460
227/Unknown 58s 232ms/step - loss: 1.4836 - sparse_categorical_accuracy: 0.4465
228/Unknown 59s 233ms/step - loss: 1.4821 - sparse_categorical_accuracy: 0.4471
229/Unknown 59s 233ms/step - loss: 1.4806 - sparse_categorical_accuracy: 0.4476
230/Unknown 59s 233ms/step - loss: 1.4791 - sparse_categorical_accuracy: 0.4482
231/Unknown 60s 234ms/step - loss: 1.4776 - sparse_categorical_accuracy: 0.4487
232/Unknown 60s 234ms/step - loss: 1.4761 - sparse_categorical_accuracy: 0.4492
233/Unknown 60s 234ms/step - loss: 1.4747 - sparse_categorical_accuracy: 0.4498
234/Unknown 60s 234ms/step - loss: 1.4732 - sparse_categorical_accuracy: 0.4503
235/Unknown 61s 234ms/step - loss: 1.4718 - sparse_categorical_accuracy: 0.4508
236/Unknown 61s 234ms/step - loss: 1.4703 - sparse_categorical_accuracy: 0.4513
237/Unknown 61s 234ms/step - loss: 1.4689 - sparse_categorical_accuracy: 0.4519
238/Unknown 61s 235ms/step - loss: 1.4675 - sparse_categorical_accuracy: 0.4524
239/Unknown 62s 235ms/step - loss: 1.4661 - sparse_categorical_accuracy: 0.4529
240/Unknown 62s 235ms/step - loss: 1.4646 - sparse_categorical_accuracy: 0.4534
241/Unknown 62s 235ms/step - loss: 1.4632 - sparse_categorical_accuracy: 0.4539
242/Unknown 62s 235ms/step - loss: 1.4618 - sparse_categorical_accuracy: 0.4544
243/Unknown 63s 235ms/step - loss: 1.4604 - sparse_categorical_accuracy: 0.4549
244/Unknown 63s 235ms/step - loss: 1.4591 - sparse_categorical_accuracy: 0.4554
245/Unknown 63s 235ms/step - loss: 1.4577 - sparse_categorical_accuracy: 0.4559
246/Unknown 63s 235ms/step - loss: 1.4563 - sparse_categorical_accuracy: 0.4564
247/Unknown 64s 235ms/step - loss: 1.4549 - sparse_categorical_accuracy: 0.4569
248/Unknown 64s 235ms/step - loss: 1.4536 - sparse_categorical_accuracy: 0.4574
249/Unknown 64s 235ms/step - loss: 1.4522 - sparse_categorical_accuracy: 0.4579
250/Unknown 64s 235ms/step - loss: 1.4509 - sparse_categorical_accuracy: 0.4584
251/Unknown 65s 235ms/step - loss: 1.4495 - sparse_categorical_accuracy: 0.4589
252/Unknown 65s 235ms/step - loss: 1.4482 - sparse_categorical_accuracy: 0.4593
253/Unknown 65s 235ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4598
254/Unknown 65s 235ms/step - loss: 1.4455 - sparse_categorical_accuracy: 0.4603
255/Unknown 65s 235ms/step - loss: 1.4442 - sparse_categorical_accuracy: 0.4608
256/Unknown 66s 235ms/step - loss: 1.4429 - sparse_categorical_accuracy: 0.4612
257/Unknown 66s 235ms/step - loss: 1.4416 - sparse_categorical_accuracy: 0.4617
258/Unknown 66s 235ms/step - loss: 1.4403 - sparse_categorical_accuracy: 0.4622
259/Unknown 66s 235ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4626
260/Unknown 67s 235ms/step - loss: 1.4377 - sparse_categorical_accuracy: 0.4631
261/Unknown 67s 235ms/step - loss: 1.4364 - sparse_categorical_accuracy: 0.4636
262/Unknown 67s 235ms/step - loss: 1.4352 - sparse_categorical_accuracy: 0.4640
263/Unknown 67s 235ms/step - loss: 1.4339 - sparse_categorical_accuracy: 0.4645
264/Unknown 68s 235ms/step - loss: 1.4326 - sparse_categorical_accuracy: 0.4649
265/Unknown 68s 235ms/step - loss: 1.4314 - sparse_categorical_accuracy: 0.4654
266/Unknown 68s 235ms/step - loss: 1.4301 - sparse_categorical_accuracy: 0.4658
267/Unknown 68s 235ms/step - loss: 1.4289 - sparse_categorical_accuracy: 0.4663
268/Unknown 69s 235ms/step - loss: 1.4276 - sparse_categorical_accuracy: 0.4667
269/Unknown 69s 236ms/step - loss: 1.4264 - sparse_categorical_accuracy: 0.4672
270/Unknown 69s 236ms/step - loss: 1.4251 - sparse_categorical_accuracy: 0.4676
271/Unknown 70s 236ms/step - loss: 1.4239 - sparse_categorical_accuracy: 0.4680
272/Unknown 70s 237ms/step - loss: 1.4227 - sparse_categorical_accuracy: 0.4685
273/Unknown 70s 237ms/step - loss: 1.4215 - sparse_categorical_accuracy: 0.4689
274/Unknown 70s 237ms/step - loss: 1.4202 - sparse_categorical_accuracy: 0.4694
275/Unknown 71s 237ms/step - loss: 1.4190 - sparse_categorical_accuracy: 0.4698
276/Unknown 71s 237ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702
277/Unknown 71s 237ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4706
278/Unknown 71s 237ms/step - loss: 1.4154 - sparse_categorical_accuracy: 0.4711
279/Unknown 72s 237ms/step - loss: 1.4142 - sparse_categorical_accuracy: 0.4715
280/Unknown 72s 237ms/step - loss: 1.4131 - sparse_categorical_accuracy: 0.4719
281/Unknown 72s 237ms/step - loss: 1.4119 - sparse_categorical_accuracy: 0.4723
282/Unknown 72s 237ms/step - loss: 1.4107 - sparse_categorical_accuracy: 0.4728
283/Unknown 73s 237ms/step - loss: 1.4095 - sparse_categorical_accuracy: 0.4732
284/Unknown 73s 237ms/step - loss: 1.4084 - sparse_categorical_accuracy: 0.4736
285/Unknown 73s 237ms/step - loss: 1.4072 - sparse_categorical_accuracy: 0.4740
286/Unknown 73s 237ms/step - loss: 1.4061 - sparse_categorical_accuracy: 0.4744
287/Unknown 74s 237ms/step - loss: 1.4049 - sparse_categorical_accuracy: 0.4748
288/Unknown 74s 237ms/step - loss: 1.4038 - sparse_categorical_accuracy: 0.4752
289/Unknown 74s 238ms/step - loss: 1.4026 - sparse_categorical_accuracy: 0.4756
290/Unknown 74s 238ms/step - loss: 1.4015 - sparse_categorical_accuracy: 0.4760
291/Unknown 75s 238ms/step - loss: 1.4003 - sparse_categorical_accuracy: 0.4764
292/Unknown 75s 238ms/step - loss: 1.3992 - sparse_categorical_accuracy: 0.4768
293/Unknown 75s 238ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4772
294/Unknown 75s 238ms/step - loss: 1.3970 - sparse_categorical_accuracy: 0.4776
295/Unknown 76s 238ms/step - loss: 1.3959 - sparse_categorical_accuracy: 0.4780
296/Unknown 76s 238ms/step - loss: 1.3947 - sparse_categorical_accuracy: 0.4784
297/Unknown 76s 238ms/step - loss: 1.3936 - sparse_categorical_accuracy: 0.4788
298/Unknown 77s 238ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4792
299/Unknown 77s 238ms/step - loss: 1.3914 - sparse_categorical_accuracy: 0.4796
300/Unknown 77s 238ms/step - loss: 1.3904 - sparse_categorical_accuracy: 0.4800
301/Unknown 77s 238ms/step - loss: 1.3893 - sparse_categorical_accuracy: 0.4803
302/Unknown 78s 238ms/step - loss: 1.3882 - sparse_categorical_accuracy: 0.4807
303/Unknown 78s 238ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4811
304/Unknown 78s 238ms/step - loss: 1.3860 - sparse_categorical_accuracy: 0.4815
305/Unknown 78s 238ms/step - loss: 1.3850 - sparse_categorical_accuracy: 0.4819
306/Unknown 79s 239ms/step - loss: 1.3839 - sparse_categorical_accuracy: 0.4822
307/Unknown 79s 239ms/step - loss: 1.3828 - sparse_categorical_accuracy: 0.4826
308/Unknown 79s 239ms/step - loss: 1.3818 - sparse_categorical_accuracy: 0.4830
309/Unknown 79s 239ms/step - loss: 1.3807 - sparse_categorical_accuracy: 0.4833
310/Unknown 79s 238ms/step - loss: 1.3797 - sparse_categorical_accuracy: 0.4837
311/Unknown 80s 238ms/step - loss: 1.3786 - sparse_categorical_accuracy: 0.4841
312/Unknown 80s 239ms/step - loss: 1.3776 - sparse_categorical_accuracy: 0.4844
313/Unknown 80s 239ms/step - loss: 1.3766 - sparse_categorical_accuracy: 0.4848
314/Unknown 80s 239ms/step - loss: 1.3755 - sparse_categorical_accuracy: 0.4852
315/Unknown 81s 239ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4855
316/Unknown 81s 239ms/step - loss: 1.3735 - sparse_categorical_accuracy: 0.4859
317/Unknown 81s 239ms/step - loss: 1.3725 - sparse_categorical_accuracy: 0.4862
318/Unknown 81s 239ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4866
319/Unknown 82s 239ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4869
320/Unknown 82s 239ms/step - loss: 1.3694 - sparse_categorical_accuracy: 0.4873
321/Unknown 82s 239ms/step - loss: 1.3684 - sparse_categorical_accuracy: 0.4876
322/Unknown 82s 239ms/step - loss: 1.3674 - sparse_categorical_accuracy: 0.4880
323/Unknown 83s 239ms/step - loss: 1.3664 - sparse_categorical_accuracy: 0.4883
324/Unknown 83s 239ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4887
325/Unknown 83s 239ms/step - loss: 1.3645 - sparse_categorical_accuracy: 0.4890
326/Unknown 83s 239ms/step - loss: 1.3635 - sparse_categorical_accuracy: 0.4894
327/Unknown 84s 239ms/step - loss: 1.3625 - sparse_categorical_accuracy: 0.4897
328/Unknown 84s 239ms/step - loss: 1.3615 - sparse_categorical_accuracy: 0.4901
329/Unknown 84s 239ms/step - loss: 1.3606 - sparse_categorical_accuracy: 0.4904
330/Unknown 85s 239ms/step - loss: 1.3596 - sparse_categorical_accuracy: 0.4907
331/Unknown 85s 240ms/step - loss: 1.3586 - sparse_categorical_accuracy: 0.4911
332/Unknown 85s 240ms/step - loss: 1.3577 - sparse_categorical_accuracy: 0.4914
333/Unknown 85s 240ms/step - loss: 1.3567 - sparse_categorical_accuracy: 0.4917
334/Unknown 86s 240ms/step - loss: 1.3558 - sparse_categorical_accuracy: 0.4921
335/Unknown 86s 240ms/step - loss: 1.3548 - sparse_categorical_accuracy: 0.4924
336/Unknown 86s 240ms/step - loss: 1.3539 - sparse_categorical_accuracy: 0.4927
337/Unknown 86s 240ms/step - loss: 1.3529 - sparse_categorical_accuracy: 0.4931
338/Unknown 87s 240ms/step - loss: 1.3520 - sparse_categorical_accuracy: 0.4934
339/Unknown 87s 240ms/step - loss: 1.3510 - sparse_categorical_accuracy: 0.4937
340/Unknown 87s 240ms/step - loss: 1.3501 - sparse_categorical_accuracy: 0.4940
341/Unknown 87s 240ms/step - loss: 1.3492 - sparse_categorical_accuracy: 0.4944
342/Unknown 88s 240ms/step - loss: 1.3483 - sparse_categorical_accuracy: 0.4947
343/Unknown 88s 240ms/step - loss: 1.3473 - sparse_categorical_accuracy: 0.4950
344/Unknown 88s 240ms/step - loss: 1.3464 - sparse_categorical_accuracy: 0.4953
345/Unknown 89s 240ms/step - loss: 1.3455 - sparse_categorical_accuracy: 0.4956
346/Unknown 89s 241ms/step - loss: 1.3446 - sparse_categorical_accuracy: 0.4959
347/Unknown 89s 241ms/step - loss: 1.3437 - sparse_categorical_accuracy: 0.4963
348/Unknown 89s 241ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4966
349/Unknown 90s 241ms/step - loss: 1.3419 - sparse_categorical_accuracy: 0.4969
350/Unknown 90s 241ms/step - loss: 1.3410 - sparse_categorical_accuracy: 0.4972
351/Unknown 90s 241ms/step - loss: 1.3401 - sparse_categorical_accuracy: 0.4975
352/Unknown 90s 241ms/step - loss: 1.3392 - sparse_categorical_accuracy: 0.4978
353/Unknown 91s 241ms/step - loss: 1.3383 - sparse_categorical_accuracy: 0.4981
354/Unknown 91s 241ms/step - loss: 1.3374 - sparse_categorical_accuracy: 0.4984
355/Unknown 91s 241ms/step - loss: 1.3365 - sparse_categorical_accuracy: 0.4987
356/Unknown 92s 242ms/step - loss: 1.3356 - sparse_categorical_accuracy: 0.4990
357/Unknown 92s 242ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4994
358/Unknown 92s 242ms/step - loss: 1.3339 - sparse_categorical_accuracy: 0.4997
359/Unknown 92s 242ms/step - loss: 1.3330 - sparse_categorical_accuracy: 0.5000
360/Unknown 93s 242ms/step - loss: 1.3321 - sparse_categorical_accuracy: 0.5003
361/Unknown 93s 242ms/step - loss: 1.3313 - sparse_categorical_accuracy: 0.5006
362/Unknown 93s 242ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.5009
363/Unknown 94s 243ms/step - loss: 1.3296 - sparse_categorical_accuracy: 0.5011
364/Unknown 94s 243ms/step - loss: 1.3287 - sparse_categorical_accuracy: 0.5014
365/Unknown 94s 243ms/step - loss: 1.3279 - sparse_categorical_accuracy: 0.5017
366/Unknown 94s 243ms/step - loss: 1.3270 - sparse_categorical_accuracy: 0.5020
367/Unknown 95s 242ms/step - loss: 1.3262 - sparse_categorical_accuracy: 0.5023
368/Unknown 95s 242ms/step - loss: 1.3253 - sparse_categorical_accuracy: 0.5026
369/Unknown 95s 243ms/step - loss: 1.3245 - sparse_categorical_accuracy: 0.5029
370/Unknown 95s 243ms/step - loss: 1.3236 - sparse_categorical_accuracy: 0.5032
371/Unknown 96s 243ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.5035
372/Unknown 96s 243ms/step - loss: 1.3220 - sparse_categorical_accuracy: 0.5038
373/Unknown 96s 243ms/step - loss: 1.3211 - sparse_categorical_accuracy: 0.5041
374/Unknown 96s 243ms/step - loss: 1.3203 - sparse_categorical_accuracy: 0.5043
375/Unknown 97s 243ms/step - loss: 1.3195 - sparse_categorical_accuracy: 0.5046
376/Unknown 97s 243ms/step - loss: 1.3187 - sparse_categorical_accuracy: 0.5049
377/Unknown 97s 243ms/step - loss: 1.3179 - sparse_categorical_accuracy: 0.5052
378/Unknown 97s 243ms/step - loss: 1.3170 - sparse_categorical_accuracy: 0.5055
379/Unknown 98s 243ms/step - loss: 1.3162 - sparse_categorical_accuracy: 0.5057
380/Unknown 98s 243ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5060
381/Unknown 98s 243ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5063
382/Unknown 98s 243ms/step - loss: 1.3138 - sparse_categorical_accuracy: 0.5066
383/Unknown 99s 243ms/step - loss: 1.3130 - sparse_categorical_accuracy: 0.5068
384/Unknown 99s 243ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5071
385/Unknown 99s 243ms/step - loss: 1.3114 - sparse_categorical_accuracy: 0.5074
386/Unknown 99s 243ms/step - loss: 1.3106 - sparse_categorical_accuracy: 0.5077
387/Unknown 100s 243ms/step - loss: 1.3098 - sparse_categorical_accuracy: 0.5079
388/Unknown 100s 243ms/step - loss: 1.3091 - sparse_categorical_accuracy: 0.5082
389/Unknown 100s 243ms/step - loss: 1.3083 - sparse_categorical_accuracy: 0.5085
390/Unknown 101s 243ms/step - loss: 1.3075 - sparse_categorical_accuracy: 0.5087
391/Unknown 101s 244ms/step - loss: 1.3067 - sparse_categorical_accuracy: 0.5090
392/Unknown 101s 244ms/step - loss: 1.3059 - sparse_categorical_accuracy: 0.5093
393/Unknown 101s 244ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5095
394/Unknown 102s 244ms/step - loss: 1.3044 - sparse_categorical_accuracy: 0.5098
395/Unknown 102s 244ms/step - loss: 1.3036 - sparse_categorical_accuracy: 0.5101
396/Unknown 102s 244ms/step - loss: 1.3029 - sparse_categorical_accuracy: 0.5103
397/Unknown 102s 244ms/step - loss: 1.3021 - sparse_categorical_accuracy: 0.5106
398/Unknown 103s 244ms/step - loss: 1.3013 - sparse_categorical_accuracy: 0.5108
399/Unknown 103s 244ms/step - loss: 1.3006 - sparse_categorical_accuracy: 0.5111
400/Unknown 103s 244ms/step - loss: 1.2998 - sparse_categorical_accuracy: 0.5114
401/Unknown 103s 244ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5116
402/Unknown 104s 244ms/step - loss: 1.2983 - sparse_categorical_accuracy: 0.5119
403/Unknown 104s 244ms/step - loss: 1.2976 - sparse_categorical_accuracy: 0.5121
404/Unknown 104s 244ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5124
405/Unknown 104s 244ms/step - loss: 1.2961 - sparse_categorical_accuracy: 0.5126
406/Unknown 105s 244ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5129
407/Unknown 105s 244ms/step - loss: 1.2946 - sparse_categorical_accuracy: 0.5131
408/Unknown 105s 244ms/step - loss: 1.2939 - sparse_categorical_accuracy: 0.5134
409/Unknown 105s 244ms/step - loss: 1.2931 - sparse_categorical_accuracy: 0.5136
410/Unknown 106s 244ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5139
411/Unknown 106s 244ms/step - loss: 1.2917 - sparse_categorical_accuracy: 0.5141
412/Unknown 106s 244ms/step - loss: 1.2909 - sparse_categorical_accuracy: 0.5144
413/Unknown 106s 244ms/step - loss: 1.2902 - sparse_categorical_accuracy: 0.5146
414/Unknown 107s 244ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5149
415/Unknown 107s 244ms/step - loss: 1.2888 - sparse_categorical_accuracy: 0.5151
416/Unknown 107s 244ms/step - loss: 1.2880 - sparse_categorical_accuracy: 0.5154
417/Unknown 107s 244ms/step - loss: 1.2873 - sparse_categorical_accuracy: 0.5156
418/Unknown 108s 244ms/step - loss: 1.2866 - sparse_categorical_accuracy: 0.5159
419/Unknown 108s 244ms/step - loss: 1.2859 - sparse_categorical_accuracy: 0.5161
420/Unknown 108s 244ms/step - loss: 1.2852 - sparse_categorical_accuracy: 0.5163
421/Unknown 108s 244ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5166
422/Unknown 109s 244ms/step - loss: 1.2838 - sparse_categorical_accuracy: 0.5168
423/Unknown 109s 244ms/step - loss: 1.2831 - sparse_categorical_accuracy: 0.5171
424/Unknown 109s 244ms/step - loss: 1.2824 - sparse_categorical_accuracy: 0.5173
425/Unknown 109s 244ms/step - loss: 1.2817 - sparse_categorical_accuracy: 0.5175
426/Unknown 110s 245ms/step - loss: 1.2810 - sparse_categorical_accuracy: 0.5178
427/Unknown 110s 245ms/step - loss: 1.2803 - sparse_categorical_accuracy: 0.5180
428/Unknown 110s 245ms/step - loss: 1.2796 - sparse_categorical_accuracy: 0.5182
429/Unknown 110s 245ms/step - loss: 1.2789 - sparse_categorical_accuracy: 0.5185
430/Unknown 111s 245ms/step - loss: 1.2782 - sparse_categorical_accuracy: 0.5187
431/Unknown 111s 245ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5189
432/Unknown 111s 245ms/step - loss: 1.2768 - sparse_categorical_accuracy: 0.5192
433/Unknown 112s 245ms/step - loss: 1.2762 - sparse_categorical_accuracy: 0.5194
434/Unknown 112s 245ms/step - loss: 1.2755 - sparse_categorical_accuracy: 0.5196
435/Unknown 112s 245ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5199
436/Unknown 113s 245ms/step - loss: 1.2741 - sparse_categorical_accuracy: 0.5201
437/Unknown 113s 246ms/step - loss: 1.2735 - sparse_categorical_accuracy: 0.5203
438/Unknown 113s 246ms/step - loss: 1.2728 - sparse_categorical_accuracy: 0.5206
439/Unknown 113s 246ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5208
440/Unknown 114s 246ms/step - loss: 1.2714 - sparse_categorical_accuracy: 0.5210
441/Unknown 114s 246ms/step - loss: 1.2708 - sparse_categorical_accuracy: 0.5212
442/Unknown 114s 246ms/step - loss: 1.2701 - sparse_categorical_accuracy: 0.5215
443/Unknown 115s 246ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5217
444/Unknown 115s 246ms/step - loss: 1.2688 - sparse_categorical_accuracy: 0.5219
445/Unknown 115s 246ms/step - loss: 1.2681 - sparse_categorical_accuracy: 0.5221
446/Unknown 115s 246ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5224
447/Unknown 116s 247ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5226
448/Unknown 116s 247ms/step - loss: 1.2662 - sparse_categorical_accuracy: 0.5228
449/Unknown 116s 247ms/step - loss: 1.2655 - sparse_categorical_accuracy: 0.5230
450/Unknown 117s 247ms/step - loss: 1.2649 - sparse_categorical_accuracy: 0.5232
451/Unknown 117s 247ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5235
452/Unknown 117s 247ms/step - loss: 1.2636 - sparse_categorical_accuracy: 0.5237
453/Unknown 117s 247ms/step - loss: 1.2630 - sparse_categorical_accuracy: 0.5239
454/Unknown 118s 247ms/step - loss: 1.2623 - sparse_categorical_accuracy: 0.5241
455/Unknown 118s 247ms/step - loss: 1.2617 - sparse_categorical_accuracy: 0.5243
456/Unknown 118s 247ms/step - loss: 1.2610 - sparse_categorical_accuracy: 0.5245
457/Unknown 118s 247ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5248
458/Unknown 119s 247ms/step - loss: 1.2598 - sparse_categorical_accuracy: 0.5250
459/Unknown 119s 247ms/step - loss: 1.2591 - sparse_categorical_accuracy: 0.5252
460/Unknown 119s 247ms/step - loss: 1.2585 - sparse_categorical_accuracy: 0.5254
461/Unknown 119s 247ms/step - loss: 1.2579 - sparse_categorical_accuracy: 0.5256
462/Unknown 120s 247ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5258
463/Unknown 120s 247ms/step - loss: 1.2566 - sparse_categorical_accuracy: 0.5260
464/Unknown 120s 247ms/step - loss: 1.2560 - sparse_categorical_accuracy: 0.5262
465/Unknown 121s 247ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5264
466/Unknown 121s 247ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5267
467/Unknown 121s 247ms/step - loss: 1.2541 - sparse_categorical_accuracy: 0.5269
468/Unknown 121s 247ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5271
469/Unknown 122s 247ms/step - loss: 1.2529 - sparse_categorical_accuracy: 0.5273
470/Unknown 122s 248ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5275
471/Unknown 122s 248ms/step - loss: 1.2517 - sparse_categorical_accuracy: 0.5277
472/Unknown 123s 248ms/step - loss: 1.2511 - sparse_categorical_accuracy: 0.5279
473/Unknown 123s 248ms/step - loss: 1.2505 - sparse_categorical_accuracy: 0.5281
474/Unknown 123s 248ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5283
475/Unknown 124s 249ms/step - loss: 1.2493 - sparse_categorical_accuracy: 0.5285
476/Unknown 124s 249ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5287
477/Unknown 124s 249ms/step - loss: 1.2481 - sparse_categorical_accuracy: 0.5289
478/Unknown 124s 249ms/step - loss: 1.2475 - sparse_categorical_accuracy: 0.5291
479/Unknown 125s 249ms/step - loss: 1.2469 - sparse_categorical_accuracy: 0.5293
480/Unknown 125s 249ms/step - loss: 1.2463 - sparse_categorical_accuracy: 0.5295
481/Unknown 125s 249ms/step - loss: 1.2457 - sparse_categorical_accuracy: 0.5297
482/Unknown 125s 248ms/step - loss: 1.2451 - sparse_categorical_accuracy: 0.5299
483/Unknown 126s 248ms/step - loss: 1.2445 - sparse_categorical_accuracy: 0.5301
484/Unknown 126s 249ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5303
485/Unknown 126s 249ms/step - loss: 1.2433 - sparse_categorical_accuracy: 0.5305
486/Unknown 126s 249ms/step - loss: 1.2427 - sparse_categorical_accuracy: 0.5307
487/Unknown 127s 249ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5309
488/Unknown 127s 249ms/step - loss: 1.2416 - sparse_categorical_accuracy: 0.5311
489/Unknown 127s 249ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5313
490/Unknown 127s 249ms/step - loss: 1.2404 - sparse_categorical_accuracy: 0.5315
491/Unknown 128s 249ms/step - loss: 1.2398 - sparse_categorical_accuracy: 0.5317
492/Unknown 128s 249ms/step - loss: 1.2392 - sparse_categorical_accuracy: 0.5319
493/Unknown 128s 249ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5321
494/Unknown 129s 249ms/step - loss: 1.2381 - sparse_categorical_accuracy: 0.5323
495/Unknown 129s 249ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5325
496/Unknown 129s 249ms/step - loss: 1.2369 - sparse_categorical_accuracy: 0.5326
497/Unknown 129s 249ms/step - loss: 1.2364 - sparse_categorical_accuracy: 0.5328
498/Unknown 130s 249ms/step - loss: 1.2358 - sparse_categorical_accuracy: 0.5330
499/Unknown 130s 249ms/step - loss: 1.2352 - sparse_categorical_accuracy: 0.5332
500/Unknown 130s 249ms/step - loss: 1.2347 - sparse_categorical_accuracy: 0.5334
501/Unknown 130s 249ms/step - loss: 1.2341 - sparse_categorical_accuracy: 0.5336
502/Unknown 131s 249ms/step - loss: 1.2336 - sparse_categorical_accuracy: 0.5338
503/Unknown 131s 249ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5340
504/Unknown 131s 249ms/step - loss: 1.2324 - sparse_categorical_accuracy: 0.5342
505/Unknown 131s 249ms/step - loss: 1.2319 - sparse_categorical_accuracy: 0.5343
506/Unknown 132s 249ms/step - loss: 1.2313 - sparse_categorical_accuracy: 0.5345
507/Unknown 132s 250ms/step - loss: 1.2308 - sparse_categorical_accuracy: 0.5347
508/Unknown 133s 250ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5349
509/Unknown 133s 250ms/step - loss: 1.2297 - sparse_categorical_accuracy: 0.5351
510/Unknown 133s 250ms/step - loss: 1.2291 - sparse_categorical_accuracy: 0.5353
511/Unknown 133s 250ms/step - loss: 1.2286 - sparse_categorical_accuracy: 0.5355
512/Unknown 134s 250ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5356
513/Unknown 134s 250ms/step - loss: 1.2275 - sparse_categorical_accuracy: 0.5358
514/Unknown 134s 250ms/step - loss: 1.2269 - sparse_categorical_accuracy: 0.5360
515/Unknown 134s 250ms/step - loss: 1.2264 - sparse_categorical_accuracy: 0.5362
516/Unknown 135s 250ms/step - loss: 1.2258 - sparse_categorical_accuracy: 0.5364
517/Unknown 135s 250ms/step - loss: 1.2253 - sparse_categorical_accuracy: 0.5366
518/Unknown 135s 250ms/step - loss: 1.2248 - sparse_categorical_accuracy: 0.5367
519/Unknown 136s 251ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5369
520/Unknown 136s 251ms/step - loss: 1.2237 - sparse_categorical_accuracy: 0.5371
521/Unknown 136s 251ms/step - loss: 1.2231 - sparse_categorical_accuracy: 0.5373
522/Unknown 136s 251ms/step - loss: 1.2226 - sparse_categorical_accuracy: 0.5375
523/Unknown 137s 251ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5376
524/Unknown 137s 251ms/step - loss: 1.2215 - sparse_categorical_accuracy: 0.5378
525/Unknown 137s 251ms/step - loss: 1.2210 - sparse_categorical_accuracy: 0.5380
526/Unknown 137s 251ms/step - loss: 1.2205 - sparse_categorical_accuracy: 0.5382
527/Unknown 138s 251ms/step - loss: 1.2200 - sparse_categorical_accuracy: 0.5383
528/Unknown 138s 251ms/step - loss: 1.2194 - sparse_categorical_accuracy: 0.5385
529/Unknown 138s 251ms/step - loss: 1.2189 - sparse_categorical_accuracy: 0.5387
530/Unknown 138s 251ms/step - loss: 1.2184 - sparse_categorical_accuracy: 0.5389
531/Unknown 139s 251ms/step - loss: 1.2179 - sparse_categorical_accuracy: 0.5390
532/Unknown 139s 251ms/step - loss: 1.2173 - sparse_categorical_accuracy: 0.5392
533/Unknown 139s 251ms/step - loss: 1.2168 - sparse_categorical_accuracy: 0.5394
534/Unknown 140s 251ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5396
535/Unknown 140s 251ms/step - loss: 1.2158 - sparse_categorical_accuracy: 0.5397
536/Unknown 140s 251ms/step - loss: 1.2153 - sparse_categorical_accuracy: 0.5399
537/Unknown 140s 251ms/step - loss: 1.2148 - sparse_categorical_accuracy: 0.5401
538/Unknown 141s 251ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5402
539/Unknown 141s 251ms/step - loss: 1.2137 - sparse_categorical_accuracy: 0.5404
540/Unknown 141s 251ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5406
541/Unknown 141s 251ms/step - loss: 1.2127 - sparse_categorical_accuracy: 0.5408
542/Unknown 142s 251ms/step - loss: 1.2122 - sparse_categorical_accuracy: 0.5409
543/Unknown 142s 251ms/step - loss: 1.2117 - sparse_categorical_accuracy: 0.5411
544/Unknown 142s 251ms/step - loss: 1.2112 - sparse_categorical_accuracy: 0.5413
545/Unknown 143s 252ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5414
546/Unknown 143s 252ms/step - loss: 1.2102 - sparse_categorical_accuracy: 0.5416
547/Unknown 143s 252ms/step - loss: 1.2097 - sparse_categorical_accuracy: 0.5418
548/Unknown 144s 252ms/step - loss: 1.2092 - sparse_categorical_accuracy: 0.5419
549/Unknown 144s 252ms/step - loss: 1.2087 - sparse_categorical_accuracy: 0.5421
550/Unknown 144s 252ms/step - loss: 1.2082 - sparse_categorical_accuracy: 0.5423
551/Unknown 144s 252ms/step - loss: 1.2077 - sparse_categorical_accuracy: 0.5424
552/Unknown 145s 252ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5426
553/Unknown 145s 252ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5428
554/Unknown 145s 252ms/step - loss: 1.2062 - sparse_categorical_accuracy: 0.5429
555/Unknown 146s 252ms/step - loss: 1.2057 - sparse_categorical_accuracy: 0.5431
556/Unknown 146s 252ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5433
557/Unknown 146s 252ms/step - loss: 1.2047 - sparse_categorical_accuracy: 0.5434
558/Unknown 146s 253ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5436
559/Unknown 147s 253ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5437
560/Unknown 147s 253ms/step - loss: 1.2033 - sparse_categorical_accuracy: 0.5439
561/Unknown 147s 253ms/step - loss: 1.2028 - sparse_categorical_accuracy: 0.5441
562/Unknown 148s 253ms/step - loss: 1.2023 - sparse_categorical_accuracy: 0.5442
563/Unknown 148s 253ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5444
564/Unknown 148s 253ms/step - loss: 1.2013 - sparse_categorical_accuracy: 0.5445
565/Unknown 148s 253ms/step - loss: 1.2009 - sparse_categorical_accuracy: 0.5447
566/Unknown 149s 253ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5449
567/Unknown 149s 253ms/step - loss: 1.1999 - sparse_categorical_accuracy: 0.5450
568/Unknown 149s 253ms/step - loss: 1.1994 - sparse_categorical_accuracy: 0.5452
569/Unknown 149s 253ms/step - loss: 1.1990 - sparse_categorical_accuracy: 0.5453
570/Unknown 150s 253ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5455
571/Unknown 150s 253ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5456
572/Unknown 150s 253ms/step - loss: 1.1975 - sparse_categorical_accuracy: 0.5458
573/Unknown 150s 253ms/step - loss: 1.1971 - sparse_categorical_accuracy: 0.5460
574/Unknown 150s 252ms/step - loss: 1.1966 - sparse_categorical_accuracy: 0.5461
575/Unknown 151s 252ms/step - loss: 1.1961 - sparse_categorical_accuracy: 0.5463
576/Unknown 151s 252ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5464
577/Unknown 151s 252ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5466
578/Unknown 151s 252ms/step - loss: 1.1947 - sparse_categorical_accuracy: 0.5467
579/Unknown 152s 252ms/step - loss: 1.1943 - sparse_categorical_accuracy: 0.5469
580/Unknown 152s 252ms/step - loss: 1.1938 - sparse_categorical_accuracy: 0.5470
581/Unknown 152s 252ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5472
582/Unknown 152s 252ms/step - loss: 1.1929 - sparse_categorical_accuracy: 0.5473
583/Unknown 153s 252ms/step - loss: 1.1924 - sparse_categorical_accuracy: 0.5475
584/Unknown 153s 252ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5476
585/Unknown 153s 252ms/step - loss: 1.1915 - sparse_categorical_accuracy: 0.5478
586/Unknown 153s 252ms/step - loss: 1.1911 - sparse_categorical_accuracy: 0.5479
587/Unknown 153s 252ms/step - loss: 1.1906 - sparse_categorical_accuracy: 0.5481
588/Unknown 154s 252ms/step - loss: 1.1901 - sparse_categorical_accuracy: 0.5482
589/Unknown 154s 252ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5484
590/Unknown 154s 252ms/step - loss: 1.1892 - sparse_categorical_accuracy: 0.5485
591/Unknown 155s 252ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5487
592/Unknown 155s 252ms/step - loss: 1.1883 - sparse_categorical_accuracy: 0.5488
593/Unknown 155s 252ms/step - loss: 1.1879 - sparse_categorical_accuracy: 0.5490
594/Unknown 155s 252ms/step - loss: 1.1874 - sparse_categorical_accuracy: 0.5491
595/Unknown 156s 252ms/step - loss: 1.1870 - sparse_categorical_accuracy: 0.5493
596/Unknown 156s 252ms/step - loss: 1.1865 - sparse_categorical_accuracy: 0.5494
597/Unknown 156s 252ms/step - loss: 1.1861 - sparse_categorical_accuracy: 0.5496
598/Unknown 156s 252ms/step - loss: 1.1857 - sparse_categorical_accuracy: 0.5497
599/Unknown 157s 252ms/step - loss: 1.1852 - sparse_categorical_accuracy: 0.5499
600/Unknown 157s 252ms/step - loss: 1.1848 - sparse_categorical_accuracy: 0.5500
601/Unknown 157s 252ms/step - loss: 1.1843 - sparse_categorical_accuracy: 0.5502
602/Unknown 157s 252ms/step - loss: 1.1839 - sparse_categorical_accuracy: 0.5503
603/Unknown 158s 252ms/step - loss: 1.1834 - sparse_categorical_accuracy: 0.5505
604/Unknown 158s 252ms/step - loss: 1.1830 - sparse_categorical_accuracy: 0.5506
605/Unknown 158s 252ms/step - loss: 1.1826 - sparse_categorical_accuracy: 0.5508
606/Unknown 158s 252ms/step - loss: 1.1821 - sparse_categorical_accuracy: 0.5509
607/Unknown 159s 252ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5510
608/Unknown 159s 252ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5512
609/Unknown 159s 252ms/step - loss: 1.1808 - sparse_categorical_accuracy: 0.5513
610/Unknown 159s 252ms/step - loss: 1.1804 - sparse_categorical_accuracy: 0.5515
611/Unknown 160s 252ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5516
612/Unknown 160s 252ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5518
613/Unknown 160s 252ms/step - loss: 1.1791 - sparse_categorical_accuracy: 0.5519
614/Unknown 160s 252ms/step - loss: 1.1787 - sparse_categorical_accuracy: 0.5520
615/Unknown 161s 252ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5522
616/Unknown 161s 252ms/step - loss: 1.1778 - sparse_categorical_accuracy: 0.5523
617/Unknown 161s 252ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5525
618/Unknown 161s 252ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5526
619/Unknown 162s 252ms/step - loss: 1.1765 - sparse_categorical_accuracy: 0.5527
620/Unknown 162s 252ms/step - loss: 1.1761 - sparse_categorical_accuracy: 0.5529
621/Unknown 162s 252ms/step - loss: 1.1757 - sparse_categorical_accuracy: 0.5530
622/Unknown 163s 252ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5532
623/Unknown 163s 252ms/step - loss: 1.1749 - sparse_categorical_accuracy: 0.5533
624/Unknown 163s 252ms/step - loss: 1.1744 - sparse_categorical_accuracy: 0.5534
625/Unknown 163s 252ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5536
626/Unknown 164s 252ms/step - loss: 1.1736 - sparse_categorical_accuracy: 0.5537
627/Unknown 164s 252ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5538
628/Unknown 164s 253ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5540
629/Unknown 164s 253ms/step - loss: 1.1724 - sparse_categorical_accuracy: 0.5541
630/Unknown 165s 253ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5543
631/Unknown 165s 253ms/step - loss: 1.1715 - sparse_categorical_accuracy: 0.5544
632/Unknown 165s 253ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5545
633/Unknown 166s 253ms/step - loss: 1.1707 - sparse_categorical_accuracy: 0.5547
634/Unknown 166s 253ms/step - loss: 1.1703 - sparse_categorical_accuracy: 0.5548
635/Unknown 166s 253ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5549
636/Unknown 167s 253ms/step - loss: 1.1695 - sparse_categorical_accuracy: 0.5551
637/Unknown 167s 253ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5552
638/Unknown 167s 253ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5553
639/Unknown 167s 253ms/step - loss: 1.1683 - sparse_categorical_accuracy: 0.5555
640/Unknown 168s 253ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5556
641/Unknown 168s 253ms/step - loss: 1.1674 - sparse_categorical_accuracy: 0.5557
642/Unknown 168s 253ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5559
643/Unknown 169s 253ms/step - loss: 1.1666 - sparse_categorical_accuracy: 0.5560
644/Unknown 169s 253ms/step - loss: 1.1662 - sparse_categorical_accuracy: 0.5561
645/Unknown 169s 253ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5563
646/Unknown 169s 253ms/step - loss: 1.1654 - sparse_categorical_accuracy: 0.5564
647/Unknown 170s 253ms/step - loss: 1.1650 - sparse_categorical_accuracy: 0.5565
648/Unknown 170s 253ms/step - loss: 1.1646 - sparse_categorical_accuracy: 0.5567
649/Unknown 170s 253ms/step - loss: 1.1642 - sparse_categorical_accuracy: 0.5568
650/Unknown 170s 253ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5569
651/Unknown 171s 254ms/step - loss: 1.1634 - sparse_categorical_accuracy: 0.5570
652/Unknown 171s 254ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5572
653/Unknown 171s 254ms/step - loss: 1.1627 - sparse_categorical_accuracy: 0.5573
654/Unknown 171s 254ms/step - loss: 1.1623 - sparse_categorical_accuracy: 0.5574
655/Unknown 172s 254ms/step - loss: 1.1619 - sparse_categorical_accuracy: 0.5576
656/Unknown 172s 254ms/step - loss: 1.1615 - sparse_categorical_accuracy: 0.5577
657/Unknown 172s 254ms/step - loss: 1.1611 - sparse_categorical_accuracy: 0.5578
658/Unknown 173s 254ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5579
659/Unknown 173s 254ms/step - loss: 1.1603 - sparse_categorical_accuracy: 0.5581
660/Unknown 173s 254ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5582
661/Unknown 173s 254ms/step - loss: 1.1595 - sparse_categorical_accuracy: 0.5583
662/Unknown 174s 254ms/step - loss: 1.1591 - sparse_categorical_accuracy: 0.5584
663/Unknown 174s 254ms/step - loss: 1.1588 - sparse_categorical_accuracy: 0.5586
664/Unknown 174s 254ms/step - loss: 1.1584 - sparse_categorical_accuracy: 0.5587
665/Unknown 175s 254ms/step - loss: 1.1580 - sparse_categorical_accuracy: 0.5588
666/Unknown 175s 254ms/step - loss: 1.1576 - sparse_categorical_accuracy: 0.5590
667/Unknown 175s 255ms/step - loss: 1.1572 - sparse_categorical_accuracy: 0.5591
668/Unknown 176s 255ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5592
669/Unknown 176s 255ms/step - loss: 1.1565 - sparse_categorical_accuracy: 0.5593
670/Unknown 176s 255ms/step - loss: 1.1561 - sparse_categorical_accuracy: 0.5595
671/Unknown 177s 255ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5596
672/Unknown 177s 255ms/step - loss: 1.1553 - sparse_categorical_accuracy: 0.5597
673/Unknown 177s 255ms/step - loss: 1.1549 - sparse_categorical_accuracy: 0.5598
674/Unknown 177s 255ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5600
675/Unknown 178s 255ms/step - loss: 1.1542 - sparse_categorical_accuracy: 0.5601
676/Unknown 178s 255ms/step - loss: 1.1538 - sparse_categorical_accuracy: 0.5602
677/Unknown 178s 255ms/step - loss: 1.1534 - sparse_categorical_accuracy: 0.5603
678/Unknown 178s 255ms/step - loss: 1.1531 - sparse_categorical_accuracy: 0.5604
679/Unknown 179s 255ms/step - loss: 1.1527 - sparse_categorical_accuracy: 0.5606
680/Unknown 179s 255ms/step - loss: 1.1523 - sparse_categorical_accuracy: 0.5607
681/Unknown 179s 255ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5608
682/Unknown 179s 255ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5609
683/Unknown 180s 255ms/step - loss: 1.1512 - sparse_categorical_accuracy: 0.5611
684/Unknown 180s 255ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5612
685/Unknown 180s 255ms/step - loss: 1.1505 - sparse_categorical_accuracy: 0.5613
686/Unknown 180s 255ms/step - loss: 1.1501 - sparse_categorical_accuracy: 0.5614
687/Unknown 180s 255ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5615
688/Unknown 181s 255ms/step - loss: 1.1494 - sparse_categorical_accuracy: 0.5617
689/Unknown 181s 255ms/step - loss: 1.1490 - sparse_categorical_accuracy: 0.5618
690/Unknown 181s 254ms/step - loss: 1.1486 - sparse_categorical_accuracy: 0.5619
691/Unknown 181s 254ms/step - loss: 1.1483 - sparse_categorical_accuracy: 0.5620
692/Unknown 182s 254ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5621
693/Unknown 182s 254ms/step - loss: 1.1475 - sparse_categorical_accuracy: 0.5623
694/Unknown 182s 254ms/step - loss: 1.1472 - sparse_categorical_accuracy: 0.5624
695/Unknown 182s 254ms/step - loss: 1.1468 - sparse_categorical_accuracy: 0.5625
696/Unknown 183s 254ms/step - loss: 1.1464 - sparse_categorical_accuracy: 0.5626
697/Unknown 183s 254ms/step - loss: 1.1461 - sparse_categorical_accuracy: 0.5627
698/Unknown 183s 254ms/step - loss: 1.1457 - sparse_categorical_accuracy: 0.5628
699/Unknown 183s 255ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5630
700/Unknown 184s 255ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5631
701/Unknown 184s 255ms/step - loss: 1.1447 - sparse_categorical_accuracy: 0.5632
702/Unknown 184s 255ms/step - loss: 1.1443 - sparse_categorical_accuracy: 0.5633
703/Unknown 185s 255ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5634
704/Unknown 185s 255ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5635
705/Unknown 185s 255ms/step - loss: 1.1432 - sparse_categorical_accuracy: 0.5637
706/Unknown 185s 255ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5638
707/Unknown 186s 255ms/step - loss: 1.1425 - sparse_categorical_accuracy: 0.5639
708/Unknown 186s 255ms/step - loss: 1.1422 - sparse_categorical_accuracy: 0.5640
709/Unknown 186s 255ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5641
710/Unknown 187s 255ms/step - loss: 1.1415 - sparse_categorical_accuracy: 0.5642
711/Unknown 187s 255ms/step - loss: 1.1411 - sparse_categorical_accuracy: 0.5644
712/Unknown 187s 255ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5645
713/Unknown 188s 255ms/step - loss: 1.1404 - sparse_categorical_accuracy: 0.5646
714/Unknown 188s 255ms/step - loss: 1.1401 - sparse_categorical_accuracy: 0.5647
715/Unknown 188s 255ms/step - loss: 1.1397 - sparse_categorical_accuracy: 0.5648
716/Unknown 188s 255ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5649
717/Unknown 189s 255ms/step - loss: 1.1390 - sparse_categorical_accuracy: 0.5650
718/Unknown 189s 256ms/step - loss: 1.1387 - sparse_categorical_accuracy: 0.5651
719/Unknown 189s 256ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5653
720/Unknown 190s 256ms/step - loss: 1.1380 - sparse_categorical_accuracy: 0.5654
721/Unknown 190s 256ms/step - loss: 1.1376 - sparse_categorical_accuracy: 0.5655
722/Unknown 190s 256ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5656
723/Unknown 191s 256ms/step - loss: 1.1370 - sparse_categorical_accuracy: 0.5657
724/Unknown 191s 256ms/step - loss: 1.1366 - sparse_categorical_accuracy: 0.5658
725/Unknown 191s 256ms/step - loss: 1.1363 - sparse_categorical_accuracy: 0.5659
726/Unknown 192s 256ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5660
727/Unknown 192s 256ms/step - loss: 1.1356 - sparse_categorical_accuracy: 0.5662
728/Unknown 192s 256ms/step - loss: 1.1353 - sparse_categorical_accuracy: 0.5663
729/Unknown 192s 256ms/step - loss: 1.1349 - sparse_categorical_accuracy: 0.5664
730/Unknown 193s 256ms/step - loss: 1.1346 - sparse_categorical_accuracy: 0.5665
731/Unknown 193s 256ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5666
732/Unknown 193s 256ms/step - loss: 1.1339 - sparse_categorical_accuracy: 0.5667
733/Unknown 193s 256ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5668
734/Unknown 194s 256ms/step - loss: 1.1332 - sparse_categorical_accuracy: 0.5669
735/Unknown 194s 256ms/step - loss: 1.1329 - sparse_categorical_accuracy: 0.5670
736/Unknown 194s 256ms/step - loss: 1.1326 - sparse_categorical_accuracy: 0.5671
737/Unknown 194s 256ms/step - loss: 1.1322 - sparse_categorical_accuracy: 0.5672
738/Unknown 195s 256ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5674
739/Unknown 195s 256ms/step - loss: 1.1316 - sparse_categorical_accuracy: 0.5675
740/Unknown 195s 256ms/step - loss: 1.1312 - sparse_categorical_accuracy: 0.5676
741/Unknown 195s 256ms/step - loss: 1.1309 - sparse_categorical_accuracy: 0.5677
742/Unknown 196s 256ms/step - loss: 1.1306 - sparse_categorical_accuracy: 0.5678
743/Unknown 196s 256ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5679
744/Unknown 196s 256ms/step - loss: 1.1299 - sparse_categorical_accuracy: 0.5680
745/Unknown 196s 256ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5681
746/Unknown 197s 256ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5682
747/Unknown 197s 256ms/step - loss: 1.1289 - sparse_categorical_accuracy: 0.5683
748/Unknown 197s 257ms/step - loss: 1.1286 - sparse_categorical_accuracy: 0.5684
749/Unknown 198s 257ms/step - loss: 1.1283 - sparse_categorical_accuracy: 0.5685
750/Unknown 198s 257ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5686
751/Unknown 198s 257ms/step - loss: 1.1276 - sparse_categorical_accuracy: 0.5687
752/Unknown 199s 257ms/step - loss: 1.1273 - sparse_categorical_accuracy: 0.5689
753/Unknown 199s 257ms/step - loss: 1.1270 - sparse_categorical_accuracy: 0.5690
754/Unknown 199s 257ms/step - loss: 1.1267 - sparse_categorical_accuracy: 0.5691
755/Unknown 200s 257ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5692
756/Unknown 200s 257ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5693
757/Unknown 200s 257ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5694
758/Unknown 201s 257ms/step - loss: 1.1254 - sparse_categorical_accuracy: 0.5695
759/Unknown 201s 257ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5696
760/Unknown 201s 257ms/step - loss: 1.1247 - sparse_categorical_accuracy: 0.5697
761/Unknown 201s 257ms/step - loss: 1.1244 - sparse_categorical_accuracy: 0.5698
762/Unknown 202s 257ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5699
763/Unknown 202s 257ms/step - loss: 1.1238 - sparse_categorical_accuracy: 0.5700
764/Unknown 202s 257ms/step - loss: 1.1235 - sparse_categorical_accuracy: 0.5701
765/Unknown 202s 257ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5702
766/Unknown 203s 257ms/step - loss: 1.1228 - sparse_categorical_accuracy: 0.5703
767/Unknown 203s 257ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5704
768/Unknown 203s 257ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5705
769/Unknown 203s 257ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5706
770/Unknown 204s 257ms/step - loss: 1.1216 - sparse_categorical_accuracy: 0.5707
771/Unknown 204s 257ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5708
772/Unknown 204s 257ms/step - loss: 1.1209 - sparse_categorical_accuracy: 0.5709
773/Unknown 204s 257ms/step - loss: 1.1206 - sparse_categorical_accuracy: 0.5710
774/Unknown 205s 257ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5711
775/Unknown 205s 257ms/step - loss: 1.1200 - sparse_categorical_accuracy: 0.5712
776/Unknown 205s 257ms/step - loss: 1.1197 - sparse_categorical_accuracy: 0.5713
777/Unknown 205s 257ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5714
778/Unknown 206s 257ms/step - loss: 1.1191 - sparse_categorical_accuracy: 0.5715
779/Unknown 206s 257ms/step - loss: 1.1188 - sparse_categorical_accuracy: 0.5716
780/Unknown 206s 257ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5717
781/Unknown 207s 258ms/step - loss: 1.1181 - sparse_categorical_accuracy: 0.5718
782/Unknown 207s 258ms/step - loss: 1.1178 - sparse_categorical_accuracy: 0.5719
783/Unknown 207s 258ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5720
784/Unknown 208s 258ms/step - loss: 1.1172 - sparse_categorical_accuracy: 0.5721
785/Unknown 208s 258ms/step - loss: 1.1169 - sparse_categorical_accuracy: 0.5722
786/Unknown 208s 258ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5723
787/Unknown 209s 258ms/step - loss: 1.1163 - sparse_categorical_accuracy: 0.5724
788/Unknown 209s 258ms/step - loss: 1.1160 - sparse_categorical_accuracy: 0.5725
789/Unknown 209s 258ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5726
790/Unknown 209s 258ms/step - loss: 1.1154 - sparse_categorical_accuracy: 0.5727
791/Unknown 210s 258ms/step - loss: 1.1151 - sparse_categorical_accuracy: 0.5728
792/Unknown 210s 258ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5729
793/Unknown 210s 258ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5730
794/Unknown 210s 258ms/step - loss: 1.1142 - sparse_categorical_accuracy: 0.5731
795/Unknown 211s 258ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5732
796/Unknown 211s 258ms/step - loss: 1.1136 - sparse_categorical_accuracy: 0.5733
797/Unknown 211s 258ms/step - loss: 1.1133 - sparse_categorical_accuracy: 0.5734
798/Unknown 211s 258ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5735
799/Unknown 212s 258ms/step - loss: 1.1127 - sparse_categorical_accuracy: 0.5736
800/Unknown 212s 258ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5737
801/Unknown 212s 258ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5738
802/Unknown 212s 258ms/step - loss: 1.1118 - sparse_categorical_accuracy: 0.5739
803/Unknown 213s 258ms/step - loss: 1.1115 - sparse_categorical_accuracy: 0.5740
804/Unknown 213s 258ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5741
805/Unknown 213s 258ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5742
806/Unknown 214s 258ms/step - loss: 1.1106 - sparse_categorical_accuracy: 0.5743
807/Unknown 214s 258ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5744
808/Unknown 214s 258ms/step - loss: 1.1100 - sparse_categorical_accuracy: 0.5745
809/Unknown 215s 258ms/step - loss: 1.1097 - sparse_categorical_accuracy: 0.5746
810/Unknown 215s 259ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5747
811/Unknown 215s 259ms/step - loss: 1.1091 - sparse_categorical_accuracy: 0.5747
812/Unknown 215s 259ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5748
813/Unknown 216s 259ms/step - loss: 1.1086 - sparse_categorical_accuracy: 0.5749
814/Unknown 216s 259ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5750
815/Unknown 216s 259ms/step - loss: 1.1080 - sparse_categorical_accuracy: 0.5751
816/Unknown 217s 259ms/step - loss: 1.1077 - sparse_categorical_accuracy: 0.5752
817/Unknown 217s 259ms/step - loss: 1.1074 - sparse_categorical_accuracy: 0.5753
818/Unknown 217s 259ms/step - loss: 1.1071 - sparse_categorical_accuracy: 0.5754
819/Unknown 217s 259ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5755
820/Unknown 218s 259ms/step - loss: 1.1065 - sparse_categorical_accuracy: 0.5756
821/Unknown 218s 259ms/step - loss: 1.1062 - sparse_categorical_accuracy: 0.5757
822/Unknown 218s 259ms/step - loss: 1.1060 - sparse_categorical_accuracy: 0.5758
823/Unknown 219s 259ms/step - loss: 1.1057 - sparse_categorical_accuracy: 0.5759
824/Unknown 219s 259ms/step - loss: 1.1054 - sparse_categorical_accuracy: 0.5760
825/Unknown 219s 259ms/step - loss: 1.1051 - sparse_categorical_accuracy: 0.5761
826/Unknown 219s 259ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5762
827/Unknown 220s 259ms/step - loss: 1.1045 - sparse_categorical_accuracy: 0.5762
828/Unknown 220s 259ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5763
829/Unknown 220s 259ms/step - loss: 1.1039 - sparse_categorical_accuracy: 0.5764
830/Unknown 221s 259ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5765
831/Unknown 221s 259ms/step - loss: 1.1034 - sparse_categorical_accuracy: 0.5766
832/Unknown 221s 259ms/step - loss: 1.1031 - sparse_categorical_accuracy: 0.5767
833/Unknown 222s 259ms/step - loss: 1.1028 - sparse_categorical_accuracy: 0.5768
834/Unknown 222s 259ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5769
835/Unknown 222s 259ms/step - loss: 1.1022 - sparse_categorical_accuracy: 0.5770
836/Unknown 222s 259ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5771
837/Unknown 223s 259ms/step - loss: 1.1017 - sparse_categorical_accuracy: 0.5772
838/Unknown 223s 259ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5773
839/Unknown 223s 259ms/step - loss: 1.1011 - sparse_categorical_accuracy: 0.5773
840/Unknown 223s 259ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5774
841/Unknown 224s 259ms/step - loss: 1.1006 - sparse_categorical_accuracy: 0.5775
842/Unknown 224s 259ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5776
843/Unknown 224s 259ms/step - loss: 1.1000 - sparse_categorical_accuracy: 0.5777
844/Unknown 224s 259ms/step - loss: 1.0997 - sparse_categorical_accuracy: 0.5778
845/Unknown 225s 259ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5779
846/Unknown 225s 259ms/step - loss: 1.0992 - sparse_categorical_accuracy: 0.5780
847/Unknown 225s 259ms/step - loss: 1.0989 - sparse_categorical_accuracy: 0.5781
848/Unknown 225s 259ms/step - loss: 1.0986 - sparse_categorical_accuracy: 0.5782
849/Unknown 226s 259ms/step - loss: 1.0984 - sparse_categorical_accuracy: 0.5782
850/Unknown 226s 259ms/step - loss: 1.0981 - sparse_categorical_accuracy: 0.5783
851/Unknown 226s 259ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5784
852/Unknown 227s 259ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5785
853/Unknown 227s 259ms/step - loss: 1.0973 - sparse_categorical_accuracy: 0.5786
854/Unknown 227s 260ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5787
855/Unknown 228s 260ms/step - loss: 1.0967 - sparse_categorical_accuracy: 0.5788
856/Unknown 228s 260ms/step - loss: 1.0964 - sparse_categorical_accuracy: 0.5789
857/Unknown 228s 260ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5790
858/Unknown 228s 260ms/step - loss: 1.0959 - sparse_categorical_accuracy: 0.5790
859/Unknown 229s 260ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5791
860/Unknown 229s 260ms/step - loss: 1.0954 - sparse_categorical_accuracy: 0.5792
861/Unknown 229s 260ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5793
862/Unknown 229s 260ms/step - loss: 1.0948 - sparse_categorical_accuracy: 0.5794
863/Unknown 230s 260ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5795
864/Unknown 230s 260ms/step - loss: 1.0943 - sparse_categorical_accuracy: 0.5796
865/Unknown 230s 260ms/step - loss: 1.0940 - sparse_categorical_accuracy: 0.5796
866/Unknown 231s 260ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5797
867/Unknown 231s 260ms/step - loss: 1.0935 - sparse_categorical_accuracy: 0.5798
868/Unknown 231s 260ms/step - loss: 1.0932 - sparse_categorical_accuracy: 0.5799
869/Unknown 231s 260ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5800
870/Unknown 232s 260ms/step - loss: 1.0927 - sparse_categorical_accuracy: 0.5801
871/Unknown 232s 260ms/step - loss: 1.0924 - sparse_categorical_accuracy: 0.5802
872/Unknown 232s 260ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5802
873/Unknown 232s 260ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5803
874/Unknown 233s 260ms/step - loss: 1.0916 - sparse_categorical_accuracy: 0.5804
875/Unknown 233s 260ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5805
876/Unknown 233s 260ms/step - loss: 1.0911 - sparse_categorical_accuracy: 0.5806
877/Unknown 233s 260ms/step - loss: 1.0908 - sparse_categorical_accuracy: 0.5807
878/Unknown 234s 260ms/step - loss: 1.0906 - sparse_categorical_accuracy: 0.5808
879/Unknown 234s 260ms/step - loss: 1.0903 - sparse_categorical_accuracy: 0.5808
880/Unknown 234s 260ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5809
881/Unknown 234s 260ms/step - loss: 1.0898 - sparse_categorical_accuracy: 0.5810
882/Unknown 235s 260ms/step - loss: 1.0895 - sparse_categorical_accuracy: 0.5811
883/Unknown 235s 260ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5812
884/Unknown 235s 260ms/step - loss: 1.0890 - sparse_categorical_accuracy: 0.5813
885/Unknown 235s 260ms/step - loss: 1.0887 - sparse_categorical_accuracy: 0.5813
886/Unknown 236s 260ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5814
887/Unknown 236s 260ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5815
888/Unknown 237s 260ms/step - loss: 1.0880 - sparse_categorical_accuracy: 0.5816
889/Unknown 237s 260ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5817
890/Unknown 237s 260ms/step - loss: 1.0874 - sparse_categorical_accuracy: 0.5818
891/Unknown 238s 261ms/step - loss: 1.0872 - sparse_categorical_accuracy: 0.5818
892/Unknown 238s 261ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5819
893/Unknown 238s 261ms/step - loss: 1.0867 - sparse_categorical_accuracy: 0.5820
894/Unknown 239s 261ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5821
895/Unknown 239s 261ms/step - loss: 1.0862 - sparse_categorical_accuracy: 0.5822
896/Unknown 239s 261ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5823
897/Unknown 239s 261ms/step - loss: 1.0856 - sparse_categorical_accuracy: 0.5823
898/Unknown 240s 261ms/step - loss: 1.0854 - sparse_categorical_accuracy: 0.5824
899/Unknown 240s 261ms/step - loss: 1.0851 - sparse_categorical_accuracy: 0.5825
900/Unknown 240s 261ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5826
901/Unknown 240s 261ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5827
902/Unknown 241s 261ms/step - loss: 1.0844 - sparse_categorical_accuracy: 0.5827
903/Unknown 241s 261ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5828
904/Unknown 241s 261ms/step - loss: 1.0839 - sparse_categorical_accuracy: 0.5829
905/Unknown 241s 261ms/step - loss: 1.0836 - sparse_categorical_accuracy: 0.5830
906/Unknown 242s 261ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5831
907/Unknown 242s 261ms/step - loss: 1.0831 - sparse_categorical_accuracy: 0.5832
908/Unknown 242s 261ms/step - loss: 1.0829 - sparse_categorical_accuracy: 0.5832
909/Unknown 243s 261ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5833
910/Unknown 243s 261ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5834
911/Unknown 243s 261ms/step - loss: 1.0821 - sparse_categorical_accuracy: 0.5835
912/Unknown 243s 261ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5836
913/Unknown 244s 261ms/step - loss: 1.0816 - sparse_categorical_accuracy: 0.5836
914/Unknown 244s 261ms/step - loss: 1.0814 - sparse_categorical_accuracy: 0.5837
915/Unknown 244s 261ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5838
916/Unknown 244s 261ms/step - loss: 1.0809 - sparse_categorical_accuracy: 0.5839
917/Unknown 245s 261ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5839
918/Unknown 245s 261ms/step - loss: 1.0804 - sparse_categorical_accuracy: 0.5840
919/Unknown 245s 261ms/step - loss: 1.0801 - sparse_categorical_accuracy: 0.5841
920/Unknown 246s 261ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5842
921/Unknown 246s 261ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5843
922/Unknown 246s 261ms/step - loss: 1.0794 - sparse_categorical_accuracy: 0.5843
923/Unknown 247s 261ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5844
924/Unknown 247s 261ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5845
925/Unknown 247s 261ms/step - loss: 1.0787 - sparse_categorical_accuracy: 0.5846
926/Unknown 248s 261ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5847
927/Unknown 248s 261ms/step - loss: 1.0782 - sparse_categorical_accuracy: 0.5847
928/Unknown 248s 261ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5848
929/Unknown 248s 261ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5849
930/Unknown 249s 261ms/step - loss: 1.0775 - sparse_categorical_accuracy: 0.5850
931/Unknown 249s 261ms/step - loss: 1.0772 - sparse_categorical_accuracy: 0.5850
932/Unknown 249s 261ms/step - loss: 1.0770 - sparse_categorical_accuracy: 0.5851
933/Unknown 250s 262ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5852
934/Unknown 250s 262ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5853
935/Unknown 250s 262ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5854
936/Unknown 250s 262ms/step - loss: 1.0760 - sparse_categorical_accuracy: 0.5854
937/Unknown 251s 262ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5855
938/Unknown 251s 262ms/step - loss: 1.0755 - sparse_categorical_accuracy: 0.5856
939/Unknown 251s 262ms/step - loss: 1.0753 - sparse_categorical_accuracy: 0.5857
940/Unknown 252s 262ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5857
941/Unknown 252s 262ms/step - loss: 1.0748 - sparse_categorical_accuracy: 0.5858
942/Unknown 252s 262ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5859
943/Unknown 252s 262ms/step - loss: 1.0744 - sparse_categorical_accuracy: 0.5860
944/Unknown 253s 262ms/step - loss: 1.0741 - sparse_categorical_accuracy: 0.5860
945/Unknown 253s 262ms/step - loss: 1.0739 - sparse_categorical_accuracy: 0.5861
946/Unknown 253s 262ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5862
947/Unknown 253s 262ms/step - loss: 1.0734 - sparse_categorical_accuracy: 0.5863
948/Unknown 254s 262ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5863
949/Unknown 254s 262ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5864
950/Unknown 254s 262ms/step - loss: 1.0727 - sparse_categorical_accuracy: 0.5865
951/Unknown 254s 262ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5866
952/Unknown 255s 262ms/step - loss: 1.0722 - sparse_categorical_accuracy: 0.5866
953/Unknown 255s 262ms/step - loss: 1.0720 - sparse_categorical_accuracy: 0.5867
954/Unknown 255s 262ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5868
955/Unknown 255s 262ms/step - loss: 1.0715 - sparse_categorical_accuracy: 0.5869
956/Unknown 256s 262ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5869
957/Unknown 256s 262ms/step - loss: 1.0711 - sparse_categorical_accuracy: 0.5870
958/Unknown 256s 262ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5871
959/Unknown 256s 262ms/step - loss: 1.0706 - sparse_categorical_accuracy: 0.5872
960/Unknown 257s 262ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5872
961/Unknown 257s 262ms/step - loss: 1.0702 - sparse_categorical_accuracy: 0.5873
962/Unknown 257s 262ms/step - loss: 1.0699 - sparse_categorical_accuracy: 0.5874
963/Unknown 258s 262ms/step - loss: 1.0697 - sparse_categorical_accuracy: 0.5875
964/Unknown 258s 262ms/step - loss: 1.0695 - sparse_categorical_accuracy: 0.5875
965/Unknown 258s 262ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5876
966/Unknown 259s 262ms/step - loss: 1.0690 - sparse_categorical_accuracy: 0.5877
967/Unknown 259s 262ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5878
968/Unknown 259s 262ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5878
969/Unknown 259s 262ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5879
970/Unknown 260s 262ms/step - loss: 1.0681 - sparse_categorical_accuracy: 0.5880
971/Unknown 260s 262ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5880
972/Unknown 260s 262ms/step - loss: 1.0676 - sparse_categorical_accuracy: 0.5881
973/Unknown 261s 262ms/step - loss: 1.0674 - sparse_categorical_accuracy: 0.5882
974/Unknown 261s 262ms/step - loss: 1.0672 - sparse_categorical_accuracy: 0.5883
975/Unknown 261s 262ms/step - loss: 1.0670 - sparse_categorical_accuracy: 0.5883
976/Unknown 261s 262ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5884
977/Unknown 262s 262ms/step - loss: 1.0665 - sparse_categorical_accuracy: 0.5885
978/Unknown 262s 262ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5886
979/Unknown 262s 262ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5886
980/Unknown 263s 262ms/step - loss: 1.0658 - sparse_categorical_accuracy: 0.5887
981/Unknown 263s 262ms/step - loss: 1.0656 - sparse_categorical_accuracy: 0.5888
982/Unknown 263s 262ms/step - loss: 1.0654 - sparse_categorical_accuracy: 0.5888
983/Unknown 263s 262ms/step - loss: 1.0652 - sparse_categorical_accuracy: 0.5889
984/Unknown 264s 262ms/step - loss: 1.0649 - sparse_categorical_accuracy: 0.5890
985/Unknown 264s 262ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5891
986/Unknown 264s 262ms/step - loss: 1.0645 - sparse_categorical_accuracy: 0.5891
987/Unknown 264s 262ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5892
988/Unknown 265s 262ms/step - loss: 1.0641 - sparse_categorical_accuracy: 0.5893
989/Unknown 265s 262ms/step - loss: 1.0638 - sparse_categorical_accuracy: 0.5893
990/Unknown 265s 262ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5894
991/Unknown 265s 262ms/step - loss: 1.0634 - sparse_categorical_accuracy: 0.5895
992/Unknown 266s 262ms/step - loss: 1.0632 - sparse_categorical_accuracy: 0.5896
993/Unknown 266s 262ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5896
994/Unknown 266s 262ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5897
995/Unknown 266s 262ms/step - loss: 1.0625 - sparse_categorical_accuracy: 0.5898
996/Unknown 267s 262ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5898
997/Unknown 267s 262ms/step - loss: 1.0621 - sparse_categorical_accuracy: 0.5899
998/Unknown 267s 262ms/step - loss: 1.0618 - sparse_categorical_accuracy: 0.5900
999/Unknown 267s 262ms/step - loss: 1.0616 - sparse_categorical_accuracy: 0.5900
1000/未知 268 秒 262 毫秒/步 - 损失:1.0614 - sparse_categorical_accuracy: 0.5901
1001/未知 268 秒 262 毫秒/步 - 损失:1.0612 - sparse_categorical_accuracy: 0.5902
1002/未知 268 秒 262 毫秒/步 - 损失:1.0610 - sparse_categorical_accuracy: 0.5903
1003/未知 269 秒 262 毫秒/步 - 损失:1.0608 - sparse_categorical_accuracy: 0.5903
1004/未知 269 秒 262 毫秒/步 - 损失:1.0605 - sparse_categorical_accuracy: 0.5904
1005/未知 269 秒 262 毫秒/步 - 损失:1.0603 - sparse_categorical_accuracy: 0.5905
1006/未知 270 秒 263 毫秒/步 - 损失:1.0601 - sparse_categorical_accuracy: 0.5905
1007/未知 270 秒 263 毫秒/步 - 损失:1.0599 - sparse_categorical_accuracy: 0.5906
1008/未知 270 秒 263 毫秒/步 - 损失:1.0597 - sparse_categorical_accuracy: 0.5907
1009/未知 271 秒 263 毫秒/步 - 损失:1.0595 - sparse_categorical_accuracy: 0.5907
1010/未知 271 秒 263 毫秒/步 - 损失:1.0592 - sparse_categorical_accuracy: 0.5908
1011/未知 271 秒 263 毫秒/步 - 损失:1.0590 - sparse_categorical_accuracy: 0.5909
1012/未知 271 秒 263 毫秒/步 - 损失:1.0588 - sparse_categorical_accuracy: 0.5909
1013/未知 272 秒 263 毫秒/步 - 损失:1.0586 - sparse_categorical_accuracy: 0.5910
1014/未知 272 秒 263 毫秒/步 - 损失:1.0584 - sparse_categorical_accuracy: 0.5911
1015/未知 272 秒 263 毫秒/步 - 损失:1.0582 - sparse_categorical_accuracy: 0.5912
1016/未知 272 秒 263 毫秒/步 - 损失:1.0580 - sparse_categorical_accuracy: 0.5912
1017/未知 273 秒 263 毫秒/步 - 损失:1.0578 - sparse_categorical_accuracy: 0.5913
1018/未知 273 秒 263 毫秒/步 - 损失:1.0575 - sparse_categorical_accuracy: 0.5914
1019/未知 273 秒 263 毫秒/步 - 损失:1.0573 - sparse_categorical_accuracy: 0.5914
1020/未知 273 秒 263 毫秒/步 - 损失:1.0571 - sparse_categorical_accuracy: 0.5915
1021/未知 274 秒 263 毫秒/步 - 损失:1.0569 - sparse_categorical_accuracy: 0.5916
1022/未知 274 秒 263 毫秒/步 - 损失:1.0567 - sparse_categorical_accuracy: 0.5916
1023/未知 274 秒 263 毫秒/步 - 损失:1.0565 - sparse_categorical_accuracy: 0.5917
1024/未知 275 秒 263 毫秒/步 - 损失:1.0563 - sparse_categorical_accuracy: 0.5918
1025/未知 275 秒 263 毫秒/步 - 损失:1.0561 - sparse_categorical_accuracy: 0.5918
1026/未知 275 秒 263 毫秒/步 - 损失:1.0559 - sparse_categorical_accuracy: 0.5919
1027/未知 275 秒 263 毫秒/步 - 损失:1.0556 - sparse_categorical_accuracy: 0.5920
1028/未知 276 秒 263 毫秒/步 - 损失:1.0554 - sparse_categorical_accuracy: 0.5920
1029/未知 276 秒 263 毫秒/步 - 损失:1.0552 - sparse_categorical_accuracy: 0.5921
1030/未知 276 秒 263 毫秒/步 - 损失:1.0550 - sparse_categorical_accuracy: 0.5922
1031/未知 276 秒 263 毫秒/步 - 损失:1.0548 - sparse_categorical_accuracy: 0.5922
1032/未知 277 秒 263 毫秒/步 - 损失:1.0546 - sparse_categorical_accuracy: 0.5923
1033/未知 277 秒 263 毫秒/步 - 损失:1.0544 - sparse_categorical_accuracy: 0.5924
1034/未知 277 秒 263 毫秒/步 - 损失:1.0542 - sparse_categorical_accuracy: 0.5924
1035/未知 278 秒 263 毫秒/步 - 损失:1.0540 - sparse_categorical_accuracy: 0.5925
1036/未知 278 秒 263 毫秒/步 - 损失:1.0538 - sparse_categorical_accuracy: 0.5926
1037/未知 278 秒 263 毫秒/步 - 损失:1.0536 - sparse_categorical_accuracy: 0.5926
1038/未知 278 秒 263 毫秒/步 - 损失:1.0533 - sparse_categorical_accuracy: 0.5927
1039/未知 279 秒 263 毫秒/步 - 损失:1.0531 - sparse_categorical_accuracy: 0.5928
1040/未知 279 秒 263 毫秒/步 - 损失:1.0529 - sparse_categorical_accuracy: 0.5928
1041/未知 279 秒 263 毫秒/步 - 损失:1.0527 - sparse_categorical_accuracy: 0.5929
1042/未知 280 秒 263 毫秒/步 - 损失:1.0525 - sparse_categorical_accuracy: 0.5930
1043/未知 280 秒 263 毫秒/步 - 损失:1.0523 - sparse_categorical_accuracy: 0.5930
1044/未知 280 秒 263 毫秒/步 - 损失:1.0521 - sparse_categorical_accuracy: 0.5931
1045/未知 280 秒 263 毫秒/步 - 损失:1.0519 - sparse_categorical_accuracy: 0.5932
1046/未知 281 秒 263 毫秒/步 - 损失:1.0517 - sparse_categorical_accuracy: 0.5932
1047/未知 281 秒 263 毫秒/步 - 损失:1.0515 - sparse_categorical_accuracy: 0.5933
1048/未知 281 秒 263 毫秒/步 - 损失:1.0513 - sparse_categorical_accuracy: 0.5934
1049/未知 282 秒 263 毫秒/步 - 损失:1.0511 - sparse_categorical_accuracy: 0.5934
1050/未知 282 秒 263 毫秒/步 - 损失:1.0509 - sparse_categorical_accuracy: 0.5935
1051/未知 282 秒 263 毫秒/步 - 损失:1.0507 - sparse_categorical_accuracy: 0.5935
1052/未知 283 秒 263 毫秒/步 - 损失:1.0505 - sparse_categorical_accuracy: 0.5936
1053/未知 283 秒 263 毫秒/步 - 损失:1.0503 - sparse_categorical_accuracy: 0.5937
1054/未知 283 秒 263 毫秒/步 - 损失:1.0501 - sparse_categorical_accuracy: 0.5937
1055/未知 283 秒 263 毫秒/步 - 损失:1.0499 - sparse_categorical_accuracy: 0.5938
1056/未知 284 秒 263 毫秒/步 - 损失:1.0497 - sparse_categorical_accuracy: 0.5939
1057/未知 284 秒 263 毫秒/步 - 损失:1.0495 - sparse_categorical_accuracy: 0.5939
1058/未知 284 秒 263 毫秒/步 - 损失:1.0493 - sparse_categorical_accuracy: 0.5940
1059/未知 285 秒 263 毫秒/步 - 损失:1.0491 - sparse_categorical_accuracy: 0.5941
1060/未知 285 秒 263 毫秒/步 - 损失:1.0489 - sparse_categorical_accuracy: 0.5941
1061/未知 285 秒 263 毫秒/步 - 损失:1.0487 - sparse_categorical_accuracy: 0.5942
1062/未知 285 秒 263 毫秒/步 - 损失:1.0485 - sparse_categorical_accuracy: 0.5943
1063/未知 285 秒 263 毫秒/步 - 损失:1.0483 - sparse_categorical_accuracy: 0.5943
1064/未知 286 秒 263 毫秒/步 - 损失:1.0481 - sparse_categorical_accuracy: 0.5944
1065/未知 286 秒 263 毫秒/步 - 损失:1.0479 - sparse_categorical_accuracy: 0.5944
1066/未知 286 秒 263 毫秒/步 - 损失:1.0477 - sparse_categorical_accuracy: 0.5945
1067/未知 286 秒 263 毫秒/步 - 损失:1.0475 - sparse_categorical_accuracy: 0.5946
1068/未知 287 秒 263 毫秒/步 - 损失:1.0473 - sparse_categorical_accuracy: 0.5946
1069/未知 287 秒 263 毫秒/步 - 损失:1.0471 - sparse_categorical_accuracy: 0.5947
1070/未知 287 秒 263 毫秒/步 - 损失:1.0469 - sparse_categorical_accuracy: 0.5948
1071/未知 287 秒 263 毫秒/步 - 损失:1.0467 - sparse_categorical_accuracy: 0.5948
1072/未知 288 秒 263 毫秒/步 - 损失:1.0465 - sparse_categorical_accuracy: 0.5949
1073/未知 288 秒 263 毫秒/步 - 损失:1.0463 - sparse_categorical_accuracy: 0.5949
1074/未知 288 秒 263 毫秒/步 - 损失:1.0461 - sparse_categorical_accuracy: 0.5950
1075/未知 289 秒 263 毫秒/步 - 损失:1.0459 - sparse_categorical_accuracy: 0.5951
1076/未知 289 秒 263 毫秒/步 - 损失:1.0457 - sparse_categorical_accuracy: 0.5951
1077/未知 289 秒 263 毫秒/步 - 损失:1.0455 - sparse_categorical_accuracy: 0.5952
1078/未知 290 秒 264 毫秒/步 - 损失:1.0453 - sparse_categorical_accuracy: 0.5953
1079/未知 290 秒 264 毫秒/步 - 损失:1.0451 - sparse_categorical_accuracy: 0.5953
1080/未知 290 秒 264 毫秒/步 - 损失:1.0449 - sparse_categorical_accuracy: 0.5954
1081/未知 291 秒 264 毫秒/步 - 损失:1.0447 - sparse_categorical_accuracy: 0.5954
1082/未知 291 秒 264 毫秒/步 - 损失:1.0445 - sparse_categorical_accuracy: 0.5955
1083/未知 291 秒 264 毫秒/步 - 损失:1.0443 - sparse_categorical_accuracy: 0.5956
1084/未知 291 秒 264 毫秒/步 - 损失:1.0441 - sparse_categorical_accuracy: 0.5956
1085/未知 292 秒 264 毫秒/步 - 损失:1.0439 - sparse_categorical_accuracy: 0.5957
1086/未知 292 秒 264 毫秒/步 - 损失:1.0437 - sparse_categorical_accuracy: 0.5957
1087/未知 292 秒 264 毫秒/步 - 损失:1.0436 - sparse_categorical_accuracy: 0.5958
1088/未知 293 秒 264 毫秒/步 - 损失:1.0434 - sparse_categorical_accuracy: 0.5959
1089/未知 293 秒 264 毫秒/步 - 损失:1.0432 - sparse_categorical_accuracy: 0.5959
1090/未知 293 秒 264 毫秒/步 - 损失:1.0430 - sparse_categorical_accuracy: 0.5960
1091/未知 293 秒 264 毫秒/步 - 损失:1.0428 - sparse_categorical_accuracy: 0.5961
1092/未知 294 秒 264 毫秒/步 - 损失:1.0426 - sparse_categorical_accuracy: 0.5961
1093/未知 294 秒 264 毫秒/步 - 损失:1.0424 - sparse_categorical_accuracy: 0.5962
1094/未知 294 秒 264 毫秒/步 - 损失:1.0422 - sparse_categorical_accuracy: 0.5962
1095/未知 294 秒 264 毫秒/步 - 损失:1.0420 - sparse_categorical_accuracy: 0.5963
1096/未知 295 秒 264 毫秒/步 - 损失:1.0418 - sparse_categorical_accuracy: 0.5964
1097/未知 295 秒 264 毫秒/步 - 损失:1.0416 - sparse_categorical_accuracy: 0.5964
1098/未知 295 秒 264 毫秒/步 - 损失:1.0414 - sparse_categorical_accuracy: 0.5965
1099/未知 295 秒 264 毫秒/步 - 损失:1.0413 - sparse_categorical_accuracy: 0.5965
1100/未知 296 秒 264 毫秒/步 - 损失:1.0411 - sparse_categorical_accuracy: 0.5966
1101/未知 296 秒 264 毫秒/步 - 损失:1.0409 - sparse_categorical_accuracy: 0.5967
1102/未知 296 秒 264 毫秒/步 - 损失:1.0407 - sparse_categorical_accuracy: 0.5967
1103/未知 296 秒 264 毫秒/步 - 损失:1.0405 - sparse_categorical_accuracy: 0.5968
1104/未知 297 秒 264 毫秒/步 - 损失:1.0403 - sparse_categorical_accuracy: 0.5968
1105/未知 297 秒 264 毫秒/步 - 损失:1.0401 - sparse_categorical_accuracy: 0.5969
1106/未知 297 秒 264 毫秒/步 - 损失:1.0399 - sparse_categorical_accuracy: 0.5970
1107/未知 298 秒 264 毫秒/步 - 损失:1.0397 - sparse_categorical_accuracy: 0.5970
1108/未知 298 秒 264 毫秒/步 - 损失:1.0396 - sparse_categorical_accuracy: 0.5971
1109/未知 298 秒 264 毫秒/步 - 损失:1.0394 - sparse_categorical_accuracy: 0.5971
1110/未知 299 秒 264 毫秒/步 - 损失:1.0392 - sparse_categorical_accuracy: 0.5972
1111/未知 299 秒 264 毫秒/步 - 损失:1.0390 - sparse_categorical_accuracy: 0.5973
1112/未知 299 秒 264 毫秒/步 - 损失:1.0388 - sparse_categorical_accuracy: 0.5973
1113/未知 299 秒 264 毫秒/步 - 损失:1.0386 - sparse_categorical_accuracy: 0.5974
1114/未知 300 秒 264 毫秒/步 - 损失:1.0384 - sparse_categorical_accuracy: 0.5974
1115/未知 300 秒 264 毫秒/步 - 损失:1.0382 - sparse_categorical_accuracy: 0.5975
1116/未知 300 秒 264 毫秒/步 - 损失:1.0381 - sparse_categorical_accuracy: 0.5976
1117/未知 300 秒 264 毫秒/步 - 损失:1.0379 - sparse_categorical_accuracy: 0.5976
1118/未知 301 秒 264 毫秒/步 - 损失:1.0377 - sparse_categorical_accuracy: 0.5977
1119/未知 301 秒 264 毫秒/步 - 损失:1.0375 - sparse_categorical_accuracy: 0.5977
1120/未知 301 秒 264 毫秒/步 - 损失:1.0373 - sparse_categorical_accuracy: 0.5978
1121/未知 301 秒 264 毫秒/步 - 损失:1.0371 - sparse_categorical_accuracy: 0.5978
1122/未知 302 秒 264 毫秒/步 - 损失:1.0369 - sparse_categorical_accuracy: 0.5979
1123/未知 302 秒 264 毫秒/步 - 损失:1.0368 - sparse_categorical_accuracy: 0.5980
1124/未知 302 秒 264 毫秒/步 - 损失:1.0366 - sparse_categorical_accuracy: 0.5980
1125/未知 302 秒 264 毫秒/步 - 损失:1.0364 - sparse_categorical_accuracy: 0.5981
1126/未知 303 秒 264 毫秒/步 - 损失:1.0362 - sparse_categorical_accuracy: 0.5981
1127/未知 303 秒 264 毫秒/步 - 损失:1.0360 - sparse_categorical_accuracy: 0.5982
1128/未知 303 秒 264 毫秒/步 - 损失:1.0358 - sparse_categorical_accuracy: 0.5983
1129/未知 303 秒 264 毫秒/步 - 损失:1.0357 - sparse_categorical_accuracy: 0.5983
1130/未知 304 秒 264 毫秒/步 - 损失:1.0355 - sparse_categorical_accuracy: 0.5984
1131/未知 304 秒 264 毫秒/步 - 损失:1.0353 - sparse_categorical_accuracy: 0.5984
1132/未知 304 秒 264 毫秒/步 - 损失:1.0351 - sparse_categorical_accuracy: 0.5985
1133/未知 305 秒 264 毫秒/步 - 损失:1.0349 - sparse_categorical_accuracy: 0.5985
1134/未知 305 秒 264 毫秒/步 - 损失:1.0347 - sparse_categorical_accuracy: 0.5986
1135/未知 305 秒 264 毫秒/步 - 损失:1.0346 - sparse_categorical_accuracy: 0.5987
1136/未知 306 秒 264 毫秒/步 - 损失:1.0344 - sparse_categorical_accuracy: 0.5987
1137/未知 306 秒 264 毫秒/步 - 损失:1.0342 - sparse_categorical_accuracy: 0.5988
1138/未知 306 秒 264 毫秒/步 - 损失:1.0340 - sparse_categorical_accuracy: 0.5988
1139/未知 306 秒 264 毫秒/步 - 损失:1.0338 - sparse_categorical_accuracy: 0.5989
1140/未知 307 秒 264 毫秒/步 - 损失:1.0337 - sparse_categorical_accuracy: 0.5990
1141/未知 307 秒 264 毫秒/步 - 损失:1.0335 - sparse_categorical_accuracy: 0.5990
1142/未知 307 秒 264 毫秒/步 - 损失:1.0333 - sparse_categorical_accuracy: 0.5991
1143/未知 308 秒 264 毫秒/步 - 损失:1.0331 - sparse_categorical_accuracy: 0.5991
1144/未知 308 秒 264 毫秒/步 - 损失:1.0329 - sparse_categorical_accuracy: 0.5992
1145/未知 308 秒 264 毫秒/步 - 损失:1.0328 - sparse_categorical_accuracy: 0.5992
1146/未知 308 秒 264 毫秒/步 - 损失:1.0326 - sparse_categorical_accuracy: 0.5993
1147/未知 309 秒 264 毫秒/步 - 损失:1.0324 - sparse_categorical_accuracy: 0.5993
1148/未知 309 秒 264 毫秒/步 - 损失:1.0322 - sparse_categorical_accuracy: 0.5994
1149/未知 309 秒 264 毫秒/步 - 损失:1.0320 - sparse_categorical_accuracy: 0.5995
1150/未知 310 秒 264 毫秒/步 - 损失:1.0319 - sparse_categorical_accuracy: 0.5995
1151/未知 310 秒 264 毫秒/步 - 损失:1.0317 - sparse_categorical_accuracy: 0.5996
1152/未知 310 秒 264 毫秒/步 - 损失:1.0315 - sparse_categorical_accuracy: 0.5996
1153/未知 310 秒 264 毫秒/步 - 损失:1.0313 - sparse_categorical_accuracy: 0.5997
1154/未知 311 秒 264 毫秒/步 - 损失:1.0311 - sparse_categorical_accuracy: 0.5997
1155/未知 311 秒 264 毫秒/步 - 损失:1.0310 - sparse_categorical_accuracy: 0.5998
1156/未知 311 秒 264 毫秒/步 - 损失:1.0308 - sparse_categorical_accuracy: 0.5999
1157/未知 312 秒 265 毫秒/步 - 损失:1.0306 - sparse_categorical_accuracy: 0.5999
1158/未知 312 秒 265 毫秒/步 - 损失:1.0304 - sparse_categorical_accuracy: 0.6000
1159/未知 312 秒 265 毫秒/步 - 损失:1.0303 - sparse_categorical_accuracy: 0.6000
1160/未知 312 秒 265 毫秒/步 - 损失:1.0301 - sparse_categorical_accuracy: 0.6001
1161/未知 313 秒 265 毫秒/步 - 损失:1.0299 - sparse_categorical_accuracy: 0.6001
1162/未知 313 秒 265 毫秒/步 - 损失:1.0297 - sparse_categorical_accuracy: 0.6002
1163/未知 313 秒 265 毫秒/步 - 损失:1.0296 - sparse_categorical_accuracy: 0.6003
1164/未知 314 秒 265 毫秒/步 - 损失:1.0294 - sparse_categorical_accuracy: 0.6003
1165/未知 314 秒 265 毫秒/步 - 损失:1.0292 - sparse_categorical_accuracy: 0.6004
1166/未知 314 秒 265 毫秒/步 - 损失:1.0290 - sparse_categorical_accuracy: 0.6004
1167/未知 314 秒 265 毫秒/步 - 损失:1.0289 - sparse_categorical_accuracy: 0.6005
1168/未知 315 秒 265 毫秒/步 - 损失:1.0287 - sparse_categorical_accuracy: 0.6005
1169/未知 315 秒 265 毫秒/步 - 损失:1.0285 - sparse_categorical_accuracy: 0.6006
1170/未知 315 秒 265 毫秒/步 - 损失:1.0283 - sparse_categorical_accuracy: 0.6006
1171/未知 315 秒 265 毫秒/步 - 损失:1.0282 - sparse_categorical_accuracy: 0.6007
1172/未知 316 秒 264 毫秒/步 - 损失:1.0280 - sparse_categorical_accuracy: 0.6008
1173/未知 316 秒 264 毫秒/步 - 损失:1.0278 - sparse_categorical_accuracy: 0.6008
1174/未知 316 秒 264 毫秒/步 - 损失:1.0276 - sparse_categorical_accuracy: 0.6009
1175/未知 316 秒 264 毫秒/步 - 损失:1.0275 - sparse_categorical_accuracy: 0.6009
1176/未知 316 秒 264 毫秒/步 - 损失:1.0273 - sparse_categorical_accuracy: 0.6010
1177/未知 317 秒 264 毫秒/步 - 损失:1.0271 - sparse_categorical_accuracy: 0.6010
1178/未知 317 秒 264 毫秒/步 - 损失:1.0269 - sparse_categorical_accuracy: 0.6011
1179/未知 317 秒 264 毫秒/步 - 损失:1.0268 - sparse_categorical_accuracy: 0.6011
1180/未知 317 秒 264 毫秒/步 - 损失:1.0266 - sparse_categorical_accuracy: 0.6012
1181/未知 318 秒 264 毫秒/步 - 损失:1.0264 - sparse_categorical_accuracy: 0.6012
1182/未知 318 秒 264 毫秒/步 - 损失:1.0263 - sparse_categorical_accuracy: 0.6013
1183/未知 318 秒 264 毫秒/步 - 损失:1.0261 - sparse_categorical_accuracy: 0.6014
1184/未知 318 秒 264 毫秒/步 - 损失:1.0259 - sparse_categorical_accuracy: 0.6014
1185/未知 319 秒 264 毫秒/步 - 损失:1.0257 - sparse_categorical_accuracy: 0.6015
1186/未知 319 秒 264 毫秒/步 - 损失:1.0256 - sparse_categorical_accuracy: 0.6015
1187/未知 319 秒 264 毫秒/步 - 损失:1.0254 - sparse_categorical_accuracy: 0.6016
1188/未知 319 秒 264 毫秒/步 - 损失:1.0252 - sparse_categorical_accuracy: 0.6016
1189/未知 320 秒 264 毫秒/步 - 损失:1.0251 - sparse_categorical_accuracy: 0.6017
1190/未知 320 秒 264 毫秒/步 - 损失:1.0249 - sparse_categorical_accuracy: 0.6017
1191/未知 320 秒 264 毫秒/步 - 损失:1.0247 - sparse_categorical_accuracy: 0.6018
1192/未知 320 秒 264 毫秒/步 - 损失:1.0245 - sparse_categorical_accuracy: 0.6018
1193/未知 321 秒 264 毫秒/步 - 损失:1.0244 - sparse_categorical_accuracy: 0.6019
1194/未知 321 秒 264 毫秒/步 - 损失:1.0242 - sparse_categorical_accuracy: 0.6019
1195/未知 321 秒 264 毫秒/步 - 损失:1.0240 - sparse_categorical_accuracy: 0.6020
1196/未知 321 秒 264 毫秒/步 - 损失:1.0239 - sparse_categorical_accuracy: 0.6021
1197/未知 322 秒 264 毫秒/步 - 损失:1.0237 - sparse_categorical_accuracy: 0.6021
1198/未知 322 秒 264 毫秒/步 - 损失:1.0235 - sparse_categorical_accuracy: 0.6022
1199/未知 322 秒 264 毫秒/步 - 损失:1.0234 - sparse_categorical_accuracy: 0.6022
1200/未知 322 秒 264 毫秒/步 - 损失:1.0232 - sparse_categorical_accuracy: 0.6023
1201/未知 323 秒 264 毫秒/步 - 损失:1.0230 - sparse_categorical_accuracy: 0.6023
1202/未知 323 秒 264 毫秒/步 - 损失:1.0229 - sparse_categorical_accuracy: 0.6024
1203/未知 323 秒 264 毫秒/步 - 损失:1.0227 - sparse_categorical_accuracy: 0.6024
1204/未知 323 秒 264 毫秒/步 - 损失:1.0225 - sparse_categorical_accuracy: 0.6025
1205/未知 324 秒 264 毫秒/步 - 损失:1.0224 - sparse_categorical_accuracy: 0.6025
1206/未知 324 秒 264 毫秒/步 - 损失:1.0222 - sparse_categorical_accuracy: 0.6026
1207/未知 324 秒 264 毫秒/步 - 损失:1.0220 - sparse_categorical_accuracy: 0.6026
1208/未知 324 秒 264 毫秒/步 - 损失:1.0219 - sparse_categorical_accuracy: 0.6027
1209/未知 325 秒 264 毫秒/步 - 损失:1.0217 - sparse_categorical_accuracy: 0.6027
1210/未知 325 秒 264 毫秒/步 - 损失:1.0215 - sparse_categorical_accuracy: 0.6028
1211/未知 325 秒 264 毫秒/步 - 损失:1.0214 - sparse_categorical_accuracy: 0.6029
1212/未知 326 秒 264 毫秒/步 - 损失:1.0212 - sparse_categorical_accuracy: 0.6029
1213/未知 326 秒 264 毫秒/步 - 损失:1.0210 - sparse_categorical_accuracy: 0.6030
1214/未知 326 秒 264 毫秒/步 - 损失:1.0209 - sparse_categorical_accuracy: 0.6030
1215/未知 327 秒 264 毫秒/步 - 损失:1.0207 - sparse_categorical_accuracy: 0.6031
1216/未知 327 秒 264 毫秒/步 - 损失:1.0205 - sparse_categorical_accuracy: 0.6031
1217/未知 327 秒 264 毫秒/步 - 损失:1.0204 - sparse_categorical_accuracy: 0.6032
1218/未知 327 秒 264 毫秒/步 - 损失:1.0202 - sparse_categorical_accuracy: 0.6032
1219/未知 328 秒 264 毫秒/步 - 损失:1.0200 - sparse_categorical_accuracy: 0.6033
1220/未知 328 秒 264 毫秒/步 - 损失:1.0199 - sparse_categorical_accuracy: 0.6033
1221/未知 328 秒 264 毫秒/步 - 损失:1.0197 - sparse_categorical_accuracy: 0.6034
1222/未知 328 秒 264 毫秒/步 - 损失:1.0196 - sparse_categorical_accuracy: 0.6034
1223/未知 329 秒 264 毫秒/步 - 损失:1.0194 - sparse_categorical_accuracy: 0.6035
1224/未知 329 秒 264 毫秒/步 - 损失:1.0192 - sparse_categorical_accuracy: 0.6035
1225/未知 329 秒 264 毫秒/步 - 损失:1.0191 - sparse_categorical_accuracy: 0.6036
1226/未知 329 秒 264 毫秒/步 - 损失:1.0189 - sparse_categorical_accuracy: 0.6036
1227/未知 330 秒 264 毫秒/步 - 损失:1.0187 - sparse_categorical_accuracy: 0.6037
1228/未知 330 秒 264 毫秒/步 - 损失:1.0186 - sparse_categorical_accuracy: 0.6037
1229/未知 330 秒 264 毫秒/步 - 损失:1.0184 - sparse_categorical_accuracy: 0.6038
1230/未知 330 秒 264 毫秒/步 - 损失:1.0183 - sparse_categorical_accuracy: 0.6038
1231/未知 331 秒 264 毫秒/步 - 损失:1.0181 - sparse_categorical_accuracy: 0.6039
1232/未知 331 秒 264 毫秒/步 - 损失:1.0179 - sparse_categorical_accuracy: 0.6039
1233/未知 331 秒 264 毫秒/步 - 损失:1.0178 - sparse_categorical_accuracy: 0.6040
1234/未知 331 秒 264 毫秒/步 - 损失:1.0176 - sparse_categorical_accuracy: 0.6040
1235/未知 332 秒 264 毫秒/步 - 损失:1.0174 - sparse_categorical_accuracy: 0.6041
1236/未知 332 秒 264 毫秒/步 - 损失:1.0173 - sparse_categorical_accuracy: 0.6041
1237/未知 332 秒 264 毫秒/步 - 损失:1.0171 - sparse_categorical_accuracy: 0.6042
1238/未知 332 秒 264 毫秒/步 - 损失:1.0170 - sparse_categorical_accuracy: 0.6042
1239/未知 333 秒 264 毫秒/步 - 损失:1.0168 - sparse_categorical_accuracy: 0.6043
1240/未知 333 秒 264 毫秒/步 - 损失:1.0166 - sparse_categorical_accuracy: 0.6043
1241/未知 334 秒 264 毫秒/步 - 损失:1.0165 - sparse_categorical_accuracy: 0.6044
1242/未知 334 秒 264 毫秒/步 - 损失:1.0163 - sparse_categorical_accuracy: 0.6044
1243/未知 334 秒 264 毫秒/步 - 损失:1.0162 - sparse_categorical_accuracy: 0.6045
1244/未知 335 秒 265 毫秒/步 - 损失:1.0160 - sparse_categorical_accuracy: 0.6045
1245/未知 335 秒 265 毫秒/步 - 损失:1.0158 - sparse_categorical_accuracy: 0.6046
1246/未知 335 秒 265 毫秒/步 - 损失:1.0157 - sparse_categorical_accuracy: 0.6046
1247/未知 335 秒 265 毫秒/步 - 损失:1.0155 - sparse_categorical_accuracy: 0.6047
1248/未知 336 秒 265 毫秒/步 - 损失:1.0154 - sparse_categorical_accuracy: 0.6048
1249/未知 336 秒 265 毫秒/步 - 损失:1.0152 - sparse_categorical_accuracy: 0.6048
1250/未知 336 秒 265 毫秒/步 - 损失:1.0150 - sparse_categorical_accuracy: 0.6049
1251/未知 337 秒 265 毫秒/步 - 损失:1.0149 - sparse_categorical_accuracy: 0.6049
1252/未知 337 秒 265 毫秒/步 - 损失:1.0147 - sparse_categorical_accuracy: 0.6050
1253/未知 337 秒 265 毫秒/步 - 损失:1.0146 - sparse_categorical_accuracy: 0.6050
1254/未知 337 秒 265 毫秒/步 - 损失:1.0144 - sparse_categorical_accuracy: 0.6051
1255/未知 338 秒 265 毫秒/步 - 损失:1.0143 - sparse_categorical_accuracy: 0.6051
1256/未知 338 秒 265 毫秒/步 - 损失:1.0141 - sparse_categorical_accuracy: 0.6052
1257/未知 338 秒 264 毫秒/步 - 损失:1.0139 - sparse_categorical_accuracy: 0.6052
1258/未知 338 秒 264 毫秒/步 - 损失:1.0138 - sparse_categorical_accuracy: 0.6053
1259/未知 338 秒 264 毫秒/步 - 损失:1.0136 - sparse_categorical_accuracy: 0.6053
1260/未知 339 秒 264 毫秒/步 - 损失:1.0135 - sparse_categorical_accuracy: 0.6054
1261/未知 339 秒 264 毫秒/步 - 损失:1.0133 - sparse_categorical_accuracy: 0.6054
1262/未知 339 秒 264 毫秒/步 - 损失:1.0132 - sparse_categorical_accuracy: 0.6055
1263/未知 339 秒 264 毫秒/步 - 损失:1.0130 - sparse_categorical_accuracy: 0.6055
1264/未知 340 秒 264 毫秒/步 - 损失:1.0128 - sparse_categorical_accuracy: 0.6055
1265/未知 340 秒 264 毫秒/步 - 损失:1.0127 - sparse_categorical_accuracy: 0.6056
1266/未知 340 秒 264 毫秒/步 - 损失:1.0125 - sparse_categorical_accuracy: 0.6056
1267/未知 340 秒 264 毫秒/步 - 损失:1.0124 - sparse_categorical_accuracy: 0.6057
1268/未知 341 秒 264 毫秒/步 - 损失:1.0122 - sparse_categorical_accuracy: 0.6057
1269/未知 341 秒 264 毫秒/步 - 损失:1.0121 - sparse_categorical_accuracy: 0.6058
1270/未知 341 秒 264 毫秒/步 - 损失:1.0119 - sparse_categorical_accuracy: 0.6058
1271/未知 341 秒 264 毫秒/步 - 损失:1.0118 - sparse_categorical_accuracy: 0.6059
1272/未知 342 秒 264 毫秒/步 - 损失:1.0116 - sparse_categorical_accuracy: 0.6059
1273/未知 342 秒 264 毫秒/步 - 损失:1.0114 - sparse_categorical_accuracy: 0.6060
1274/未知 342 秒 264 毫秒/步 - 损失:1.0113 - sparse_categorical_accuracy: 0.6060
1275/未知 342 秒 264 毫秒/步 - 损失:1.0111 - sparse_categorical_accuracy: 0.6061
1276/未知 343 秒 264 毫秒/步 - 损失:1.0110 - sparse_categorical_accuracy: 0.6061
1277/未知 343 秒 264 毫秒/步 - 损失:1.0108 - sparse_categorical_accuracy: 0.6062
1278/未知 343 秒 264 毫秒/步 - 损失:1.0107 - sparse_categorical_accuracy: 0.6062
1279/未知 344 秒 264 毫秒/步 - 损失:1.0105 - sparse_categorical_accuracy: 0.6063
1280/未知 344 秒 264 毫秒/步 - 损失:1.0104 - sparse_categorical_accuracy: 0.6063
1281/未知 344 秒 264 毫秒/步 - 损失:1.0102 - sparse_categorical_accuracy: 0.6064
1282/未知 345 秒 264 毫秒/步 - 损失:1.0101 - sparse_categorical_accuracy: 0.6064
1283/未知 345 秒 265 毫秒/步 - 损失:1.0099 - sparse_categorical_accuracy: 0.6065
1284/未知 345 秒 265 毫秒/步 - 损失:1.0098 - sparse_categorical_accuracy: 0.6065
1285/未知 345 秒 265 毫秒/步 - 损失:1.0096 - sparse_categorical_accuracy: 0.6066
1286/未知 346 秒 265 毫秒/步 - 损失:1.0095 - sparse_categorical_accuracy: 0.6066
1287/未知 346 秒 265 毫秒/步 - 损失:1.0093 - sparse_categorical_accuracy: 0.6067
1288/未知 346 秒 265 毫秒/步 - 损失:1.0092 - sparse_categorical_accuracy: 0.6067
1289/未知 347 秒 265 毫秒/步 - 损失:1.0090 - sparse_categorical_accuracy: 0.6068
1290/未知 347 秒 265 毫秒/步 - 损失:1.0088 - sparse_categorical_accuracy: 0.6068
1291/未知 347 秒 265 毫秒/步 - 损失:1.0087 - sparse_categorical_accuracy: 0.6069
1292/未知 347 秒 265 毫秒/步 - 损失:1.0085 - sparse_categorical_accuracy: 0.6069
1293/未知 348 秒 265 毫秒/步 - 损失:1.0084 - sparse_categorical_accuracy: 0.6070
1294/未知 348 秒 265 毫秒/步 - 损失:1.0082 - sparse_categorical_accuracy: 0.6070
1295/未知 348 秒 265 毫秒/步 - 损失:1.0081 - sparse_categorical_accuracy: 0.6071
1296/未知 349 秒 265 毫秒/步 - 损失:1.0079 - sparse_categorical_accuracy: 0.6071
1297/未知 349 秒 265 毫秒/步 - 损失:1.0078 - sparse_categorical_accuracy: 0.6071
1298/未知 349 秒 265 毫秒/步 - 损失:1.0076 - sparse_categorical_accuracy: 0.6072
1299/未知 350 秒 265 毫秒/步 - 损失:1.0075 - sparse_categorical_accuracy: 0.6072
1300/未知 350 秒 265 毫秒/步 - 损失:1.0073 - sparse_categorical_accuracy: 0.6073
1301/未知 350秒 265毫秒/步 - 损失: 1.0072 - 稀疏分类准确率: 0.6073
1302/未知 350秒 265毫秒/步 - 损失: 1.0070 - 稀疏分类准确率: 0.6074
1303/未知 351秒 265毫秒/步 - 损失: 1.0069 - 稀疏分类准确率: 0.6074
1304/未知 351秒 265毫秒/步 - 损失: 1.0067 - 稀疏分类准确率: 0.6075
1305/未知 351秒 265毫秒/步 - 损失: 1.0066 - 稀疏分类准确率: 0.6075
1306/未知 351秒 265毫秒/步 - 损失: 1.0064 - 稀疏分类准确率: 0.6076
1307/未知 352秒 265毫秒/步 - 损失: 1.0063 - 稀疏分类准确率: 0.6076
1308/未知 352秒 265毫秒/步 - 损失: 1.0061 - 稀疏分类准确率: 0.6077
1309/未知 352秒 265毫秒/步 - 损失: 1.0060 - 稀疏分类准确率: 0.6077
1310/未知 353秒 265毫秒/步 - 损失: 1.0059 - 稀疏分类准确率: 0.6078
1311/未知 353秒 265毫秒/步 - 损失: 1.0057 - 稀疏分类准确率: 0.6078
1312/未知 353秒 265毫秒/步 - 损失: 1.0056 - 稀疏分类准确率: 0.6079
1313/未知 354秒 265毫秒/步 - 损失: 1.0054 - 稀疏分类准确率: 0.6079
1314/未知 354秒 265毫秒/步 - 损失: 1.0053 - 稀疏分类准确率: 0.6079
1315/未知 354秒 265毫秒/步 - 损失: 1.0051 - 稀疏分类准确率: 0.6080
1316/未知 354秒 265毫秒/步 - 损失: 1.0050 - 稀疏分类准确率: 0.6080
1317/未知 355秒 265毫秒/步 - 损失: 1.0048 - 稀疏分类准确率: 0.6081
1318/未知 355秒 265毫秒/步 - 损失: 1.0047 - 稀疏分类准确率: 0.6081
1319/未知 355秒 265毫秒/步 - 损失: 1.0045 - 稀疏分类准确率: 0.6082
1320/未知 356秒 265毫秒/步 - 损失: 1.0044 - 稀疏分类准确率: 0.6082
1321/未知 356秒 265毫秒/步 - 损失: 1.0042 - 稀疏分类准确率: 0.6083
1322/未知 356秒 265毫秒/步 - 损失: 1.0041 - 稀疏分类准确率: 0.6083
1323/未知 356秒 265毫秒/步 - 损失: 1.0039 - 稀疏分类准确率: 0.6084
1324/未知 357秒 265毫秒/步 - 损失: 1.0038 - 稀疏分类准确率: 0.6084
1325/未知 357秒 265毫秒/步 - 损失: 1.0036 - 稀疏分类准确率: 0.6085
1326/未知 357秒 265毫秒/步 - 损失: 1.0035 - 稀疏分类准确率: 0.6085
1327/未知 358秒 265毫秒/步 - 损失: 1.0034 - 稀疏分类准确率: 0.6086
1328/未知 358秒 265毫秒/步 - 损失: 1.0032 - 稀疏分类准确率: 0.6086
1329/未知 358秒 265毫秒/步 - 损失: 1.0031 - 稀疏分类准确率: 0.6086
1330/未知 358秒 265毫秒/步 - 损失: 1.0029 - 稀疏分类准确率: 0.6087
1331/未知 359秒 265毫秒/步 - 损失: 1.0028 - 稀疏分类准确率: 0.6087
1332/未知 359秒 265毫秒/步 - 损失: 1.0026 - 稀疏分类准确率: 0.6088
1333/未知 359秒 265毫秒/步 - 损失: 1.0025 - 稀疏分类准确率: 0.6088
1334/未知 359秒 265毫秒/步 - 损失: 1.0023 - 稀疏分类准确率: 0.6089
1335/未知 360秒 265毫秒/步 - 损失: 1.0022 - 稀疏分类准确率: 0.6089
1336/未知 360秒 265毫秒/步 - 损失: 1.0021 - 稀疏分类准确率: 0.6090
1337/未知 360秒 265毫秒/步 - 损失: 1.0019 - 稀疏分类准确率: 0.6090
1338/未知 360秒 265毫秒/步 - 损失: 1.0018 - 稀疏分类准确率: 0.6091
1339/未知 361秒 265毫秒/步 - 损失: 1.0016 - 稀疏分类准确率: 0.6091
1340/未知 361秒 265毫秒/步 - 损失: 1.0015 - 稀疏分类准确率: 0.6091
1341/未知 361秒 265毫秒/步 - 损失: 1.0013 - 稀疏分类准确率: 0.6092
1342/未知 361秒 265毫秒/步 - 损失: 1.0012 - 稀疏分类准确率: 0.6092
1343/未知 362秒 265毫秒/步 - 损失: 1.0010 - 稀疏分类准确率: 0.6093
1344/未知 362秒 265毫秒/步 - 损失: 1.0009 - 稀疏分类准确率: 0.6093
1345/未知 362秒 265毫秒/步 - 损失: 1.0008 - 稀疏分类准确率: 0.6094
1346/未知 363秒 265毫秒/步 - 损失: 1.0006 - 稀疏分类准确率: 0.6094
1347/未知 363秒 265毫秒/步 - 损失: 1.0005 - 稀疏分类准确率: 0.6095
1348/未知 363秒 265毫秒/步 - 损失: 1.0003 - 稀疏分类准确率: 0.6095
1349/未知 364秒 265毫秒/步 - 损失: 1.0002 - 稀疏分类准确率: 0.6096
1350/未知 364秒 265毫秒/步 - 损失: 1.0000 - 稀疏分类准确率: 0.6096
1351/未知 364秒 265毫秒/步 - 损失: 0.9999 - 稀疏分类准确率: 0.6096
1352/未知 364秒 265毫秒/步 - 损失: 0.9998 - 稀疏分类准确率: 0.6097
1353/未知 365秒 265毫秒/步 - 损失: 0.9996 - 稀疏分类准确率: 0.6097
1354/未知 365秒 265毫秒/步 - 损失: 0.9995 - 稀疏分类准确率: 0.6098
1355/未知 365秒 265毫秒/步 - 损失: 0.9993 - 稀疏分类准确率: 0.6098
1356/未知 366秒 265毫秒/步 - 损失: 0.9992 - 稀疏分类准确率: 0.6099
1357/未知 366秒 266毫秒/步 - 损失: 0.9991 - 稀疏分类准确率: 0.6099
1358/未知 366秒 266毫秒/步 - 损失: 0.9989 - 稀疏分类准确率: 0.6100
1359/未知 366秒 266毫秒/步 - 损失: 0.9988 - 稀疏分类准确率: 0.6100
1360/未知 367秒 266毫秒/步 - 损失: 0.9986 - 稀疏分类准确率: 0.6100
1361/未知 367秒 266毫秒/步 - 损失: 0.9985 - 稀疏分类准确率: 0.6101
1362/未知 367秒 265毫秒/步 - 损失: 0.9984 - 稀疏分类准确率: 0.6101
1363/未知 367秒 265毫秒/步 - 损失: 0.9982 - 稀疏分类准确率: 0.6102
1364/未知 368秒 266毫秒/步 - 损失: 0.9981 - 稀疏分类准确率: 0.6102
1365/未知 368秒 266毫秒/步 - 损失: 0.9979 - 稀疏分类准确率: 0.6103
1366/未知 368秒 266毫秒/步 - 损失: 0.9978 - 稀疏分类准确率: 0.6103
1367/未知 369秒 266毫秒/步 - 损失: 0.9977 - 稀疏分类准确率: 0.6104
1368/未知 369秒 266毫秒/步 - 损失: 0.9975 - 稀疏分类准确率: 0.6104
1369/未知 369秒 266毫秒/步 - 损失: 0.9974 - 稀疏分类准确率: 0.6104
1370/未知 369秒 266毫秒/步 - 损失: 0.9972 - 稀疏分类准确率: 0.6105
1371/未知 370秒 266毫秒/步 - 损失: 0.9971 - 稀疏分类准确率: 0.6105
1372/未知 370秒 266毫秒/步 - 损失: 0.9970 - 稀疏分类准确率: 0.6106
1373/未知 370秒 266毫秒/步 - 损失: 0.9968 - 稀疏分类准确率: 0.6106
1374/未知 371秒 266毫秒/步 - 损失: 0.9967 - 稀疏分类准确率: 0.6107
1375/未知 371秒 266毫秒/步 - 损失: 0.9965 - 稀疏分类准确率: 0.6107
1376/未知 371秒 266毫秒/步 - 损失: 0.9964 - 稀疏分类准确率: 0.6107
1377/未知 372秒 266毫秒/步 - 损失: 0.9963 - 稀疏分类准确率: 0.6108
1378/未知 372秒 266毫秒/步 - 损失: 0.9961 - 稀疏分类准确率: 0.6108
1379/未知 372秒 266毫秒/步 - 损失: 0.9960 - 稀疏分类准确率: 0.6109
1380/未知 372秒 266毫秒/步 - 损失: 0.9959 - 稀疏分类准确率: 0.6109
1381/未知 373秒 266毫秒/步 - 损失: 0.9957 - 稀疏分类准确率: 0.6110
1382/未知 373秒 266毫秒/步 - 损失: 0.9956 - 稀疏分类准确率: 0.6110
1383/未知 373秒 266毫秒/步 - 损失: 0.9954 - 稀疏分类准确率: 0.6111
1384/未知 374秒 266毫秒/步 - 损失: 0.9953 - 稀疏分类准确率: 0.6111
1385/未知 374秒 266毫秒/步 - 损失: 0.9952 - 稀疏分类准确率: 0.6111
1386/未知 374秒 266毫秒/步 - 损失: 0.9950 - 稀疏分类准确率: 0.6112
1387/未知 374秒 266毫秒/步 - 损失: 0.9949 - 稀疏分类准确率: 0.6112
1388/未知 375秒 266毫秒/步 - 损失: 0.9948 - 稀疏分类准确率: 0.6113
1389/未知 375秒 266毫秒/步 - 损失: 0.9946 - 稀疏分类准确率: 0.6113
1390/未知 375秒 266毫秒/步 - 损失: 0.9945 - 稀疏分类准确率: 0.6114
1391/未知 376秒 266毫秒/步 - 损失: 0.9943 - 稀疏分类准确率: 0.6114
1392/未知 376秒 266毫秒/步 - 损失: 0.9942 - 稀疏分类准确率: 0.6114
1393/未知 376秒 266毫秒/步 - 损失: 0.9941 - 稀疏分类准确率: 0.6115
1394/未知 377秒 266毫秒/步 - 损失: 0.9939 - 稀疏分类准确率: 0.6115
1395/未知 377秒 266毫秒/步 - 损失: 0.9938 - 稀疏分类准确率: 0.6116
1396/未知 377秒 266毫秒/步 - 损失: 0.9937 - 稀疏分类准确率: 0.6116
1397/未知 378秒 266毫秒/步 - 损失: 0.9935 - 稀疏分类准确率: 0.6117
1398/未知 378秒 266毫秒/步 - 损失: 0.9934 - 稀疏分类准确率: 0.6117
1399/未知 378秒 266毫秒/步 - 损失: 0.9933 - 稀疏分类准确率: 0.6117
1400/未知 378秒 266毫秒/步 - 损失: 0.9931 - 稀疏分类准确率: 0.6118
1401/未知 379秒 266毫秒/步 - 损失: 0.9930 - 稀疏分类准确率: 0.6118
1402/未知 379秒 266毫秒/步 - 损失: 0.9929 - 稀疏分类准确率: 0.6119
1403/未知 379秒 266毫秒/步 - 损失: 0.9927 - 稀疏分类准确率: 0.6119
1404/未知 379秒 266毫秒/步 - 损失: 0.9926 - 稀疏分类准确率: 0.6120
1405/未知 380秒 266毫秒/步 - 损失: 0.9925 - 稀疏分类准确率: 0.6120
1406/未知 380秒 266毫秒/步 - 损失: 0.9923 - 稀疏分类准确率: 0.6120
1407/未知 380秒 266毫秒/步 - 损失: 0.9922 - 稀疏分类准确率: 0.6121
1408/未知 380秒 266毫秒/步 - 损失: 0.9921 - 稀疏分类准确率: 0.6121
1409/未知 381秒 266毫秒/步 - 损失: 0.9919 - 稀疏分类准确率: 0.6122
1410/未知 381秒 266毫秒/步 - 损失: 0.9918 - 稀疏分类准确率: 0.6122
1411/未知 381秒 266毫秒/步 - 损失: 0.9917 - 稀疏分类准确率: 0.6122
1412/未知 382秒 266毫秒/步 - 损失: 0.9915 - 稀疏分类准确率: 0.6123
1413/未知 382秒 266毫秒/步 - 损失: 0.9914 - 稀疏分类准确率: 0.6123
1414/未知 382秒 266毫秒/步 - 损失: 0.9913 - 稀疏分类准确率: 0.6124
1415/未知 382秒 266毫秒/步 - 损失: 0.9911 - 稀疏分类准确率: 0.6124
1416/未知 383秒 266毫秒/步 - 损失: 0.9910 - 稀疏分类准确率: 0.6125
1417/未知 383秒 266毫秒/步 - 损失: 0.9909 - 稀疏分类准确率: 0.6125
1418/未知 383秒 266毫秒/步 - 损失: 0.9907 - 稀疏分类准确率: 0.6125
1419/未知 384秒 266毫秒/步 - 损失: 0.9906 - 稀疏分类准确率: 0.6126
1420/未知 384秒 267毫秒/步 - 损失: 0.9905 - 稀疏分类准确率: 0.6126
1421/未知 384秒 267毫秒/步 - 损失: 0.9903 - 稀疏分类准确率: 0.6127
1422/未知 385秒 267毫秒/步 - 损失: 0.9902 - 稀疏分类准确率: 0.6127
1423/未知 385秒 267毫秒/步 - 损失: 0.9901 - 稀疏分类准确率: 0.6127
1424/未知 386秒 267毫秒/步 - 损失: 0.9899 - 稀疏分类准确率: 0.6128
1425/未知 386秒 267毫秒/步 - 损失: 0.9898 - 稀疏分类准确率: 0.6128
1426/未知 386秒 267毫秒/步 - 损失: 0.9897 - 稀疏分类准确率: 0.6129
1427/未知 386秒 267毫秒/步 - 损失: 0.9895 - 稀疏分类准确率: 0.6129
1428/未知 387秒 267毫秒/步 - 损失: 0.9894 - 稀疏分类准确率: 0.6130
1429/未知 387秒 267毫秒/步 - 损失: 0.9893 - 稀疏分类准确率: 0.6130
1430/未知 387秒 267毫秒/步 - 损失: 0.9891 - 稀疏分类准确率: 0.6130
1431/未知 388秒 267毫秒/步 - 损失: 0.9890 - 稀疏分类准确率: 0.6131
1432/未知 388秒 267毫秒/步 - 损失: 0.9889 - 稀疏分类准确率: 0.6131
1433/未知 388秒 267毫秒/步 - 损失: 0.9888 - 稀疏分类准确率: 0.6132
1434/未知 388秒 267毫秒/步 - 损失: 0.9886 - 稀疏分类准确率: 0.6132
1435/未知 389秒 267毫秒/步 - 损失: 0.9885 - 稀疏分类准确率: 0.6132
1436/未知 389秒 267毫秒/步 - 损失: 0.9884 - 稀疏分类准确率: 0.6133
1437/未知 389秒 267毫秒/步 - 损失: 0.9882 - 稀疏分类准确率: 0.6133
1438/未知 390秒 267毫秒/步 - 损失: 0.9881 - 稀疏分类准确率: 0.6134
1439/未知 390秒 267毫秒/步 - 损失: 0.9880 - 稀疏分类准确率: 0.6134
1440/未知 390秒 267毫秒/步 - 损失: 0.9878 - 稀疏分类准确率: 0.6134
1441/未知 391秒 267毫秒/步 - 损失: 0.9877 - 稀疏分类准确率: 0.6135
1442/未知 391秒 267毫秒/步 - 损失: 0.9876 - 稀疏分类准确率: 0.6135
1443/未知 391秒 267毫秒/步 - 损失: 0.9875 - 稀疏分类准确率: 0.6136
1444/未知 391秒 267毫秒/步 - 损失: 0.9873 - 稀疏分类准确率: 0.6136
1445/未知 392秒 267毫秒/步 - 损失: 0.9872 - 稀疏分类准确率: 0.6137
1446/未知 392秒 267毫秒/步 - 损失: 0.9871 - 稀疏分类准确率: 0.6137
1447/未知 392秒 267毫秒/步 - 损失: 0.9869 - 稀疏分类准确率: 0.6137
1448/未知 393秒 267毫秒/步 - 损失: 0.9868 - 稀疏分类准确率: 0.6138
1449/未知 393秒 268毫秒/步 - 损失: 0.9867 - 稀疏分类准确率: 0.6138
1450/未知 394秒 268毫秒/步 - 损失: 0.9866 - 稀疏分类准确率: 0.6139
1451/未知 394秒 268毫秒/步 - 损失: 0.9864 - 稀疏分类准确率: 0.6139
1452/未知 394秒 268毫秒/步 - 损失: 0.9863 - 稀疏分类准确率: 0.6139
1453/未知 395秒 268毫秒/步 - 损失: 0.9862 - 稀疏分类准确率: 0.6140
1454/未知 395秒 268毫秒/步 - 损失: 0.9861 - 稀疏分类准确率: 0.6140
1455/未知 395秒 268毫秒/步 - 损失: 0.9859 - 稀疏分类准确率: 0.6141
1456/未知 396秒 268毫秒/步 - 损失: 0.9858 - 稀疏分类准确率: 0.6141
1457/未知 396秒 268毫秒/步 - 损失: 0.9857 - 稀疏分类准确率: 0.6141
1458/未知 396秒 268毫秒/步 - 损失: 0.9855 - 稀疏分类准确率: 0.6142
1459/未知 396秒 268毫秒/步 - 损失: 0.9854 - 稀疏分类准确率: 0.6142
1460/未知 397秒 268毫秒/步 - 损失: 0.9853 - 稀疏分类准确率: 0.6143
1461/未知 397秒 268毫秒/步 - 损失: 0.9852 - 稀疏分类准确率: 0.6143
1462/未知 397秒 268毫秒/步 - 损失: 0.9850 - 稀疏分类准确率: 0.6143
1463/未知 397秒 268毫秒/步 - 损失: 0.9849 - 稀疏分类准确率: 0.6144
1464/未知 398秒 268毫秒/步 - 损失: 0.9848 - 稀疏分类准确率: 0.6144
1465/未知 398秒 268毫秒/步 - 损失: 0.9847 - 稀疏分类准确率: 0.6145
1466/未知 398秒 268毫秒/步 - 损失: 0.9845 - 稀疏分类准确率: 0.6145
1467/未知 399秒 268毫秒/步 - 损失: 0.9844 - 稀疏分类准确率: 0.6145
1468/未知 399秒 268毫秒/步 - 损失: 0.9843 - 稀疏分类准确率: 0.6146
1469/未知 399秒 268毫秒/步 - 损失: 0.9842 - 稀疏分类准确率: 0.6146
1470/未知 399秒 268毫秒/步 - 损失: 0.9840 - 稀疏分类准确率: 0.6147
1471/未知 400秒 268毫秒/步 - 损失: 0.9839 - 稀疏分类准确率: 0.6147
1472/未知 400秒 268毫秒/步 - 损失: 0.9838 - 稀疏分类准确率: 0.6147
1473/未知 400秒 268毫秒/步 - 损失: 0.9837 - 稀疏分类准确率: 0.6148
1474/未知 401秒 268毫秒/步 - 损失: 0.9835 - 稀疏分类准确率: 0.6148
1475/未知 401秒 268毫秒/步 - 损失: 0.9834 - 稀疏分类准确率: 0.6149
1476/未知 401秒 268毫秒/步 - 损失: 0.9833 - 稀疏分类准确率: 0.6149
1477/未知 401秒 268毫秒/步 - 损失: 0.9832 - 稀疏分类准确率: 0.6149
1478/未知 402秒 268毫秒/步 - 损失: 0.9830 - 稀疏分类准确率: 0.6150
1479/未知 402秒 268毫秒/步 - 损失: 0.9829 - 稀疏分类准确率: 0.6150
1480/未知 402秒 268毫秒/步 - 损失: 0.9828 - 稀疏分类准确率: 0.6150
1481/未知 403秒 268毫秒/步 - 损失: 0.9827 - 稀疏分类准确率: 0.6151
1482/未知 403秒 268毫秒/步 - 损失: 0.9825 - 稀疏分类准确率: 0.6151
1483/未知 403秒 268毫秒/步 - 损失: 0.9824 - 稀疏分类准确率: 0.6152
1484/未知 404秒 268毫秒/步 - 损失: 0.9823 - 稀疏分类准确率: 0.6152
1485/未知 404秒 268毫秒/步 - 损失: 0.9822 - 稀疏分类准确率: 0.6152
1486/未知 404秒 268毫秒/步 - 损失: 0.9820 - 稀疏分类准确率: 0.6153
1487/未知 404秒 268毫秒/步 - 损失: 0.9819 - 稀疏分类准确率: 0.6153
1488/未知 405秒 268毫秒/步 - 损失: 0.9818 - 稀疏分类准确率: 0.6154
1489/未知 405秒 268毫秒/步 - 损失: 0.9817 - 稀疏分类准确率: 0.6154
1490/未知 405秒 268毫秒/步 - 损失: 0.9815 - 稀疏分类准确率: 0.6154
1491/未知 406秒 268毫秒/步 - 损失: 0.9814 - 稀疏分类准确率: 0.6155
1492/未知 406秒 268毫秒/步 - 损失: 0.9813 - 稀疏分类准确率: 0.6155
1493/未知 406秒 268毫秒/步 - 损失: 0.9812 - 稀疏分类准确率: 0.6156
1494/未知 406秒 268毫秒/步 - 损失: 0.9810 - 稀疏分类准确率: 0.6156
1495/未知 407秒 268毫秒/步 - 损失: 0.9809 - 稀疏分类准确率: 0.6156
1496/未知 407秒 268毫秒/步 - 损失: 0.9808 - 稀疏分类准确率: 0.6157
1497/未知 407秒 268毫秒/步 - 损失: 0.9807 - 稀疏分类准确率: 0.6157
1498/未知 408秒 268毫秒/步 - 损失: 0.9806 - 稀疏分类准确率: 0.6157
1499/未知 408秒 268毫秒/步 - 损失: 0.9804 - 稀疏分类准确率: 0.6158
1500/未知 408秒 268毫秒/步 - 损失: 0.9803 - 稀疏分类准确率: 0.6158
1501/未知 408秒 268毫秒/步 - 损失: 0.9802 - 稀疏分类准确率: 0.6159
1502/未知 409秒 268毫秒/步 - 损失: 0.9801 - 稀疏分类准确率: 0.6159
1503/未知 409秒 268毫秒/步 - 损失: 0.9800 - 稀疏分类准确率: 0.6159
1504/未知 409秒 268毫秒/步 - 损失: 0.9798 - 稀疏分类准确率: 0.6160
1505/未知 410秒 268毫秒/步 - 损失: 0.9797 - 稀疏分类准确率: 0.6160
1506/未知 410秒 269毫秒/步 - 损失: 0.9796 - 稀疏分类准确率: 0.6161
1507/未知 410秒 269毫秒/步 - 损失: 0.9795 - 稀疏分类准确率: 0.6161
1508/未知 411秒 269毫秒/步 - 损失: 0.9793 - 稀疏分类准确率: 0.6161
1509/未知 411秒 269毫秒/步 - 损失: 0.9792 - 稀疏分类准确率: 0.6162
1510/未知 411秒 269毫秒/步 - 损失: 0.9791 - 稀疏分类准确率: 0.6162
1511/未知 411秒 269毫秒/步 - 损失: 0.9790 - 稀疏分类准确率: 0.6162
1512/未知 412秒 269毫秒/步 - 损失: 0.9789 - 稀疏分类准确率: 0.6163
1513/未知 412秒 269毫秒/步 - 损失: 0.9787 - 稀疏分类准确率: 0.6163
1514/未知 412秒 269毫秒/步 - 损失: 0.9786 - 稀疏分类准确率: 0.6164
1515/未知 413秒 269毫秒/步 - 损失: 0.9785 - 稀疏分类准确率: 0.6164
1516/未知 413秒 269毫秒/步 - 损失: 0.9784 - 稀疏分类准确率: 0.6164
1517/未知 413秒 269毫秒/步 - 损失: 0.9783 - 稀疏分类准确率: 0.6165
1518/未知 413秒 269毫秒/步 - 损失: 0.9781 - 稀疏分类准确率: 0.6165
1519/未知 414秒 269毫秒/步 - 损失: 0.9780 - 稀疏分类准确率: 0.6166
1520/未知 414秒 269毫秒/步 - 损失: 0.9779 - 稀疏分类准确率: 0.6166
1521/未知 414秒 269毫秒/步 - 损失: 0.9778 - 稀疏分类准确率: 0.6166
1522/未知 415秒 269毫秒/步 - 损失: 0.9777 - 稀疏分类准确率: 0.6167
1523/未知 415秒 269毫秒/步 - 损失: 0.9775 - 稀疏分类准确率: 0.6167
1524/未知 415秒 269毫秒/步 - 损失: 0.9774 - 稀疏分类准确率: 0.6167
1525/未知 415秒 269毫秒/步 - 损失: 0.9773 - 稀疏分类准确率: 0.6168
1526/未知 416秒 269毫秒/步 - 损失: 0.9772 - 稀疏分类准确率: 0.6168
1527/未知 416秒 269毫秒/步 - 损失: 0.9771 - 稀疏分类准确率: 0.6169
1528/未知 416秒 269毫秒/步 - 损失: 0.9769 - 稀疏分类准确率: 0.6169
1529/未知 417秒 269毫秒/步 - 损失: 0.9768 - 稀疏分类准确率: 0.6169
1530/未知 417秒 269毫秒/步 - 损失: 0.9767 - 稀疏分类准确率: 0.6170
1531/未知 417秒 269毫秒/步 - 损失: 0.9766 - 稀疏分类准确率: 0.6170
1532/未知 417秒 269毫秒/步 - 损失: 0.9765 - 稀疏分类准确率: 0.6170
1533/未知 418秒 269毫秒/步 - 损失: 0.9764 - 稀疏分类准确率: 0.6171
1534/未知 418秒 269毫秒/步 - 损失: 0.9762 - 稀疏分类准确率: 0.6171
1535/未知 418秒 269毫秒/步 - 损失: 0.9761 - 稀疏分类准确率: 0.6172
1536/未知 418秒 269毫秒/步 - 损失: 0.9760 - 稀疏分类准确率: 0.6172
1537/未知 419秒 269毫秒/步 - 损失: 0.9759 - 稀疏分类准确率: 0.6172
1538/未知 419秒 269毫秒/步 - 损失: 0.9758 - 稀疏分类准确率: 0.6173
1539/未知 419秒 269毫秒/步 - 损失: 0.9756 - 稀疏分类准确率: 0.6173
1540/未知 420秒 269毫秒/步 - 损失: 0.9755 - 稀疏分类准确率: 0.6173
1541/未知 420秒 269毫秒/步 - 损失: 0.9754 - 稀疏分类准确率: 0.6174
1542/未知 420秒 269毫秒/步 - 损失: 0.9753 - 稀疏分类准确率: 0.6174
1543/未知 420秒 269毫秒/步 - 损失: 0.9752 - 稀疏分类准确率: 0.6174
1544/未知 421秒 269毫秒/步 - 损失: 0.9751 - 稀疏分类准确率: 0.6175
1545/未知 421秒 269毫秒/步 - 损失: 0.9749 - 稀疏分类准确率: 0.6175
1546/未知 421秒 269毫秒/步 - 损失: 0.9748 - 稀疏分类准确率: 0.6176
1547/未知 422秒 269毫秒/步 - 损失: 0.9747 - 稀疏分类准确率: 0.6176
1548/未知 422秒 269毫秒/步 - 损失: 0.9746 - 稀疏分类准确率: 0.6176
1549/未知 422秒 269毫秒/步 - 损失: 0.9745 - 稀疏分类准确率: 0.6177
1550/未知 422秒 269毫秒/步 - 损失: 0.9744 - 稀疏分类准确率: 0.6177
1551/未知 423秒 269毫秒/步 - 损失: 0.9742 - 稀疏分类准确率: 0.6177
1552/未知 423秒 269毫秒/步 - 损失: 0.9741 - 稀疏分类准确率: 0.6178
1553/未知 423秒 269毫秒/步 - 损失: 0.9740 - 稀疏分类准确率: 0.6178
1554/未知 424秒 269毫秒/步 - 损失: 0.9739 - 稀疏分类准确率: 0.6179
1555/未知 424秒 269毫秒/步 - 损失: 0.9738 - 稀疏分类准确率: 0.6179
1556/未知 424秒 269毫秒/步 - 损失: 0.9737 - 稀疏分类准确率: 0.6179
1557/未知 424秒 269毫秒/步 - 损失: 0.9736 - 稀疏分类准确率: 0.6180
1558/未知 425秒 269毫秒/步 - 损失: 0.9734 - 稀疏分类准确率: 0.6180
1559/未知 425秒 269毫秒/步 - 损失: 0.9733 - 稀疏分类准确率: 0.6180
1560/未知 425秒 269毫秒/步 - 损失: 0.9732 - 稀疏分类准确率: 0.6181
1561/未知 426秒 269毫秒/步 - 损失: 0.9731 - 稀疏分类准确率: 0.6181
1562/未知 426秒 269毫秒/步 - 损失: 0.9730 - 稀疏分类准确率: 0.6181
1563/未知 426秒 269毫秒/步 - 损失: 0.9729 - 稀疏分类准确率: 0.6182
1564/未知 427秒 269毫秒/步 - 损失: 0.9727 - 稀疏分类准确率: 0.6182
1565/未知 427秒 269毫秒/步 - 损失: 0.9726 - 稀疏分类准确率: 0.6182
1566/未知 427秒 269毫秒/步 - 损失: 0.9725 - 稀疏分类准确率: 0.6183
1567/未知 427秒 269毫秒/步 - 损失: 0.9724 - 稀疏分类准确率: 0.6183
1568/未知 428秒 269毫秒/步 - 损失: 0.9723 - 稀疏分类准确率: 0.6184
1569/未知 428秒 269毫秒/步 - 损失: 0.9722 - 稀疏分类准确率: 0.6184
1570/未知 428秒 269毫秒/步 - 损失: 0.9721 - 稀疏分类准确率: 0.6184
1571/未知 428秒 269毫秒/步 - 损失: 0.9719 - 稀疏分类准确率: 0.6185
1572/未知 429秒 269毫秒/步 - 损失: 0.9718 - 稀疏分类准确率: 0.6185
1573/未知 429秒 269毫秒/步 - 损失: 0.9717 - 稀疏分类准确率: 0.6185
1574/未知 429秒 269毫秒/步 - 损失: 0.9716 - 稀疏分类准确率: 0.6186
1575/未知 430秒 269毫秒/步 - 损失: 0.9715 - 稀疏分类准确率: 0.6186
1576/未知 430秒 269毫秒/步 - 损失: 0.9714 - 稀疏分类准确率: 0.6186
1577/未知 430秒 269毫秒/步 - 损失: 0.9713 - 稀疏分类准确率: 0.6187
1578/未知 430秒 269毫秒/步 - 损失: 0.9712 - 稀疏分类准确率: 0.6187
1579/未知 431秒 269毫秒/步 - 损失: 0.9710 - 稀疏分类准确率: 0.6188
1580/未知 431秒 269毫秒/步 - 损失: 0.9709 - 稀疏分类准确率: 0.6188
1581/未知 431秒 269毫秒/步 - 损失: 0.9708 - 稀疏分类准确率: 0.6188
1582/未知 432秒 269毫秒/步 - 损失: 0.9707 - 稀疏分类准确率: 0.6189
1583/未知 432秒 269毫秒/步 - 损失: 0.9706 - 稀疏分类准确率: 0.6189
1584/未知 432秒 269毫秒/步 - 损失: 0.9705 - 稀疏分类准确率: 0.6189
1585/未知 433秒 269毫秒/步 - 损失: 0.9704 - 稀疏分类准确率: 0.6190
1586/未知 433秒 269毫秒/步 - 损失: 0.9702 - 稀疏分类准确率: 0.6190
1587/未知 433秒 269毫秒/步 - 损失: 0.9701 - 稀疏分类准确率: 0.6190
1588/未知 433秒 269毫秒/步 - 损失: 0.9700 - 稀疏分类准确率: 0.6191
1589/未知 434秒 269毫秒/步 - 损失: 0.9699 - 稀疏分类准确率: 0.6191
1590/未知 434秒 269毫秒/步 - 损失: 0.9698 - 稀疏分类准确率: 0.6191
1591/未知 434秒 269毫秒/步 - 损失: 0.9697 - 稀疏分类准确率: 0.6192
1592/未知 435秒 270毫秒/步 - 损失: 0.9696 - 稀疏分类准确率: 0.6192
1593/未知 435秒 270毫秒/步 - 损失: 0.9695 - 稀疏分类准确率: 0.6192
1594/未知 435秒 270毫秒/步 - 损失: 0.9694 - 稀疏分类准确率: 0.6193
1595/未知 435秒 270毫秒/步 - 损失: 0.9692 - 稀疏分类准确率: 0.6193
1596/未知 436秒 270毫秒/步 - 损失: 0.9691 - 稀疏分类准确率: 0.6194
1597/未知 436秒 270毫秒/步 - 损失: 0.9690 - 稀疏分类准确率: 0.6194
1598/未知 436秒 270毫秒/步 - 损失: 0.9689 - 稀疏分类准确率: 0.6194
1599/未知 437秒 270毫秒/步 - 损失: 0.9688 - 稀疏分类准确率: 0.6195
1600/未知 437秒 270毫秒/步 - 损失: 0.9687 - 稀疏分类准确率: 0.6195
1601/未知 437秒 270毫秒/步 - 损失: 0.9686 - 稀疏分类准确率: 0.6195
1602/未知 437秒 270毫秒/步 - 损失: 0.9685 - 稀疏分类准确率: 0.6196
1603/未知 438秒 270毫秒/步 - 损失: 0.9684 - 稀疏分类准确率: 0.6196
1604/未知 438秒 270毫秒/步 - 损失: 0.9682 - 稀疏分类准确率: 0.6196
1605/未知 438秒 270毫秒/步 - 损失: 0.9681 - 稀疏分类准确率: 0.6197
1606/未知 439秒 270毫秒/步 - 损失: 0.9680 - 稀疏分类准确率: 0.6197
1607/未知 439秒 270毫秒/步 - 损失: 0.9679 - 稀疏分类准确率: 0.6197
1608/未知 439秒 270毫秒/步 - 损失: 0.9678 - 稀疏分类准确率: 0.6198
1609/未知 439秒 270毫秒/步 - 损失: 0.9677 - 稀疏分类准确率: 0.6198
1610/未知 440秒 270毫秒/步 - 损失: 0.9676 - 稀疏分类准确率: 0.6198
1611/未知 440秒 270毫秒/步 - 损失: 0.9675 - 稀疏分类准确率: 0.6199
1612/未知 440秒 270毫秒/步 - 损失: 0.9674 - 稀疏分类准确率: 0.6199
1613/未知 441秒 270毫秒/步 - 损失: 0.9673 - 稀疏分类准确率: 0.6199
1614/未知 441秒 270毫秒/步 - 损失: 0.9671 - 稀疏分类准确率: 0.6200
1615/未知 441秒 270毫秒/步 - 损失: 0.9670 - 稀疏分类准确率: 0.6200
1616/未知 442秒 270毫秒/步 - 损失: 0.9669 - 稀疏分类准确率: 0.6200
1617/未知 442秒 270毫秒/步 - 损失: 0.9668 - 稀疏分类准确率: 0.6201
1618/未知 442秒 270毫秒/步 - 损失: 0.9667 - 稀疏分类准确率: 0.6201
1619/未知 442秒 270毫秒/步 - 损失: 0.9666 - 稀疏分类准确率: 0.6202
1620/未知 443秒 270毫秒/步 - 损失: 0.9665 - 稀疏分类准确率: 0.6202
1621/未知 443秒 270毫秒/步 - 损失: 0.9664 - 稀疏分类准确率: 0.6202
1622/未知 443秒 270毫秒/步 - 损失: 0.9663 - 稀疏分类准确率: 0.6203
1623/未知 444秒 270毫秒/步 - 损失: 0.9662 - 稀疏分类准确率: 0.6203
1624/未知 444秒 270毫秒/步 - 损失: 0.9661 - 稀疏分类准确率: 0.6203
1625/未知 444秒 270毫秒/步 - 损失: 0.9659 - 稀疏分类准确率: 0.6204
1626/未知 445秒 270毫秒/步 - 损失: 0.9658 - 稀疏分类准确率: 0.6204
1627/未知 445秒 270毫秒/步 - 损失: 0.9657 - 稀疏分类准确率: 0.6204
1628/未知 445秒 270毫秒/步 - 损失: 0.9656 - 稀疏分类准确率: 0.6205
1629/未知 446秒 270毫秒/步 - 损失: 0.9655 - 稀疏分类准确率: 0.6205
1630/未知 446秒 270毫秒/步 - 损失: 0.9654 - 稀疏分类准确率: 0.6205
1631/未知 446秒 270毫秒/步 - 损失: 0.9653 - 稀疏分类准确率: 0.6206
1632/未知 447秒 270毫秒/步 - 损失: 0.9652 - 稀疏分类准确率: 0.6206
1633/未知 447秒 270毫秒/步 - 损失: 0.9651 - 稀疏分类准确率: 0.6206
1634/未知 447秒 270毫秒/步 - 损失: 0.9650 - 稀疏分类准确率: 0.6207
1635/未知 448秒 271毫秒/步 - 损失: 0.9649 - 稀疏分类准确率: 0.6207
1636/未知 448秒 271毫秒/步 - 损失: 0.9648 - 稀疏分类准确率: 0.6207
1637/未知 448秒 271毫秒/步 - 损失: 0.9646 - 稀疏分类准确率: 0.6208
1638/未知 449秒 271毫秒/步 - 损失: 0.9645 - 稀疏分类准确率: 0.6208
1639/未知 449秒 271毫秒/步 - 损失: 0.9644 - 稀疏分类准确率: 0.6208
1640/未知 449秒 271毫秒/步 - 损失: 0.9643 - 稀疏分类准确率: 0.6209
1641/未知 450秒 271毫秒/步 - 损失: 0.9642 - 稀疏分类准确率: 0.6209
1642/未知 450秒 271毫秒/步 - 损失: 0.9641 - 稀疏分类准确率: 0.6209
1643/未知 450秒 271毫秒/步 - 损失: 0.9640 - 稀疏分类准确率: 0.6210
1644/未知 450秒 271毫秒/步 - 损失: 0.9639 - 稀疏分类准确率: 0.6210
1645/未知 451秒 271毫秒/步 - 损失: 0.9638 - 稀疏分类准确率: 0.6210
1646/未知 451秒 271毫秒/步 - 损失: 0.9637 - 稀疏分类准确率: 0.6211
1647/未知 451秒 271毫秒/步 - 损失: 0.9636 - 稀疏分类准确率: 0.6211
1648/未知 452秒 271毫秒/步 - 损失: 0.9635 - 稀疏分类准确率: 0.6211
1649/未知 452秒 271毫秒/步 - 损失: 0.9634 - 稀疏分类准确率: 0.6212
1650/未知 452秒 271毫秒/步 - 损失: 0.9633 - 稀疏分类准确率: 0.6212
1651/未知 452秒 271毫秒/步 - 损失: 0.9632 - 稀疏分类准确率: 0.6212
1652/未知 453秒 271毫秒/步 - 损失: 0.9631 - 稀疏分类准确率: 0.6213
1653/未知 453秒 271毫秒/步 - 损失: 0.9629 - 稀疏分类准确率: 0.6213
1654/未知 453秒 271毫秒/步 - 损失: 0.9628 - 稀疏分类准确率: 0.6213
1655/未知 454秒 271毫秒/步 - 损失: 0.9627 - 稀疏分类准确率: 0.6214
1656/未知 454秒 271毫秒/步 - 损失: 0.9626 - 稀疏分类准确率: 0.6214
1657/未知 454秒 271毫秒/步 - 损失: 0.9625 - 稀疏分类准确率: 0.6214
1658/未知 455秒 271毫秒/步 - 损失: 0.9624 - 稀疏分类准确率: 0.6215
1659/未知 455秒 271毫秒/步 - 损失: 0.9623 - 稀疏分类准确率: 0.6215
1660/未知 455秒 271毫秒/步 - 损失: 0.9622 - 稀疏分类准确率: 0.6215
1661/未知 455秒 271毫秒/步 - 损失: 0.9621 - 稀疏分类准确率: 0.6216
1662/未知 456秒 271毫秒/步 - 损失: 0.9620 - 稀疏分类准确率: 0.6216
1663/未知 456秒 271毫秒/步 - 损失: 0.9619 - 稀疏分类准确率: 0.6216
1664/未知 456秒 271毫秒/步 - 损失: 0.9618 - 稀疏分类准确率: 0.6217
1665/未知 457秒 271毫秒/步 - 损失: 0.9617 - 稀疏分类准确率: 0.6217
1666/未知 457秒 271毫秒/步 - 损失: 0.9616 - 稀疏分类准确率: 0.6217
1667/未知 457秒 271毫秒/步 - 损失: 0.9615 - 稀疏分类准确率: 0.6218
1668/未知 457秒 271毫秒/步 - 损失: 0.9614 - 稀疏分类准确率: 0.6218
1669/未知 458秒 271毫秒/步 - 损失: 0.9613 - 稀疏分类准确率: 0.6218
1670/未知 458秒 271毫秒/步 - 损失: 0.9612 - 稀疏分类准确率: 0.6219
1671/未知 458秒 271毫秒/步 - 损失: 0.9611 - 稀疏分类准确率: 0.6219
1672/未知 459秒 271毫秒/步 - 损失: 0.9610 - 稀疏分类准确率: 0.6219
1673/未知 459秒 271毫秒/步 - 损失: 0.9609 - 稀疏分类准确率: 0.6220
1674/未知 459秒 271毫秒/步 - 损失: 0.9607 - 稀疏分类准确率: 0.6220
1675/未知 460秒 271毫秒/步 - 损失: 0.9606 - 稀疏分类准确率: 0.6220
1676/未知 460秒 271毫秒/步 - 损失: 0.9605 - 稀疏分类准确率: 0.6221
1677/未知 460秒 271毫秒/步 - 损失: 0.9604 - 稀疏分类准确率: 0.6221
1678/未知 460秒 271毫秒/步 - 损失: 0.9603 - 稀疏分类准确率: 0.6221
1679/未知 461秒 271毫秒/步 - 损失: 0.9602 - 稀疏分类准确率: 0.6222
1680/未知 461秒 271毫秒/步 - 损失: 0.9601 - 稀疏分类准确率: 0.6222
1681/未知 461秒 271毫秒/步 - 损失: 0.9600 - 稀疏分类准确率: 0.6222
1682/未知 462秒 271毫秒/步 - 损失: 0.9599 - 稀疏分类准确率: 0.6223
1683/未知 462秒 271毫秒/步 - 损失: 0.9598 - 稀疏分类准确率: 0.6223
1684/未知 462秒 271毫秒/步 - 损失: 0.9597 - 稀疏分类准确率: 0.6223
1685/未知 462秒 271毫秒/步 - 损失: 0.9596 - 稀疏分类准确率: 0.6224
1686/未知 463秒 271毫秒/步 - 损失: 0.9595 - 稀疏分类准确率: 0.6224
1687/未知 463秒 271毫秒/步 - 损失: 0.9594 - 稀疏分类准确率: 0.6224
1688/未知 463秒 271毫秒/步 - 损失: 0.9593 - 稀疏分类准确率: 0.6224
1689/未知 463秒 271毫秒/步 - 损失: 0.9592 - 稀疏分类准确率: 0.6225
1690/未知 464秒 271毫秒/步 - 损失: 0.9591 - 稀疏分类准确率: 0.6225
1691/未知 464秒 271毫秒/步 - 损失: 0.9590 - 稀疏分类准确率: 0.6225
1692/未知 464秒 271毫秒/步 - 损失: 0.9589 - 稀疏分类准确率: 0.6226
1693/未知 464秒 271毫秒/步 - 损失: 0.9588 - 稀疏分类准确率: 0.6226
1694/未知 465秒 271毫秒/步 - 损失: 0.9587 - 稀疏分类准确率: 0.6226
1695/未知 465秒 271毫秒/步 - 损失: 0.9586 - 稀疏分类准确率: 0.6227
1696/未知 465秒 271毫秒/步 - 损失: 0.9585 - 稀疏分类准确率: 0.6227
1697/未知 465秒 271毫秒/步 - 损失: 0.9584 - 稀疏分类准确率: 0.6227
1698/未知 466秒 271毫秒/步 - 损失: 0.9583 - 稀疏分类准确率: 0.6228
1699/未知 466秒 271毫秒/步 - 损失: 0.9582 - 稀疏分类准确率: 0.6228
1700/未知 466秒 271毫秒/步 - 损失: 0.9581 - 稀疏分类准确率: 0.6228
1701/未知 466秒 271毫秒/步 - 损失: 0.9580 - 稀疏分类准确率: 0.6229
1702/未知 467秒 271毫秒/步 - 损失: 0.9579 - 稀疏分类准确率: 0.6229
1703/未知 467秒 271毫秒/步 - 损失: 0.9578 - 稀疏分类准确率: 0.6229
1704/未知 467秒 271毫秒/步 - 损失: 0.9577 - 稀疏分类准确率: 0.6230
1705/未知 468秒 271毫秒/步 - 损失: 0.9576 - 稀疏分类准确率: 0.6230
1706/未知 468秒 271毫秒/步 - 损失: 0.9575 - 稀疏分类准确率: 0.6230
1707/未知 468秒 271毫秒/步 - 损失: 0.9574 - 稀疏分类准确率: 0.6231
1708/未知 469秒 271毫秒/步 - 损失: 0.9573 - 稀疏分类准确率: 0.6231
1709/未知 469秒 271毫秒/步 - 损失: 0.9572 - 稀疏分类准确率: 0.6231
1710/未知 469秒 271毫秒/步 - 损失: 0.9571 - 稀疏分类准确率: 0.6232
1711/未知 470秒 271毫秒/步 - 损失: 0.9570 - 稀疏分类准确率: 0.6232
1712/未知 470秒 271毫秒/步 - 损失: 0.9569 - 稀疏分类准确率: 0.6232
1713/未知 470秒 271毫秒/步 - 损失: 0.9568 - 稀疏分类准确率: 0.6232
1714/未知 470秒 271毫秒/步 - 损失: 0.9567 - 稀疏分类准确率: 0.6233
1715/未知 471秒 271毫秒/步 - 损失: 0.9566 - 稀疏分类准确率: 0.6233
1716/未知 471秒 271毫秒/步 - 损失: 0.9565 - 稀疏分类准确率: 0.6233
1717/未知 471秒 271毫秒/步 - 损失: 0.9564 - 稀疏分类准确率: 0.6234
1718/未知 471秒 271毫秒/步 - 损失: 0.9563 - 稀疏分类准确率: 0.6234
1719/未知 472秒 271毫秒/步 - 损失: 0.9562 - 稀疏分类准确率: 0.6234
1720/未知 472秒 271毫秒/步 - 损失: 0.9561 - 稀疏分类准确率: 0.6235
1721/未知 472秒 271毫秒/步 - loss: 0.9560 - sparse_categorical_accuracy: 0.6235
1722/未知 472秒 271毫秒/步 - loss: 0.9559 - sparse_categorical_accuracy: 0.6235
1723/未知 473秒 271毫秒/步 - loss: 0.9558 - sparse_categorical_accuracy: 0.6236
1724/未知 473秒 271毫秒/步 - loss: 0.9557 - sparse_categorical_accuracy: 0.6236
1725/未知 473秒 271毫秒/步 - loss: 0.9556 - sparse_categorical_accuracy: 0.6236
1726/未知 473秒 271毫秒/步 - loss: 0.9555 - sparse_categorical_accuracy: 0.6237
1727/未知 474秒 271毫秒/步 - loss: 0.9554 - sparse_categorical_accuracy: 0.6237
1728/未知 474秒 271毫秒/步 - loss: 0.9553 - sparse_categorical_accuracy: 0.6237
1729/未知 474秒 271毫秒/步 - loss: 0.9552 - sparse_categorical_accuracy: 0.6237
1730/未知 474秒 271毫秒/步 - loss: 0.9551 - sparse_categorical_accuracy: 0.6238
1731/未知 475秒 271毫秒/步 - loss: 0.9550 - sparse_categorical_accuracy: 0.6238
1732/未知 475秒 271毫秒/步 - loss: 0.9549 - sparse_categorical_accuracy: 0.6238
1733/未知 476秒 271毫秒/步 - loss: 0.9548 - sparse_categorical_accuracy: 0.6239
1734/未知 476秒 271毫秒/步 - loss: 0.9547 - sparse_categorical_accuracy: 0.6239
1735/未知 476秒 271毫秒/步 - loss: 0.9546 - sparse_categorical_accuracy: 0.6239
1736/未知 477秒 271毫秒/步 - loss: 0.9545 - sparse_categorical_accuracy: 0.6240
1737/未知 477秒 271毫秒/步 - loss: 0.9544 - sparse_categorical_accuracy: 0.6240
1738/未知 477秒 271毫秒/步 - loss: 0.9543 - sparse_categorical_accuracy: 0.6240
1739/未知 478秒 272毫秒/步 - loss: 0.9542 - sparse_categorical_accuracy: 0.6241
1740/未知 478秒 272毫秒/步 - loss: 0.9541 - sparse_categorical_accuracy: 0.6241
1741/未知 478秒 272毫秒/步 - loss: 0.9540 - sparse_categorical_accuracy: 0.6241
1742/未知 479秒 272毫秒/步 - loss: 0.9539 - sparse_categorical_accuracy: 0.6242
1743/未知 479秒 272毫秒/步 - loss: 0.9538 - sparse_categorical_accuracy: 0.6242
1744/未知 479秒 272毫秒/步 - loss: 0.9537 - sparse_categorical_accuracy: 0.6242
1745/未知 480秒 272毫秒/步 - loss: 0.9536 - sparse_categorical_accuracy: 0.6242
1746/未知 480秒 272毫秒/步 - loss: 0.9535 - sparse_categorical_accuracy: 0.6243
1747/未知 480秒 272毫秒/步 - loss: 0.9534 - sparse_categorical_accuracy: 0.6243
1748/未知 481秒 272毫秒/步 - loss: 0.9533 - sparse_categorical_accuracy: 0.6243
1749/未知 481秒 272毫秒/步 - loss: 0.9532 - sparse_categorical_accuracy: 0.6244
1750/未知 481秒 272毫秒/步 - loss: 0.9531 - sparse_categorical_accuracy: 0.6244
1751/未知 481秒 272毫秒/步 - loss: 0.9530 - sparse_categorical_accuracy: 0.6244
1752/未知 482秒 272毫秒/步 - loss: 0.9529 - sparse_categorical_accuracy: 0.6245
1753/未知 482秒 272毫秒/步 - loss: 0.9528 - sparse_categorical_accuracy: 0.6245
1754/未知 482秒 272毫秒/步 - loss: 0.9527 - sparse_categorical_accuracy: 0.6245
1755/未知 483秒 272毫秒/步 - loss: 0.9526 - sparse_categorical_accuracy: 0.6246
1756/未知 483秒 272毫秒/步 - loss: 0.9525 - sparse_categorical_accuracy: 0.6246
1757/未知 483秒 272毫秒/步 - loss: 0.9524 - sparse_categorical_accuracy: 0.6246
1758/未知 484秒 272毫秒/步 - loss: 0.9523 - sparse_categorical_accuracy: 0.6246
1759/未知 484秒 272毫秒/步 - loss: 0.9522 - sparse_categorical_accuracy: 0.6247
1760/未知 484秒 272毫秒/步 - loss: 0.9521 - sparse_categorical_accuracy: 0.6247
1761/未知 484秒 272毫秒/步 - loss: 0.9520 - sparse_categorical_accuracy: 0.6247
1762/未知 485秒 272毫秒/步 - loss: 0.9519 - sparse_categorical_accuracy: 0.6248
1763/未知 485秒 272毫秒/步 - loss: 0.9519 - sparse_categorical_accuracy: 0.6248
1764/未知 485秒 272毫秒/步 - loss: 0.9518 - sparse_categorical_accuracy: 0.6248
1765/未知 486秒 272毫秒/步 - loss: 0.9517 - sparse_categorical_accuracy: 0.6249
1766/未知 486秒 272毫秒/步 - loss: 0.9516 - sparse_categorical_accuracy: 0.6249
1767/未知 486秒 272毫秒/步 - loss: 0.9515 - sparse_categorical_accuracy: 0.6249
1768/未知 487秒 272毫秒/步 - loss: 0.9514 - sparse_categorical_accuracy: 0.6249
1769/未知 487秒 272毫秒/步 - loss: 0.9513 - sparse_categorical_accuracy: 0.6250
1770/未知 488秒 272毫秒/步 - loss: 0.9512 - sparse_categorical_accuracy: 0.6250
1771/未知 488秒 272毫秒/步 - loss: 0.9511 - sparse_categorical_accuracy: 0.6250
1772/未知 488秒 272毫秒/步 - loss: 0.9510 - sparse_categorical_accuracy: 0.6251
1773/未知 489秒 272毫秒/步 - loss: 0.9509 - sparse_categorical_accuracy: 0.6251
1774/未知 489秒 273毫秒/步 - loss: 0.9508 - sparse_categorical_accuracy: 0.6251
1775/未知 489秒 273毫秒/步 - loss: 0.9507 - sparse_categorical_accuracy: 0.6252
1776/未知 490秒 273毫秒/步 - loss: 0.9506 - sparse_categorical_accuracy: 0.6252
1777/未知 490秒 273毫秒/步 - loss: 0.9505 - sparse_categorical_accuracy: 0.6252
1778/未知 490秒 273毫秒/步 - loss: 0.9504 - sparse_categorical_accuracy: 0.6252
1779/未知 491秒 273毫秒/步 - loss: 0.9503 - sparse_categorical_accuracy: 0.6253
1780/未知 491秒 273毫秒/步 - loss: 0.9502 - sparse_categorical_accuracy: 0.6253
1781/未知 492秒 273毫秒/步 - loss: 0.9501 - sparse_categorical_accuracy: 0.6253
1782/未知 492秒 273毫秒/步 - loss: 0.9500 - sparse_categorical_accuracy: 0.6254
1783/未知 492秒 273毫秒/步 - loss: 0.9499 - sparse_categorical_accuracy: 0.6254
1784/未知 493秒 273毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6254
1785/未知 493秒 273毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6255
1786/未知 493秒 273毫秒/步 - loss: 0.9497 - sparse_categorical_accuracy: 0.6255
1787/未知 494秒 273毫秒/步 - loss: 0.9496 - sparse_categorical_accuracy: 0.6255
1788/未知 494秒 273毫秒/步 - loss: 0.9495 - sparse_categorical_accuracy: 0.6255
1789/未知 494秒 273毫秒/步 - loss: 0.9494 - sparse_categorical_accuracy: 0.6256
1790/未知 495秒 273毫秒/步 - loss: 0.9493 - sparse_categorical_accuracy: 0.6256
1791/未知 495秒 273毫秒/步 - loss: 0.9492 - sparse_categorical_accuracy: 0.6256
1792/未知 495秒 273毫秒/步 - loss: 0.9491 - sparse_categorical_accuracy: 0.6257
1793/未知 496秒 273毫秒/步 - loss: 0.9490 - sparse_categorical_accuracy: 0.6257
1794/未知 496秒 273毫秒/步 - loss: 0.9489 - sparse_categorical_accuracy: 0.6257
1795/未知 496秒 273毫秒/步 - loss: 0.9488 - sparse_categorical_accuracy: 0.6258
1796/未知 497秒 273毫秒/步 - loss: 0.9487 - sparse_categorical_accuracy: 0.6258
1797/未知 497秒 274毫秒/步 - loss: 0.9486 - sparse_categorical_accuracy: 0.6258
1798/未知 497秒 274毫秒/步 - loss: 0.9485 - sparse_categorical_accuracy: 0.6258
1799/未知 498秒 274毫秒/步 - loss: 0.9484 - sparse_categorical_accuracy: 0.6259
1800/未知 498秒 274毫秒/步 - loss: 0.9483 - sparse_categorical_accuracy: 0.6259
1801/未知 498秒 274毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6259
1802/未知 499秒 274毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6260
1803/未知 499秒 274毫秒/步 - loss: 0.9481 - sparse_categorical_accuracy: 0.6260
1804/未知 499秒 274毫秒/步 - loss: 0.9480 - sparse_categorical_accuracy: 0.6260
1805/未知 500秒 274毫秒/步 - loss: 0.9479 - sparse_categorical_accuracy: 0.6260
1806/未知 500秒 274毫秒/步 - loss: 0.9478 - sparse_categorical_accuracy: 0.6261
1807/未知 500秒 274毫秒/步 - loss: 0.9477 - sparse_categorical_accuracy: 0.6261
1808/未知 501秒 274毫秒/步 - loss: 0.9476 - sparse_categorical_accuracy: 0.6261
1809/未知 501秒 274毫秒/步 - loss: 0.9475 - sparse_categorical_accuracy: 0.6262
1810/未知 501秒 274毫秒/步 - loss: 0.9474 - sparse_categorical_accuracy: 0.6262
1811/未知 502秒 274毫秒/步 - loss: 0.9473 - sparse_categorical_accuracy: 0.6262
1812/未知 502秒 274毫秒/步 - loss: 0.9472 - sparse_categorical_accuracy: 0.6263
1813/未知 502秒 274毫秒/步 - loss: 0.9471 - sparse_categorical_accuracy: 0.6263
1814/未知 503秒 274毫秒/步 - loss: 0.9470 - sparse_categorical_accuracy: 0.6263
1815/未知 503秒 274毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6263
1816/未知 503秒 274毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6264
1817/未知 504秒 274毫秒/步 - loss: 0.9468 - sparse_categorical_accuracy: 0.6264
1818/未知 504秒 274毫秒/步 - loss: 0.9467 - sparse_categorical_accuracy: 0.6264
1819/未知 504秒 274毫秒/步 - loss: 0.9466 - sparse_categorical_accuracy: 0.6265
1820/未知 505秒 274毫秒/步 - loss: 0.9465 - sparse_categorical_accuracy: 0.6265
1821/未知 505秒 274毫秒/步 - loss: 0.9464 - sparse_categorical_accuracy: 0.6265
1822/未知 505秒 274毫秒/步 - loss: 0.9463 - sparse_categorical_accuracy: 0.6265
1823/未知 505秒 274毫秒/步 - loss: 0.9462 - sparse_categorical_accuracy: 0.6266
1824/未知 506秒 274毫秒/步 - loss: 0.9461 - sparse_categorical_accuracy: 0.6266
1825/未知 506秒 274毫秒/步 - loss: 0.9460 - sparse_categorical_accuracy: 0.6266
1826/未知 506秒 274毫秒/步 - loss: 0.9459 - sparse_categorical_accuracy: 0.6267
1827/未知 507秒 274毫秒/步 - loss: 0.9458 - sparse_categorical_accuracy: 0.6267
1828/未知 507秒 274毫秒/步 - loss: 0.9458 - sparse_categorical_accuracy: 0.6267
1829/未知 507秒 274毫秒/步 - loss: 0.9457 - sparse_categorical_accuracy: 0.6267
1830/未知 508秒 274毫秒/步 - loss: 0.9456 - sparse_categorical_accuracy: 0.6268
1831/未知 508秒 274毫秒/步 - loss: 0.9455 - sparse_categorical_accuracy: 0.6268
1832/未知 508秒 274毫秒/步 - loss: 0.9454 - sparse_categorical_accuracy: 0.6268
1833/未知 509秒 274毫秒/步 - loss: 0.9453 - sparse_categorical_accuracy: 0.6269
1834/未知 509秒 274毫秒/步 - loss: 0.9452 - sparse_categorical_accuracy: 0.6269
1835/未知 509秒 275毫秒/步 - loss: 0.9451 - sparse_categorical_accuracy: 0.6269
1836/未知 510秒 275毫秒/步 - loss: 0.9450 - sparse_categorical_accuracy: 0.6269
1837/未知 510秒 275毫秒/步 - loss: 0.9449 - sparse_categorical_accuracy: 0.6270
1838/未知 510秒 275毫秒/步 - loss: 0.9448 - sparse_categorical_accuracy: 0.6270
1839/未知 511秒 275毫秒/步 - loss: 0.9448 - sparse_categorical_accuracy: 0.6270
1840/未知 511秒 275毫秒/步 - loss: 0.9447 - sparse_categorical_accuracy: 0.6271
1841/未知 511秒 275毫秒/步 - loss: 0.9446 - sparse_categorical_accuracy: 0.6271
1842/未知 512秒 275毫秒/步 - loss: 0.9445 - sparse_categorical_accuracy: 0.6271
1843/未知 512秒 275毫秒/步 - loss: 0.9444 - sparse_categorical_accuracy: 0.6271
1844/未知 513秒 275毫秒/步 - loss: 0.9443 - sparse_categorical_accuracy: 0.6272
1845/未知 513秒 275毫秒/步 - loss: 0.9442 - sparse_categorical_accuracy: 0.6272
1846/未知 513秒 275毫秒/步 - loss: 0.9441 - sparse_categorical_accuracy: 0.6272
1847/未知 513秒 275毫秒/步 - loss: 0.9440 - sparse_categorical_accuracy: 0.6273
1848/未知 514秒 275毫秒/步 - loss: 0.9439 - sparse_categorical_accuracy: 0.6273
1849/未知 514秒 275毫秒/步 - loss: 0.9439 - sparse_categorical_accuracy: 0.6273
1850/未知 514秒 275毫秒/步 - loss: 0.9438 - sparse_categorical_accuracy: 0.6273
1851/未知 514秒 275毫秒/步 - loss: 0.9437 - sparse_categorical_accuracy: 0.6274
1852/未知 515秒 275毫秒/步 - loss: 0.9436 - sparse_categorical_accuracy: 0.6274
1853/未知 515秒 275毫秒/步 - loss: 0.9435 - sparse_categorical_accuracy: 0.6274
1854/未知 515秒 275毫秒/步 - loss: 0.9434 - sparse_categorical_accuracy: 0.6275
1855/未知 516秒 275毫秒/步 - loss: 0.9433 - sparse_categorical_accuracy: 0.6275
1856/未知 516秒 275毫秒/步 - loss: 0.9432 - sparse_categorical_accuracy: 0.6275
1857/未知 516秒 275毫秒/步 - loss: 0.9431 - sparse_categorical_accuracy: 0.6275
1858/未知 517秒 275毫秒/步 - loss: 0.9431 - sparse_categorical_accuracy: 0.6276
1859/未知 517秒 275毫秒/步 - loss: 0.9430 - sparse_categorical_accuracy: 0.6276
1860/未知 517秒 275毫秒/步 - loss: 0.9429 - sparse_categorical_accuracy: 0.6276
1861/未知 517秒 275毫秒/步 - loss: 0.9428 - sparse_categorical_accuracy: 0.6277
1862/未知 518秒 275毫秒/步 - loss: 0.9427 - sparse_categorical_accuracy: 0.6277
1863/未知 518秒 275毫秒/步 - loss: 0.9426 - sparse_categorical_accuracy: 0.6277
1864/未知 518秒 275毫秒/步 - loss: 0.9425 - sparse_categorical_accuracy: 0.6277
1865/未知 519秒 275毫秒/步 - loss: 0.9424 - sparse_categorical_accuracy: 0.6278
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 519秒 275毫秒/步 - loss: 0.9423 - sparse_categorical_accuracy: 0.6278
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 71.32%
基线线性模型达到约 76% 的测试准确率。
在第二个实验中,我们创建了一个 Wide & Deep 模型。模型的宽部是一个线性模型,而模型的深部是一个多层前馈网络。
在模型的宽部使用输入特征的稀疏表示,在模型的深部使用输入特征的密集表示。
请注意,每个输入特征都以不同的表示形式贡献于模型的两个部分。
def create_wide_and_deep_model():
inputs = create_model_inputs()
wide = encode_inputs(inputs)
wide = layers.BatchNormalization()(wide)
deep = encode_inputs(inputs, use_embedding=True)
for units in hidden_units:
deep = layers.Dense(units)(deep)
deep = layers.BatchNormalization()(deep)
deep = layers.ReLU()(deep)
deep = layers.Dropout(dropout_rate)(deep)
merged = layers.concatenate([wide, deep])
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
wide_and_deep_model = create_wide_and_deep_model()
keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR")
让我们运行它
run_experiment(wide_and_deep_model)
Start training the model...
1/Unknown 3s 3s/step - loss: 2.0684 - sparse_categorical_accuracy: 0.2566
2/Unknown 4s 453ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2575
3/Unknown 4s 434ms/step - loss: 2.1031 - sparse_categorical_accuracy: 0.2618
4/Unknown 5s 456ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2648
5/Unknown 5s 455ms/step - loss: 2.0994 - sparse_categorical_accuracy: 0.2678
6/Unknown 5s 452ms/step - loss: 2.0958 - sparse_categorical_accuracy: 0.2694
7/Unknown 6s 455ms/step - loss: 2.0920 - sparse_categorical_accuracy: 0.2710
8/Unknown 6s 470ms/step - loss: 2.0869 - sparse_categorical_accuracy: 0.2727
9/Unknown 7s 479ms/step - loss: 2.0817 - sparse_categorical_accuracy: 0.2742
10/Unknown 7s 481ms/step - loss: 2.0759 - sparse_categorical_accuracy: 0.2760
11/Unknown 8s 477ms/step - loss: 2.0698 - sparse_categorical_accuracy: 0.2781
12/Unknown 8s 481ms/step - loss: 2.0635 - sparse_categorical_accuracy: 0.2802
13/Unknown 9s 476ms/step - loss: 2.0573 - sparse_categorical_accuracy: 0.2821
14/Unknown 9s 479ms/step - loss: 2.0513 - sparse_categorical_accuracy: 0.2839
15/Unknown 10s 480ms/step - loss: 2.0452 - sparse_categorical_accuracy: 0.2858
16/Unknown 10s 481ms/step - loss: 2.0389 - sparse_categorical_accuracy: 0.2877
17/Unknown 11s 477ms/step - loss: 2.0326 - sparse_categorical_accuracy: 0.2897
18/Unknown 11s 478ms/step - loss: 2.0264 - sparse_categorical_accuracy: 0.2918
19/Unknown 12s 477ms/step - loss: 2.0203 - sparse_categorical_accuracy: 0.2938
20/Unknown 12s 477ms/step - loss: 2.0141 - sparse_categorical_accuracy: 0.2959
21/Unknown 13s 476ms/step - loss: 2.0081 - sparse_categorical_accuracy: 0.2979
22/Unknown 13s 473ms/step - loss: 2.0020 - sparse_categorical_accuracy: 0.2998
23/Unknown 14s 475ms/step - loss: 1.9961 - sparse_categorical_accuracy: 0.3018
24/Unknown 14s 476ms/step - loss: 1.9903 - sparse_categorical_accuracy: 0.3037
25/Unknown 15s 477ms/step - loss: 1.9846 - sparse_categorical_accuracy: 0.3054
26/Unknown 15s 478ms/step - loss: 1.9790 - sparse_categorical_accuracy: 0.3071
27/Unknown 16s 478ms/step - loss: 1.9735 - sparse_categorical_accuracy: 0.3088
28/Unknown 16s 477ms/step - loss: 1.9682 - sparse_categorical_accuracy: 0.3103
29/Unknown 16s 477ms/step - loss: 1.9629 - sparse_categorical_accuracy: 0.3119
30/Unknown 17s 478ms/step - loss: 1.9575 - sparse_categorical_accuracy: 0.3136
31/Unknown 17s 478ms/step - loss: 1.9522 - sparse_categorical_accuracy: 0.3152
32/Unknown 18s 479ms/step - loss: 1.9469 - sparse_categorical_accuracy: 0.3168
33/Unknown 18s 478ms/step - loss: 1.9417 - sparse_categorical_accuracy: 0.3183
34/Unknown 19s 479ms/step - loss: 1.9365 - sparse_categorical_accuracy: 0.3199
35/Unknown 19s 478ms/step - loss: 1.9313 - sparse_categorical_accuracy: 0.3215
36/Unknown 20s 478ms/step - loss: 1.9262 - sparse_categorical_accuracy: 0.3230
37/Unknown 20s 476ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.3246
38/Unknown 21s 473ms/step - loss: 1.9160 - sparse_categorical_accuracy: 0.3261
39/Unknown 21s 469ms/step - loss: 1.9111 - sparse_categorical_accuracy: 0.3275
40/Unknown 21s 466ms/step - loss: 1.9062 - sparse_categorical_accuracy: 0.3290
41/Unknown 22s 464ms/step - loss: 1.9013 - sparse_categorical_accuracy: 0.3304
42/Unknown 22s 463ms/step - loss: 1.8965 - sparse_categorical_accuracy: 0.3318
43/Unknown 23s 461ms/step - loss: 1.8917 - sparse_categorical_accuracy: 0.3332
44/Unknown 23s 460ms/step - loss: 1.8869 - sparse_categorical_accuracy: 0.3346
45/Unknown 23s 458ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.3360
46/Unknown 24s 457ms/step - loss: 1.8775 - sparse_categorical_accuracy: 0.3373
47/Unknown 24s 457ms/step - loss: 1.8728 - sparse_categorical_accuracy: 0.3386
48/Unknown 25s 455ms/step - loss: 1.8682 - sparse_categorical_accuracy: 0.3399
49/Unknown 25s 455ms/step - loss: 1.8636 - sparse_categorical_accuracy: 0.3412
50/Unknown 25s 456ms/step - loss: 1.8591 - sparse_categorical_accuracy: 0.3425
51/Unknown 26s 457ms/step - loss: 1.8546 - sparse_categorical_accuracy: 0.3438
52/Unknown 26s 458ms/step - loss: 1.8501 - sparse_categorical_accuracy: 0.3450
53/Unknown 27s 460ms/step - loss: 1.8456 - sparse_categorical_accuracy: 0.3463
54/Unknown 27s 460ms/step - loss: 1.8412 - sparse_categorical_accuracy: 0.3476
55/Unknown 28s 460ms/step - loss: 1.8368 - sparse_categorical_accuracy: 0.3488
56/Unknown 28s 461ms/step - loss: 1.8325 - sparse_categorical_accuracy: 0.3500
57/Unknown 29s 461ms/step - loss: 1.8282 - sparse_categorical_accuracy: 0.3513
58/Unknown 29s 461ms/step - loss: 1.8239 - sparse_categorical_accuracy: 0.3525
59/Unknown 30s 462ms/step - loss: 1.8197 - sparse_categorical_accuracy: 0.3537
60/Unknown 30s 463ms/step - loss: 1.8154 - sparse_categorical_accuracy: 0.3549
61/Unknown 31s 464ms/step - loss: 1.8112 - sparse_categorical_accuracy: 0.3561
62/Unknown 31s 464ms/step - loss: 1.8071 - sparse_categorical_accuracy: 0.3573
63/Unknown 32s 465ms/step - loss: 1.8030 - sparse_categorical_accuracy: 0.3584
64/Unknown 32s 465ms/step - loss: 1.7989 - sparse_categorical_accuracy: 0.3595
65/Unknown 33s 466ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3606
66/Unknown 33s 466ms/step - loss: 1.7908 - sparse_categorical_accuracy: 0.3618
67/Unknown 34s 467ms/step - loss: 1.7869 - sparse_categorical_accuracy: 0.3628
68/Unknown 34s 467ms/step - loss: 1.7829 - sparse_categorical_accuracy: 0.3639
69/Unknown 35s 467ms/step - loss: 1.7790 - sparse_categorical_accuracy: 0.3650
70/Unknown 35s 468ms/step - loss: 1.7752 - sparse_categorical_accuracy: 0.3661
71/Unknown 36s 468ms/step - loss: 1.7713 - sparse_categorical_accuracy: 0.3671
72/Unknown 36s 468ms/step - loss: 1.7675 - sparse_categorical_accuracy: 0.3682
73/Unknown 37s 468ms/step - loss: 1.7638 - sparse_categorical_accuracy: 0.3692
74/Unknown 37s 469ms/step - loss: 1.7600 - sparse_categorical_accuracy: 0.3703
75/Unknown 38s 468ms/step - loss: 1.7563 - sparse_categorical_accuracy: 0.3713
76/Unknown 38s 468ms/step - loss: 1.7526 - sparse_categorical_accuracy: 0.3723
77/Unknown 39s 468ms/step - loss: 1.7490 - sparse_categorical_accuracy: 0.3733
78/Unknown 39s 468ms/step - loss: 1.7453 - sparse_categorical_accuracy: 0.3743
79/Unknown 40s 468ms/step - loss: 1.7417 - sparse_categorical_accuracy: 0.3753
80/Unknown 40s 469ms/step - loss: 1.7382 - sparse_categorical_accuracy: 0.3763
81/Unknown 41s 470ms/step - loss: 1.7346 - sparse_categorical_accuracy: 0.3773
82/Unknown 41s 470ms/step - loss: 1.7312 - sparse_categorical_accuracy: 0.3783
83/Unknown 42s 471ms/step - loss: 1.7277 - sparse_categorical_accuracy: 0.3792
84/Unknown 42s 471ms/step - loss: 1.7243 - sparse_categorical_accuracy: 0.3802
85/Unknown 43s 471ms/step - loss: 1.7209 - sparse_categorical_accuracy: 0.3811
86/Unknown 43s 472ms/step - loss: 1.7175 - sparse_categorical_accuracy: 0.3821
87/Unknown 44s 471ms/step - loss: 1.7142 - sparse_categorical_accuracy: 0.3830
88/Unknown 44s 472ms/step - loss: 1.7109 - sparse_categorical_accuracy: 0.3839
89/Unknown 45s 472ms/step - loss: 1.7076 - sparse_categorical_accuracy: 0.3848
90/Unknown 45s 473ms/step - loss: 1.7043 - sparse_categorical_accuracy: 0.3857
91/Unknown 46s 473ms/step - loss: 1.7011 - sparse_categorical_accuracy: 0.3866
92/Unknown 46s 473ms/step - loss: 1.6979 - sparse_categorical_accuracy: 0.3875
93/Unknown 47s 473ms/step - loss: 1.6947 - sparse_categorical_accuracy: 0.3884
94/Unknown 47s 474ms/step - loss: 1.6916 - sparse_categorical_accuracy: 0.3893
95/Unknown 48s 474ms/step - loss: 1.6884 - sparse_categorical_accuracy: 0.3902
96/Unknown 48s 474ms/step - loss: 1.6853 - sparse_categorical_accuracy: 0.3911
97/Unknown 49s 475ms/step - loss: 1.6822 - sparse_categorical_accuracy: 0.3920
98/Unknown 49s 475ms/step - loss: 1.6791 - sparse_categorical_accuracy: 0.3928
99/Unknown 50s 475ms/step - loss: 1.6761 - sparse_categorical_accuracy: 0.3937
100/Unknown 50s 475ms/step - loss: 1.6731 - sparse_categorical_accuracy: 0.3946
101/Unknown 51s 475ms/step - loss: 1.6700 - sparse_categorical_accuracy: 0.3954
102/Unknown 51s 475ms/step - loss: 1.6671 - sparse_categorical_accuracy: 0.3962
103/Unknown 52s 476ms/step - loss: 1.6641 - sparse_categorical_accuracy: 0.3971
104/Unknown 52s 476ms/step - loss: 1.6612 - sparse_categorical_accuracy: 0.3979
105/Unknown 53s 476ms/step - loss: 1.6582 - sparse_categorical_accuracy: 0.3988
106/Unknown 53s 476ms/step - loss: 1.6553 - sparse_categorical_accuracy: 0.3996
107/Unknown 54s 476ms/step - loss: 1.6525 - sparse_categorical_accuracy: 0.4004
108/Unknown 54s 476ms/step - loss: 1.6496 - sparse_categorical_accuracy: 0.4012
109/Unknown 55s 477ms/step - loss: 1.6468 - sparse_categorical_accuracy: 0.4020
110/Unknown 55s 477ms/step - loss: 1.6440 - sparse_categorical_accuracy: 0.4028
111/Unknown 56s 477ms/step - loss: 1.6412 - sparse_categorical_accuracy: 0.4036
112/Unknown 56s 477ms/step - loss: 1.6385 - sparse_categorical_accuracy: 0.4044
113/Unknown 57s 477ms/step - loss: 1.6357 - sparse_categorical_accuracy: 0.4052
114/Unknown 57s 477ms/step - loss: 1.6330 - sparse_categorical_accuracy: 0.4059
115/Unknown 57s 476ms/step - loss: 1.6303 - sparse_categorical_accuracy: 0.4067
116/Unknown 58s 477ms/step - loss: 1.6276 - sparse_categorical_accuracy: 0.4075
117/Unknown 58s 476ms/step - loss: 1.6249 - sparse_categorical_accuracy: 0.4082
118/Unknown 59s 477ms/step - loss: 1.6223 - sparse_categorical_accuracy: 0.4090
119/Unknown 59s 477ms/step - loss: 1.6196 - sparse_categorical_accuracy: 0.4098
120/Unknown 60s 477ms/step - loss: 1.6170 - sparse_categorical_accuracy: 0.4105
121/Unknown 60s 477ms/step - loss: 1.6144 - sparse_categorical_accuracy: 0.4113
122/Unknown 61s 477ms/step - loss: 1.6118 - sparse_categorical_accuracy: 0.4120
123/Unknown 61s 477ms/step - loss: 1.6093 - sparse_categorical_accuracy: 0.4128
124/Unknown 62s 477ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4135
125/Unknown 62s 477ms/step - loss: 1.6042 - sparse_categorical_accuracy: 0.4142
126/Unknown 63s 477ms/step - loss: 1.6017 - sparse_categorical_accuracy: 0.4150
127/Unknown 63s 477ms/step - loss: 1.5991 - sparse_categorical_accuracy: 0.4157
128/Unknown 64s 477ms/step - loss: 1.5967 - sparse_categorical_accuracy: 0.4164
129/Unknown 64s 477ms/step - loss: 1.5942 - sparse_categorical_accuracy: 0.4172
130/Unknown 65s 477ms/step - loss: 1.5917 - sparse_categorical_accuracy: 0.4179
131/Unknown 65s 477ms/step - loss: 1.5893 - sparse_categorical_accuracy: 0.4186
132/Unknown 66s 477ms/step - loss: 1.5869 - sparse_categorical_accuracy: 0.4193
133/Unknown 66s 477ms/step - loss: 1.5844 - sparse_categorical_accuracy: 0.4200
134/Unknown 66s 476ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4207
135/Unknown 67s 476ms/step - loss: 1.5797 - sparse_categorical_accuracy: 0.4214
136/Unknown 67s 476ms/step - loss: 1.5773 - sparse_categorical_accuracy: 0.4221
137/Unknown 68s 475ms/step - loss: 1.5749 - sparse_categorical_accuracy: 0.4228
138/Unknown 68s 475ms/step - loss: 1.5726 - sparse_categorical_accuracy: 0.4235
139/Unknown 69s 475ms/step - loss: 1.5703 - sparse_categorical_accuracy: 0.4242
140/Unknown 69s 475ms/step - loss: 1.5680 - sparse_categorical_accuracy: 0.4249
141/Unknown 70s 474ms/step - loss: 1.5657 - sparse_categorical_accuracy: 0.4255
142/Unknown 70s 474ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4262
143/Unknown 70s 474ms/step - loss: 1.5611 - sparse_categorical_accuracy: 0.4269
144/Unknown 71s 474ms/step - loss: 1.5589 - sparse_categorical_accuracy: 0.4276
145/Unknown 71s 474ms/step - loss: 1.5566 - sparse_categorical_accuracy: 0.4282
146/Unknown 72s 474ms/step - loss: 1.5544 - sparse_categorical_accuracy: 0.4289
147/Unknown 72s 474ms/step - loss: 1.5522 - sparse_categorical_accuracy: 0.4295
148/Unknown 73s 474ms/step - loss: 1.5500 - sparse_categorical_accuracy: 0.4302
149/Unknown 73s 473ms/step - loss: 1.5478 - sparse_categorical_accuracy: 0.4308
150/Unknown 74s 472ms/step - loss: 1.5456 - sparse_categorical_accuracy: 0.4315
151/Unknown 74s 472ms/step - loss: 1.5435 - sparse_categorical_accuracy: 0.4321
152/Unknown 74s 471ms/step - loss: 1.5413 - sparse_categorical_accuracy: 0.4328
153/Unknown 75s 470ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4334
154/Unknown 75s 470ms/step - loss: 1.5370 - sparse_categorical_accuracy: 0.4340
155/Unknown 75s 469ms/step - loss: 1.5349 - sparse_categorical_accuracy: 0.4347
156/Unknown 76s 468ms/step - loss: 1.5328 - sparse_categorical_accuracy: 0.4353
157/Unknown 76s 468ms/step - loss: 1.5308 - sparse_categorical_accuracy: 0.4359
158/Unknown 76s 467ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4365
159/Unknown 77s 467ms/step - loss: 1.5266 - sparse_categorical_accuracy: 0.4372
160/Unknown 77s 466ms/step - loss: 1.5246 - sparse_categorical_accuracy: 0.4378
161/Unknown 78s 466ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4384
162/Unknown 78s 465ms/step - loss: 1.5205 - sparse_categorical_accuracy: 0.4390
163/Unknown 78s 464ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4396
164/Unknown 79s 464ms/step - loss: 1.5165 - sparse_categorical_accuracy: 0.4402
165/Unknown 79s 463ms/step - loss: 1.5145 - sparse_categorical_accuracy: 0.4408
166/Unknown 79s 462ms/step - loss: 1.5126 - sparse_categorical_accuracy: 0.4414
167/Unknown 80s 462ms/step - loss: 1.5106 - sparse_categorical_accuracy: 0.4420
168/Unknown 80s 462ms/step - loss: 1.5087 - sparse_categorical_accuracy: 0.4425
169/Unknown 81s 462ms/step - loss: 1.5067 - sparse_categorical_accuracy: 0.4431
170/Unknown 81s 462ms/step - loss: 1.5048 - sparse_categorical_accuracy: 0.4437
171/Unknown 82s 461ms/step - loss: 1.5029 - sparse_categorical_accuracy: 0.4443
172/Unknown 82s 461ms/step - loss: 1.5010 - sparse_categorical_accuracy: 0.4449
173/Unknown 82s 461ms/step - loss: 1.4991 - sparse_categorical_accuracy: 0.4454
174/Unknown 83s 460ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4460
175/Unknown 83s 460ms/step - loss: 1.4953 - sparse_categorical_accuracy: 0.4466
176/Unknown 83s 459ms/step - loss: 1.4935 - sparse_categorical_accuracy: 0.4471
177/Unknown 84s 458ms/step - loss: 1.4916 - sparse_categorical_accuracy: 0.4477
178/Unknown 84s 457ms/step - loss: 1.4898 - sparse_categorical_accuracy: 0.4482
179/Unknown 84s 457ms/step - loss: 1.4880 - sparse_categorical_accuracy: 0.4488
180/Unknown 85s 456ms/step - loss: 1.4861 - sparse_categorical_accuracy: 0.4493
181/Unknown 85s 455ms/step - loss: 1.4843 - sparse_categorical_accuracy: 0.4499
182/Unknown 85s 454ms/step - loss: 1.4825 - sparse_categorical_accuracy: 0.4504
183/Unknown 86s 454ms/step - loss: 1.4807 - sparse_categorical_accuracy: 0.4510
184/Unknown 86s 453ms/step - loss: 1.4790 - sparse_categorical_accuracy: 0.4515
185/Unknown 86s 452ms/step - loss: 1.4772 - sparse_categorical_accuracy: 0.4521
186/Unknown 87s 452ms/step - loss: 1.4754 - sparse_categorical_accuracy: 0.4526
187/Unknown 87s 451ms/step - loss: 1.4737 - sparse_categorical_accuracy: 0.4531
188/Unknown 87s 451ms/step - loss: 1.4719 - sparse_categorical_accuracy: 0.4537
189/Unknown 88s 450ms/step - loss: 1.4702 - sparse_categorical_accuracy: 0.4542
190/Unknown 88s 450ms/step - loss: 1.4685 - sparse_categorical_accuracy: 0.4547
191/Unknown 89s 450ms/step - loss: 1.4668 - sparse_categorical_accuracy: 0.4552
192/Unknown 89s 450ms/step - loss: 1.4651 - sparse_categorical_accuracy: 0.4557
193/Unknown 89s 450ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4563
194/Unknown 90s 449ms/step - loss: 1.4617 - sparse_categorical_accuracy: 0.4568
195/Unknown 90s 449ms/step - loss: 1.4600 - sparse_categorical_accuracy: 0.4573
196/Unknown 91s 449ms/step - loss: 1.4583 - sparse_categorical_accuracy: 0.4578
197/Unknown 91s 449ms/step - loss: 1.4567 - sparse_categorical_accuracy: 0.4583
198/Unknown 92s 449ms/step - loss: 1.4550 - sparse_categorical_accuracy: 0.4588
199/Unknown 92s 449ms/step - loss: 1.4534 - sparse_categorical_accuracy: 0.4593
200/Unknown 92s 449ms/step - loss: 1.4517 - sparse_categorical_accuracy: 0.4598
201/Unknown 93s 448ms/step - loss: 1.4501 - sparse_categorical_accuracy: 0.4603
202/Unknown 93s 448ms/step - loss: 1.4485 - sparse_categorical_accuracy: 0.4608
203/Unknown 94s 447ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4613
204/Unknown 94s 447ms/step - loss: 1.4453 - sparse_categorical_accuracy: 0.4618
205/Unknown 94s 447ms/step - loss: 1.4437 - sparse_categorical_accuracy: 0.4623
206/Unknown 95s 447ms/step - loss: 1.4421 - sparse_categorical_accuracy: 0.4628
207/Unknown 95s 446ms/step - loss: 1.4406 - sparse_categorical_accuracy: 0.4632
208/Unknown 95s 446ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4637
209/Unknown 96s 445ms/step - loss: 1.4374 - sparse_categorical_accuracy: 0.4642
210/Unknown 96s 445ms/step - loss: 1.4359 - sparse_categorical_accuracy: 0.4647
211/Unknown 97s 445ms/step - loss: 1.4343 - sparse_categorical_accuracy: 0.4651
212/Unknown 97s 444ms/step - loss: 1.4328 - sparse_categorical_accuracy: 0.4656
213/Unknown 97s 444ms/step - loss: 1.4313 - sparse_categorical_accuracy: 0.4661
214/Unknown 98s 444ms/step - loss: 1.4297 - sparse_categorical_accuracy: 0.4666
215/Unknown 98s 444ms/step - loss: 1.4282 - sparse_categorical_accuracy: 0.4670
216/Unknown 99s 444ms/step - loss: 1.4267 - sparse_categorical_accuracy: 0.4675
217/Unknown 99s 445ms/step - loss: 1.4252 - sparse_categorical_accuracy: 0.4679
218/Unknown 100s 445ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4684
219/Unknown 100s 445ms/step - loss: 1.4222 - sparse_categorical_accuracy: 0.4689
220/Unknown 101s 445ms/step - loss: 1.4207 - sparse_categorical_accuracy: 0.4693
221/Unknown 101s 444ms/step - loss: 1.4192 - sparse_categorical_accuracy: 0.4698
222/Unknown 101s 444ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702
223/Unknown 102s 444ms/step - loss: 1.4163 - sparse_categorical_accuracy: 0.4707
224/Unknown 102s 443ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4711
225/Unknown 102s 443ms/step - loss: 1.4134 - sparse_categorical_accuracy: 0.4716
226/Unknown 103s 442ms/step - loss: 1.4120 - sparse_categorical_accuracy: 0.4720
227/Unknown 103s 442ms/step - loss: 1.4105 - sparse_categorical_accuracy: 0.4725
228/Unknown 103s 441ms/step - loss: 1.4091 - sparse_categorical_accuracy: 0.4729
229/Unknown 104s 441ms/step - loss: 1.4077 - sparse_categorical_accuracy: 0.4734
230/Unknown 104s 440ms/step - loss: 1.4063 - sparse_categorical_accuracy: 0.4738
231/Unknown 104s 440ms/step - loss: 1.4048 - sparse_categorical_accuracy: 0.4742
232/Unknown 105s 439ms/step - loss: 1.4034 - sparse_categorical_accuracy: 0.4747
233/Unknown 105s 439ms/step - loss: 1.4020 - sparse_categorical_accuracy: 0.4751
234/Unknown 105s 439ms/step - loss: 1.4007 - sparse_categorical_accuracy: 0.4755
235/Unknown 106s 438ms/step - loss: 1.3993 - sparse_categorical_accuracy: 0.4759
236/Unknown 106s 438ms/step - loss: 1.3979 - sparse_categorical_accuracy: 0.4764
237/Unknown 106s 437ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4768
238/Unknown 107s 437ms/step - loss: 1.3952 - sparse_categorical_accuracy: 0.4772
239/Unknown 107s 437ms/step - loss: 1.3938 - sparse_categorical_accuracy: 0.4776
240/Unknown 108s 437ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4780
241/Unknown 108s 437ms/step - loss: 1.3911 - sparse_categorical_accuracy: 0.4785
242/Unknown 109s 437ms/step - loss: 1.3898 - sparse_categorical_accuracy: 0.4789
243/Unknown 109s 437ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4793
244/Unknown 109s 437ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4797
245/Unknown 110s 437ms/step - loss: 1.3858 - sparse_categorical_accuracy: 0.4801
246/Unknown 110s 437ms/step - loss: 1.3845 - sparse_categorical_accuracy: 0.4805
247/Unknown 111s 437ms/step - loss: 1.3832 - sparse_categorical_accuracy: 0.4809
248/Unknown 111s 437ms/step - loss: 1.3819 - sparse_categorical_accuracy: 0.4813
249/Unknown 111s 436ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4817
250/Unknown 112s 436ms/step - loss: 1.3793 - sparse_categorical_accuracy: 0.4821
251/Unknown 112s 435ms/step - loss: 1.3780 - sparse_categorical_accuracy: 0.4825
252/Unknown 112s 435ms/step - loss: 1.3767 - sparse_categorical_accuracy: 0.4829
253/Unknown 113s 435ms/step - loss: 1.3754 - sparse_categorical_accuracy: 0.4833
254/Unknown 113s 435ms/step - loss: 1.3742 - sparse_categorical_accuracy: 0.4837
255/Unknown 113s 434ms/step - loss: 1.3729 - sparse_categorical_accuracy: 0.4841
256/Unknown 114s 434ms/step - loss: 1.3716 - sparse_categorical_accuracy: 0.4845
257/Unknown 114s 434ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4849
258/Unknown 115s 434ms/step - loss: 1.3691 - sparse_categorical_accuracy: 0.4853
259/Unknown 115s 433ms/step - loss: 1.3679 - sparse_categorical_accuracy: 0.4857
260/Unknown 115s 433ms/step - loss: 1.3666 - sparse_categorical_accuracy: 0.4861
261/Unknown 116s 433ms/step - loss: 1.3654 - sparse_categorical_accuracy: 0.4864
262/Unknown 116s 433ms/step - loss: 1.3642 - sparse_categorical_accuracy: 0.4868
263/Unknown 116s 433ms/step - loss: 1.3629 - sparse_categorical_accuracy: 0.4872
264/Unknown 117s 433ms/step - loss: 1.3617 - sparse_categorical_accuracy: 0.4876
265/Unknown 117s 432ms/step - loss: 1.3605 - sparse_categorical_accuracy: 0.4880
266/Unknown 118s 432ms/step - loss: 1.3593 - sparse_categorical_accuracy: 0.4883
267/Unknown 118s 432ms/step - loss: 1.3581 - sparse_categorical_accuracy: 0.4887
268/Unknown 118s 432ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.4891
269/Unknown 119s 432ms/step - loss: 1.3557 - sparse_categorical_accuracy: 0.4895
270/Unknown 119s 432ms/step - loss: 1.3545 - sparse_categorical_accuracy: 0.4898
271/Unknown 120s 432ms/step - loss: 1.3533 - sparse_categorical_accuracy: 0.4902
272/Unknown 120s 432ms/step - loss: 1.3521 - sparse_categorical_accuracy: 0.4906
273/Unknown 121s 432ms/step - loss: 1.3509 - sparse_categorical_accuracy: 0.4909
274/Unknown 121s 432ms/step - loss: 1.3497 - sparse_categorical_accuracy: 0.4913
275/Unknown 121s 432ms/step - loss: 1.3486 - sparse_categorical_accuracy: 0.4917
276/Unknown 122s 432ms/step - loss: 1.3474 - sparse_categorical_accuracy: 0.4920
277/Unknown 122s 432ms/step - loss: 1.3462 - sparse_categorical_accuracy: 0.4924
278/Unknown 123s 432ms/step - loss: 1.3451 - sparse_categorical_accuracy: 0.4928
279/Unknown 123s 431ms/step - loss: 1.3439 - sparse_categorical_accuracy: 0.4931
280/Unknown 123s 431ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4935
281/Unknown 124s 431ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.4938
282/Unknown 124s 430ms/step - loss: 1.3405 - sparse_categorical_accuracy: 0.4942
283/Unknown 124s 430ms/step - loss: 1.3393 - sparse_categorical_accuracy: 0.4946
284/Unknown 125s 430ms/step - loss: 1.3382 - sparse_categorical_accuracy: 0.4949
285/Unknown 125s 430ms/step - loss: 1.3371 - sparse_categorical_accuracy: 0.4953
286/Unknown 126s 430ms/step - loss: 1.3360 - sparse_categorical_accuracy: 0.4956
287/Unknown 126s 430ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4960
288/Unknown 126s 429ms/step - loss: 1.3337 - sparse_categorical_accuracy: 0.4963
289/Unknown 127s 429ms/step - loss: 1.3326 - sparse_categorical_accuracy: 0.4967
290/Unknown 127s 429ms/step - loss: 1.3315 - sparse_categorical_accuracy: 0.4970
291/Unknown 128s 429ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.4974
292/Unknown 128s 429ms/step - loss: 1.3293 - sparse_categorical_accuracy: 0.4977
293/Unknown 128s 429ms/step - loss: 1.3282 - sparse_categorical_accuracy: 0.4980
294/Unknown 129s 429ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.4984
295/Unknown 129s 429ms/step - loss: 1.3260 - sparse_categorical_accuracy: 0.4987
296/Unknown 130s 429ms/step - loss: 1.3250 - sparse_categorical_accuracy: 0.4991
297/Unknown 130s 429ms/step - loss: 1.3239 - sparse_categorical_accuracy: 0.4994
298/Unknown 131s 429ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.4997
299/Unknown 131s 429ms/step - loss: 1.3217 - sparse_categorical_accuracy: 0.5001
300/Unknown 132s 429ms/step - loss: 1.3207 - sparse_categorical_accuracy: 0.5004
301/Unknown 132s 429ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5007
302/Unknown 132s 429ms/step - loss: 1.3186 - sparse_categorical_accuracy: 0.5011
303/Unknown 133s 429ms/step - loss: 1.3175 - sparse_categorical_accuracy: 0.5014
304/Unknown 133s 429ms/step - loss: 1.3165 - sparse_categorical_accuracy: 0.5017
305/Unknown 133s 429ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5021
306/Unknown 134s 429ms/step - loss: 1.3144 - sparse_categorical_accuracy: 0.5024
307/Unknown 134s 428ms/step - loss: 1.3133 - sparse_categorical_accuracy: 0.5027
308/Unknown 135s 428ms/step - loss: 1.3123 - sparse_categorical_accuracy: 0.5030
309/Unknown 135s 428ms/step - loss: 1.3113 - sparse_categorical_accuracy: 0.5034
310/Unknown 135s 428ms/step - loss: 1.3103 - sparse_categorical_accuracy: 0.5037
311/Unknown 136s 428ms/step - loss: 1.3092 - sparse_categorical_accuracy: 0.5040
312/Unknown 136s 428ms/step - loss: 1.3082 - sparse_categorical_accuracy: 0.5043
313/Unknown 136s 427ms/step - loss: 1.3072 - sparse_categorical_accuracy: 0.5047
314/Unknown 137s 427ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5050
315/Unknown 137s 427ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5053
316/Unknown 138s 427ms/step - loss: 1.3042 - sparse_categorical_accuracy: 0.5056
317/Unknown 138s 427ms/step - loss: 1.3032 - sparse_categorical_accuracy: 0.5059
318/Unknown 138s 427ms/step - loss: 1.3022 - sparse_categorical_accuracy: 0.5062
319/Unknown 139s 427ms/step - loss: 1.3012 - sparse_categorical_accuracy: 0.5066
320/Unknown 139s 426ms/step - loss: 1.3002 - sparse_categorical_accuracy: 0.5069
321/Unknown 140s 427ms/step - loss: 1.2992 - sparse_categorical_accuracy: 0.5072
322/Unknown 140s 427ms/step - loss: 1.2982 - sparse_categorical_accuracy: 0.5075
323/Unknown 141s 427ms/step - loss: 1.2973 - sparse_categorical_accuracy: 0.5078
324/Unknown 141s 427ms/step - loss: 1.2963 - sparse_categorical_accuracy: 0.5081
325/Unknown 141s 427ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5084
326/Unknown 142s 427ms/step - loss: 1.2943 - sparse_categorical_accuracy: 0.5087
327/Unknown 142s 427ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5090
328/Unknown 143s 427ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5093
329/Unknown 143s 426ms/step - loss: 1.2915 - sparse_categorical_accuracy: 0.5096
330/Unknown 143s 426ms/step - loss: 1.2905 - sparse_categorical_accuracy: 0.5099
331/Unknown 144s 426ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5103
332/Unknown 144s 426ms/step - loss: 1.2886 - sparse_categorical_accuracy: 0.5106
333/Unknown 145s 426ms/step - loss: 1.2876 - sparse_categorical_accuracy: 0.5109
334/Unknown 145s 426ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5112
335/Unknown 145s 426ms/step - loss: 1.2858 - sparse_categorical_accuracy: 0.5115
336/Unknown 146s 426ms/step - loss: 1.2848 - sparse_categorical_accuracy: 0.5118
337/Unknown 146s 426ms/step - loss: 1.2839 - sparse_categorical_accuracy: 0.5121
338/Unknown 146s 425ms/step - loss: 1.2830 - sparse_categorical_accuracy: 0.5124
339/Unknown 147s 425ms/step - loss: 1.2820 - sparse_categorical_accuracy: 0.5126
340/Unknown 147s 425ms/step - loss: 1.2811 - sparse_categorical_accuracy: 0.5129
341/Unknown 148s 425ms/step - loss: 1.2802 - sparse_categorical_accuracy: 0.5132
342/Unknown 148s 425ms/step - loss: 1.2793 - sparse_categorical_accuracy: 0.5135
343/Unknown 149s 425ms/step - loss: 1.2784 - sparse_categorical_accuracy: 0.5138
344/Unknown 149s 425ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5141
345/Unknown 149s 425ms/step - loss: 1.2765 - sparse_categorical_accuracy: 0.5144
346/Unknown 150s 426ms/step - loss: 1.2756 - sparse_categorical_accuracy: 0.5147
347/Unknown 150s 425ms/step - loss: 1.2747 - sparse_categorical_accuracy: 0.5150
348/Unknown 151s 425ms/step - loss: 1.2738 - sparse_categorical_accuracy: 0.5153
349/Unknown 151s 425ms/step - loss: 1.2729 - sparse_categorical_accuracy: 0.5156
350/Unknown 151s 425ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5158
351/Unknown 152s 425ms/step - loss: 1.2712 - sparse_categorical_accuracy: 0.5161
352/Unknown 152s 424ms/step - loss: 1.2703 - sparse_categorical_accuracy: 0.5164
353/Unknown 152s 424ms/step - loss: 1.2694 - sparse_categorical_accuracy: 0.5167
354/Unknown 153s 424ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5170
355/Unknown 153s 423ms/step - loss: 1.2676 - sparse_categorical_accuracy: 0.5172
356/Unknown 153s 423ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5175
357/Unknown 154s 423ms/step - loss: 1.2659 - sparse_categorical_accuracy: 0.5178
358/Unknown 154s 423ms/step - loss: 1.2650 - sparse_categorical_accuracy: 0.5181
359/Unknown 154s 422ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5184
360/Unknown 155s 422ms/step - loss: 1.2633 - sparse_categorical_accuracy: 0.5186
361/Unknown 155s 422ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5189
362/Unknown 155s 422ms/step - loss: 1.2616 - sparse_categorical_accuracy: 0.5192
363/Unknown 156s 422ms/step - loss: 1.2607 - sparse_categorical_accuracy: 0.5195
364/Unknown 156s 421ms/step - loss: 1.2599 - sparse_categorical_accuracy: 0.5197
365/Unknown 156s 421ms/step - loss: 1.2590 - sparse_categorical_accuracy: 0.5200
366/Unknown 157s 421ms/step - loss: 1.2582 - sparse_categorical_accuracy: 0.5203
367/Unknown 157s 421ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5206
368/Unknown 158s 421ms/step - loss: 1.2565 - sparse_categorical_accuracy: 0.5208
369/Unknown 158s 421ms/step - loss: 1.2557 - sparse_categorical_accuracy: 0.5211
370/Unknown 159s 421ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5214
371/Unknown 159s 421ms/step - loss: 1.2540 - sparse_categorical_accuracy: 0.5216
372/Unknown 159s 421ms/step - loss: 1.2532 - sparse_categorical_accuracy: 0.5219
373/Unknown 160s 420ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5222
374/Unknown 160s 420ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5224
375/Unknown 160s 420ms/step - loss: 1.2507 - sparse_categorical_accuracy: 0.5227
376/Unknown 161s 420ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5230
377/Unknown 161s 420ms/step - loss: 1.2491 - sparse_categorical_accuracy: 0.5232
378/Unknown 161s 420ms/step - loss: 1.2482 - sparse_categorical_accuracy: 0.5235
379/Unknown 162s 420ms/step - loss: 1.2474 - sparse_categorical_accuracy: 0.5237
380/Unknown 162s 420ms/step - loss: 1.2466 - sparse_categorical_accuracy: 0.5240
381/Unknown 163s 419ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5243
382/Unknown 163s 419ms/step - loss: 1.2450 - sparse_categorical_accuracy: 0.5245
383/Unknown 163s 419ms/step - loss: 1.2442 - sparse_categorical_accuracy: 0.5248
384/Unknown 164s 419ms/step - loss: 1.2434 - sparse_categorical_accuracy: 0.5250
385/Unknown 164s 419ms/step - loss: 1.2426 - sparse_categorical_accuracy: 0.5253
386/Unknown 165s 419ms/step - loss: 1.2418 - sparse_categorical_accuracy: 0.5256
387/Unknown 165s 419ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5258
388/Unknown 165s 419ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5261
389/Unknown 166s 419ms/step - loss: 1.2395 - sparse_categorical_accuracy: 0.5263
390/Unknown 166s 419ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5266
391/Unknown 167s 419ms/step - loss: 1.2379 - sparse_categorical_accuracy: 0.5268
392/Unknown 167s 419ms/step - loss: 1.2371 - sparse_categorical_accuracy: 0.5271
393/Unknown 167s 419ms/step - loss: 1.2363 - sparse_categorical_accuracy: 0.5273
394/Unknown 168s 419ms/step - loss: 1.2356 - sparse_categorical_accuracy: 0.5276
395/Unknown 168s 419ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5278
396/Unknown 168s 419ms/step - loss: 1.2340 - sparse_categorical_accuracy: 0.5281
397/Unknown 169s 418ms/step - loss: 1.2333 - sparse_categorical_accuracy: 0.5283
398/Unknown 169s 418ms/step - loss: 1.2325 - sparse_categorical_accuracy: 0.5286
399/Unknown 170s 418ms/step - loss: 1.2317 - sparse_categorical_accuracy: 0.5288
400/Unknown 170s 418ms/step - loss: 1.2310 - sparse_categorical_accuracy: 0.5290
401/Unknown 170s 418ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5293
402/Unknown 171s 418ms/step - loss: 1.2295 - sparse_categorical_accuracy: 0.5295
403/Unknown 171s 418ms/step - loss: 1.2287 - sparse_categorical_accuracy: 0.5298
404/Unknown 171s 418ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5300
405/Unknown 172s 418ms/step - loss: 1.2272 - sparse_categorical_accuracy: 0.5303
406/Unknown 172s 418ms/step - loss: 1.2265 - sparse_categorical_accuracy: 0.5305
407/Unknown 173s 418ms/step - loss: 1.2257 - sparse_categorical_accuracy: 0.5307
408/Unknown 173s 418ms/step - loss: 1.2250 - sparse_categorical_accuracy: 0.5310
409/Unknown 174s 418ms/step - loss: 1.2243 - sparse_categorical_accuracy: 0.5312
410/Unknown 174s 418ms/step - loss: 1.2235 - sparse_categorical_accuracy: 0.5314
411/Unknown 175s 418ms/step - loss: 1.2228 - sparse_categorical_accuracy: 0.5317
412/Unknown 175s 419ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5319
413/Unknown 176s 419ms/step - loss: 1.2213 - sparse_categorical_accuracy: 0.5322
414/Unknown 176s 419ms/step - loss: 1.2206 - sparse_categorical_accuracy: 0.5324
415/Unknown 176s 419ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5326
416/Unknown 177s 419ms/step - loss: 1.2192 - sparse_categorical_accuracy: 0.5329
417/Unknown 177s 418ms/step - loss: 1.2185 - sparse_categorical_accuracy: 0.5331
418/Unknown 177s 418ms/step - loss: 1.2177 - sparse_categorical_accuracy: 0.5333
419/Unknown 178s 418ms/step - loss: 1.2170 - sparse_categorical_accuracy: 0.5336
420/Unknown 178s 418ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5338
421/Unknown 179s 418ms/step - loss: 1.2156 - sparse_categorical_accuracy: 0.5340
422/Unknown 179s 418ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5342
423/Unknown 179s 418ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5345
424/Unknown 180s 417ms/step - loss: 1.2135 - sparse_categorical_accuracy: 0.5347
425/Unknown 180s 417ms/step - loss: 1.2128 - sparse_categorical_accuracy: 0.5349
426/Unknown 180s 417ms/step - loss: 1.2121 - sparse_categorical_accuracy: 0.5351
427/Unknown 181s 417ms/step - loss: 1.2114 - sparse_categorical_accuracy: 0.5354
428/Unknown 181s 417ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5356
429/Unknown 182s 417ms/step - loss: 1.2100 - sparse_categorical_accuracy: 0.5358
430/Unknown 182s 418ms/step - loss: 1.2093 - sparse_categorical_accuracy: 0.5360
431/Unknown 183s 418ms/step - loss: 1.2086 - sparse_categorical_accuracy: 0.5363
432/Unknown 183s 418ms/step - loss: 1.2079 - sparse_categorical_accuracy: 0.5365
433/Unknown 184s 418ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5367
434/Unknown 184s 418ms/step - loss: 1.2065 - sparse_categorical_accuracy: 0.5369
435/Unknown 185s 418ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5372
436/Unknown 185s 418ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5374
437/Unknown 185s 418ms/step - loss: 1.2045 - sparse_categorical_accuracy: 0.5376
438/Unknown 186s 418ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5378
439/Unknown 186s 418ms/step - loss: 1.2032 - sparse_categorical_accuracy: 0.5380
440/Unknown 187s 418ms/step - loss: 1.2025 - sparse_categorical_accuracy: 0.5383
441/Unknown 187s 418ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5385
442/Unknown 187s 418ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5387
443/Unknown 188s 418ms/step - loss: 1.2005 - sparse_categorical_accuracy: 0.5389
444/Unknown 188s 417ms/step - loss: 1.1998 - sparse_categorical_accuracy: 0.5391
445/Unknown 188s 417ms/step - loss: 1.1992 - sparse_categorical_accuracy: 0.5393
446/Unknown 189s 417ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5396
447/Unknown 189s 417ms/step - loss: 1.1978 - sparse_categorical_accuracy: 0.5398
448/Unknown 190s 417ms/step - loss: 1.1972 - sparse_categorical_accuracy: 0.5400
449/Unknown 190s 417ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5402
450/Unknown 190s 417ms/step - loss: 1.1959 - sparse_categorical_accuracy: 0.5404
451/Unknown 191s 417ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5406
452/Unknown 191s 417ms/step - loss: 1.1946 - sparse_categorical_accuracy: 0.5408
453/Unknown 191s 417ms/step - loss: 1.1939 - sparse_categorical_accuracy: 0.5410
454/Unknown 192s 417ms/step - loss: 1.1933 - sparse_categorical_accuracy: 0.5413
455/Unknown 192s 417ms/step - loss: 1.1926 - sparse_categorical_accuracy: 0.5415
456/Unknown 193s 417ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5417
457/Unknown 193s 417ms/step - loss: 1.1913 - sparse_categorical_accuracy: 0.5419
458/Unknown 193s 417ms/step - loss: 1.1907 - sparse_categorical_accuracy: 0.5421
459/Unknown 194s 417ms/step - loss: 1.1900 - sparse_categorical_accuracy: 0.5423
460/Unknown 194s 417ms/step - loss: 1.1894 - sparse_categorical_accuracy: 0.5425
461/Unknown 195s 417ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5427
462/Unknown 195s 417ms/step - loss: 1.1881 - sparse_categorical_accuracy: 0.5429
463/Unknown 196s 417ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5431
464/Unknown 196s 417ms/step - loss: 1.1869 - sparse_categorical_accuracy: 0.5433
465/Unknown 197s 417ms/step - loss: 1.1862 - sparse_categorical_accuracy: 0.5435
466/Unknown 197s 417ms/step - loss: 1.1856 - sparse_categorical_accuracy: 0.5437
467/Unknown 198s 417ms/step - loss: 1.1850 - sparse_categorical_accuracy: 0.5439
468/Unknown 198s 417ms/step - loss: 1.1844 - sparse_categorical_accuracy: 0.5441
469/Unknown 198s 417ms/step - loss: 1.1837 - sparse_categorical_accuracy: 0.5443
470/Unknown 199s 417ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5446
471/Unknown 199s 417ms/step - loss: 1.1825 - sparse_categorical_accuracy: 0.5448
472/Unknown 199s 417ms/step - loss: 1.1819 - sparse_categorical_accuracy: 0.5450
473/Unknown 200s 417ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5452
474/Unknown 200s 417ms/step - loss: 1.1807 - sparse_categorical_accuracy: 0.5454
475/Unknown 201s 417ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5456
476/Unknown 201s 416ms/step - loss: 1.1794 - sparse_categorical_accuracy: 0.5458
477/Unknown 201s 417ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5460
478/Unknown 202s 416ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5461
479/Unknown 202s 416ms/step - loss: 1.1776 - sparse_categorical_accuracy: 0.5463
480/Unknown 203s 416ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5465
481/Unknown 203s 416ms/step - loss: 1.1764 - sparse_categorical_accuracy: 0.5467
482/Unknown 203s 416ms/step - loss: 1.1758 - sparse_categorical_accuracy: 0.5469
483/Unknown 204s 416ms/step - loss: 1.1752 - sparse_categorical_accuracy: 0.5471
484/Unknown 204s 416ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5473
485/Unknown 205s 416ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5475
486/Unknown 205s 416ms/step - loss: 1.1734 - sparse_categorical_accuracy: 0.5477
487/Unknown 205s 416ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5479
488/Unknown 206s 416ms/step - loss: 1.1722 - sparse_categorical_accuracy: 0.5481
489/Unknown 206s 416ms/step - loss: 1.1716 - sparse_categorical_accuracy: 0.5483
490/Unknown 207s 416ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5485
491/Unknown 207s 416ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5487
492/Unknown 207s 416ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5489
493/Unknown 208s 416ms/step - loss: 1.1693 - sparse_categorical_accuracy: 0.5491
494/Unknown 208s 416ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5493
495/Unknown 208s 416ms/step - loss: 1.1681 - sparse_categorical_accuracy: 0.5494
496/Unknown 209s 416ms/step - loss: 1.1676 - sparse_categorical_accuracy: 0.5496
497/Unknown 209s 416ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5498
498/Unknown 210s 416ms/step - loss: 1.1664 - sparse_categorical_accuracy: 0.5500
499/Unknown 210s 415ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5502
500/Unknown 210s 415ms/step - loss: 1.1652 - sparse_categorical_accuracy: 0.5504
501/Unknown 211s 415ms/step - loss: 1.1647 - sparse_categorical_accuracy: 0.5506
502/Unknown 211s 415ms/step - loss: 1.1641 - sparse_categorical_accuracy: 0.5508
503/Unknown 212s 415ms/step - loss: 1.1635 - sparse_categorical_accuracy: 0.5509
504/Unknown 212s 415ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5511
505/Unknown 212s 415ms/step - loss: 1.1624 - sparse_categorical_accuracy: 0.5513
506/Unknown 213s 415ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5515
507/Unknown 213s 416ms/step - loss: 1.1613 - sparse_categorical_accuracy: 0.5517
508/Unknown 214s 416ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5519
509/Unknown 214s 416ms/step - loss: 1.1601 - sparse_categorical_accuracy: 0.5521
510/Unknown 215s 416ms/step - loss: 1.1596 - sparse_categorical_accuracy: 0.5522
511/Unknown 215s 416ms/step - loss: 1.1590 - sparse_categorical_accuracy: 0.5524
512/Unknown 216s 416ms/step - loss: 1.1585 - sparse_categorical_accuracy: 0.5526
513/Unknown 216s 415ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5528
514/Unknown 216s 415ms/step - loss: 1.1574 - sparse_categorical_accuracy: 0.5530
515/Unknown 217s 415ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5531
516/Unknown 217s 415ms/step - loss: 1.1562 - sparse_categorical_accuracy: 0.5533
517/Unknown 217s 415ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5535
518/Unknown 218s 415ms/step - loss: 1.1551 - sparse_categorical_accuracy: 0.5537
519/Unknown 218s 415ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5539
520/Unknown 218s 415ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5540
521/Unknown 219s 415ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5542
522/Unknown 219s 415ms/step - loss: 1.1530 - sparse_categorical_accuracy: 0.5544
523/Unknown 219s 414ms/step - loss: 1.1524 - sparse_categorical_accuracy: 0.5546
524/Unknown 220s 415ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5548
525/Unknown 220s 415ms/step - loss: 1.1513 - sparse_categorical_accuracy: 0.5549
526/Unknown 221s 415ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5551
527/Unknown 221s 415ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5553
528/Unknown 222s 415ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5555
529/Unknown 222s 415ms/step - loss: 1.1492 - sparse_categorical_accuracy: 0.5556
530/Unknown 223s 415ms/step - loss: 1.1487 - sparse_categorical_accuracy: 0.5558
531/Unknown 223s 415ms/step - loss: 1.1481 - sparse_categorical_accuracy: 0.5560
532/Unknown 223s 415ms/step - loss: 1.1476 - sparse_categorical_accuracy: 0.5562
533/Unknown 224s 415ms/step - loss: 1.1471 - sparse_categorical_accuracy: 0.5563
534/Unknown 224s 415ms/step - loss: 1.1465 - sparse_categorical_accuracy: 0.5565
535/Unknown 225s 415ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5567
536/Unknown 225s 415ms/step - loss: 1.1455 - sparse_categorical_accuracy: 0.5569
537/Unknown 226s 415ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5570
538/Unknown 226s 415ms/step - loss: 1.1444 - sparse_categorical_accuracy: 0.5572
539/Unknown 227s 415ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5574
540/Unknown 227s 415ms/step - loss: 1.1434 - sparse_categorical_accuracy: 0.5575
541/Unknown 227s 415ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5577
542/Unknown 228s 415ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5579
543/Unknown 228s 415ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5581
544/Unknown 228s 415ms/step - loss: 1.1413 - sparse_categorical_accuracy: 0.5582
545/Unknown 229s 415ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5584
546/Unknown 229s 415ms/step - loss: 1.1403 - sparse_categorical_accuracy: 0.5586
547/Unknown 230s 415ms/step - loss: 1.1398 - sparse_categorical_accuracy: 0.5587
548/Unknown 230s 415ms/step - loss: 1.1393 - sparse_categorical_accuracy: 0.5589
549/Unknown 230s 415ms/step - loss: 1.1388 - sparse_categorical_accuracy: 0.5591
550/Unknown 231s 415ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5592
551/Unknown 231s 415ms/step - loss: 1.1378 - sparse_categorical_accuracy: 0.5594
552/Unknown 232s 415ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5596
553/Unknown 232s 414ms/step - loss: 1.1368 - sparse_categorical_accuracy: 0.5597
554/Unknown 232s 414ms/step - loss: 1.1362 - sparse_categorical_accuracy: 0.5599
555/Unknown 233s 414ms/step - loss: 1.1357 - sparse_categorical_accuracy: 0.5601
556/Unknown 233s 414ms/step - loss: 1.1352 - sparse_categorical_accuracy: 0.5602
557/Unknown 233s 414ms/step - loss: 1.1347 - sparse_categorical_accuracy: 0.5604
558/Unknown 234s 414ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5605
559/Unknown 234s 415ms/step - loss: 1.1338 - sparse_categorical_accuracy: 0.5607
560/Unknown 235s 415ms/step - loss: 1.1333 - sparse_categorical_accuracy: 0.5609
561/Unknown 235s 415ms/step - loss: 1.1328 - sparse_categorical_accuracy: 0.5610
562/Unknown 236s 415ms/step - loss: 1.1323 - sparse_categorical_accuracy: 0.5612
563/Unknown 236s 415ms/step - loss: 1.1318 - sparse_categorical_accuracy: 0.5614
564/Unknown 237s 415ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5615
565/Unknown 237s 415ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5617
566/Unknown 238s 415ms/step - loss: 1.1303 - sparse_categorical_accuracy: 0.5618
567/Unknown 238s 415ms/step - loss: 1.1298 - sparse_categorical_accuracy: 0.5620
568/Unknown 238s 415ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5622
569/Unknown 239s 415ms/step - loss: 1.1288 - sparse_categorical_accuracy: 0.5623
570/Unknown 239s 415ms/step - loss: 1.1284 - sparse_categorical_accuracy: 0.5625
571/Unknown 240s 415ms/step - loss: 1.1279 - sparse_categorical_accuracy: 0.5626
572/Unknown 240s 415ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5628
573/Unknown 240s 415ms/step - loss: 1.1269 - sparse_categorical_accuracy: 0.5630
574/Unknown 241s 415ms/step - loss: 1.1264 - sparse_categorical_accuracy: 0.5631
575/Unknown 241s 415ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5633
576/Unknown 241s 414ms/step - loss: 1.1255 - sparse_categorical_accuracy: 0.5634
577/Unknown 242s 414ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5636
578/Unknown 242s 414ms/step - loss: 1.1245 - sparse_categorical_accuracy: 0.5638
579/Unknown 242s 414ms/step - loss: 1.1240 - sparse_categorical_accuracy: 0.5639
580/Unknown 243s 414ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5641
581/Unknown 243s 414ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5642
582/Unknown 243s 413ms/step - loss: 1.1226 - sparse_categorical_accuracy: 0.5644
583/Unknown 244s 413ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5645
584/Unknown 244s 413ms/step - loss: 1.1217 - sparse_categorical_accuracy: 0.5647
585/Unknown 244s 413ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5648
586/Unknown 245s 413ms/step - loss: 1.1207 - sparse_categorical_accuracy: 0.5650
587/Unknown 245s 413ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5651
588/Unknown 246s 413ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5653
589/Unknown 246s 413ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5655
590/Unknown 246s 413ms/step - loss: 1.1189 - sparse_categorical_accuracy: 0.5656
591/Unknown 247s 413ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5658
592/Unknown 247s 413ms/step - loss: 1.1180 - sparse_categorical_accuracy: 0.5659
593/Unknown 248s 413ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5661
594/Unknown 248s 413ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5662
595/Unknown 248s 413ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5664
596/Unknown 249s 413ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5665
597/Unknown 249s 413ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5667
598/Unknown 249s 413ms/step - loss: 1.1152 - sparse_categorical_accuracy: 0.5668
599/Unknown 250s 413ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5670
600/Unknown 250s 413ms/step - loss: 1.1143 - sparse_categorical_accuracy: 0.5671
601/Unknown 251s 412ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5673
602/Unknown 251s 412ms/step - loss: 1.1134 - sparse_categorical_accuracy: 0.5674
603/Unknown 251s 412ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5676
604/Unknown 252s 412ms/step - loss: 1.1125 - sparse_categorical_accuracy: 0.5677
605/Unknown 252s 412ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5679
606/Unknown 252s 412ms/step - loss: 1.1116 - sparse_categorical_accuracy: 0.5680
607/Unknown 253s 412ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5682
608/Unknown 253s 412ms/step - loss: 1.1107 - sparse_categorical_accuracy: 0.5683
609/Unknown 254s 412ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5685
610/Unknown 254s 412ms/step - loss: 1.1098 - sparse_categorical_accuracy: 0.5686
611/Unknown 255s 412ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5687
612/Unknown 255s 412ms/step - loss: 1.1090 - sparse_categorical_accuracy: 0.5689
613/Unknown 255s 412ms/step - loss: 1.1085 - sparse_categorical_accuracy: 0.5690
614/Unknown 256s 412ms/step - loss: 1.1081 - sparse_categorical_accuracy: 0.5692
615/Unknown 256s 412ms/step - loss: 1.1076 - sparse_categorical_accuracy: 0.5693
616/Unknown 257s 413ms/step - loss: 1.1072 - sparse_categorical_accuracy: 0.5695
617/Unknown 257s 413ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5696
618/Unknown 258s 413ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5698
619/Unknown 258s 413ms/step - loss: 1.1059 - sparse_categorical_accuracy: 0.5699
620/Unknown 259s 413ms/step - loss: 1.1055 - sparse_categorical_accuracy: 0.5700
621/Unknown 259s 413ms/step - loss: 1.1050 - sparse_categorical_accuracy: 0.5702
622/Unknown 260s 413ms/step - loss: 1.1046 - sparse_categorical_accuracy: 0.5703
623/Unknown 260s 413ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5705
624/Unknown 261s 413ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5706
625/Unknown 261s 413ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5708
626/Unknown 261s 413ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5709
627/Unknown 262s 413ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5710
628/Unknown 262s 413ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5712
629/Unknown 263s 413ms/step - loss: 1.1016 - sparse_categorical_accuracy: 0.5713
630/Unknown 263s 414ms/step - loss: 1.1012 - sparse_categorical_accuracy: 0.5715
631/Unknown 264s 414ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5716
632/Unknown 264s 414ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5717
633/Unknown 265s 414ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5719
634/Unknown 265s 414ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5720
635/Unknown 265s 413ms/step - loss: 1.0991 - sparse_categorical_accuracy: 0.5722
636/Unknown 266s 413ms/step - loss: 1.0987 - sparse_categorical_accuracy: 0.5723
637/Unknown 266s 413ms/step - loss: 1.0982 - sparse_categorical_accuracy: 0.5724
638/Unknown 266s 413ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5726
639/Unknown 267s 413ms/step - loss: 1.0974 - sparse_categorical_accuracy: 0.5727
640/Unknown 267s 413ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5728
641/Unknown 268s 413ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5730
642/Unknown 268s 413ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5731
643/Unknown 268s 413ms/step - loss: 1.0957 - sparse_categorical_accuracy: 0.5733
644/Unknown 269s 413ms/step - loss: 1.0953 - sparse_categorical_accuracy: 0.5734
645/Unknown 269s 413ms/step - loss: 1.0949 - sparse_categorical_accuracy: 0.5735
646/Unknown 269s 413ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5737
647/Unknown 270s 413ms/step - loss: 1.0941 - sparse_categorical_accuracy: 0.5738
648/Unknown 270s 413ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5739
649/Unknown 270s 413ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5741
650/Unknown 271s 413ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5742
651/Unknown 271s 413ms/step - loss: 1.0925 - sparse_categorical_accuracy: 0.5743
652/Unknown 272s 412ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5745
653/Unknown 272s 412ms/step - loss: 1.0917 - sparse_categorical_accuracy: 0.5746
654/Unknown 272s 412ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5747
655/Unknown 273s 412ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5749
656/Unknown 273s 412ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5750
657/Unknown 274s 413ms/step - loss: 1.0901 - sparse_categorical_accuracy: 0.5751
658/Unknown 274s 413ms/step - loss: 1.0897 - sparse_categorical_accuracy: 0.5753
659/Unknown 275s 413ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5754
660/Unknown 275s 413ms/step - loss: 1.0889 - sparse_categorical_accuracy: 0.5755
661/Unknown 275s 413ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5757
662/Unknown 276s 413ms/step - loss: 1.0881 - sparse_categorical_accuracy: 0.5758
663/Unknown 276s 413ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5759
664/Unknown 277s 413ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5760
665/Unknown 277s 413ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5762
666/Unknown 278s 413ms/step - loss: 1.0865 - sparse_categorical_accuracy: 0.5763
667/Unknown 278s 413ms/step - loss: 1.0861 - sparse_categorical_accuracy: 0.5764
668/Unknown 279s 413ms/step - loss: 1.0857 - sparse_categorical_accuracy: 0.5766
669/Unknown 279s 413ms/step - loss: 1.0853 - sparse_categorical_accuracy: 0.5767
670/Unknown 279s 413ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5768
671/Unknown 280s 413ms/step - loss: 1.0845 - sparse_categorical_accuracy: 0.5770
672/Unknown 280s 413ms/step - loss: 1.0842 - sparse_categorical_accuracy: 0.5771
673/Unknown 281s 413ms/step - loss: 1.0838 - sparse_categorical_accuracy: 0.5772
674/Unknown 281s 413ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5773
675/Unknown 281s 413ms/step - loss: 1.0830 - sparse_categorical_accuracy: 0.5775
676/Unknown 282s 413ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5776
677/Unknown 282s 413ms/step - loss: 1.0822 - sparse_categorical_accuracy: 0.5777
678/Unknown 282s 412ms/step - loss: 1.0818 - sparse_categorical_accuracy: 0.5778
679/Unknown 283s 412ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5780
680/Unknown 283s 412ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5781
681/Unknown 284s 412ms/step - loss: 1.0807 - sparse_categorical_accuracy: 0.5782
682/Unknown 284s 412ms/step - loss: 1.0803 - sparse_categorical_accuracy: 0.5783
683/Unknown 284s 412ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5785
684/Unknown 285s 412ms/step - loss: 1.0796 - sparse_categorical_accuracy: 0.5786
685/Unknown 285s 412ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5787
686/Unknown 286s 412ms/step - loss: 1.0788 - sparse_categorical_accuracy: 0.5788
687/Unknown 286s 412ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5790
688/Unknown 287s 413ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5791
689/Unknown 287s 413ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5792
690/Unknown 287s 413ms/step - loss: 1.0773 - sparse_categorical_accuracy: 0.5793
691/Unknown 288s 413ms/step - loss: 1.0769 - sparse_categorical_accuracy: 0.5795
692/Unknown 288s 413ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5796
693/Unknown 289s 413ms/step - loss: 1.0762 - sparse_categorical_accuracy: 0.5797
694/Unknown 289s 413ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5798
695/Unknown 290s 413ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5800
696/Unknown 290s 413ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5801
697/Unknown 291s 413ms/step - loss: 1.0747 - sparse_categorical_accuracy: 0.5802
698/Unknown 291s 413ms/step - loss: 1.0743 - sparse_categorical_accuracy: 0.5803
699/Unknown 292s 413ms/step - loss: 1.0740 - sparse_categorical_accuracy: 0.5804
700/Unknown 292s 413ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5806
701/Unknown 292s 413ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5807
702/Unknown 293s 413ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5808
703/Unknown 293s 413ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5809
704/Unknown 294s 413ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5810
705/Unknown 294s 413ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5812
706/Unknown 295s 413ms/step - loss: 1.0714 - sparse_categorical_accuracy: 0.5813
707/Unknown 295s 413ms/step - loss: 1.0710 - sparse_categorical_accuracy: 0.5814
708/Unknown 295s 413ms/step - loss: 1.0707 - sparse_categorical_accuracy: 0.5815
709/Unknown 296s 413ms/step - loss: 1.0703 - sparse_categorical_accuracy: 0.5816
710/Unknown 296s 413ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5818
711/Unknown 296s 413ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5819
712/Unknown 297s 413ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5820
713/Unknown 297s 413ms/step - loss: 1.0689 - sparse_categorical_accuracy: 0.5821
714/Unknown 298s 413ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5822
715/Unknown 298s 413ms/step - loss: 1.0682 - sparse_categorical_accuracy: 0.5824
716/Unknown 298s 413ms/step - loss: 1.0678 - sparse_categorical_accuracy: 0.5825
717/Unknown 299s 413ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5826
718/Unknown 299s 413ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5827
719/Unknown 300s 413ms/step - loss: 1.0668 - sparse_categorical_accuracy: 0.5828
720/Unknown 300s 413ms/step - loss: 1.0664 - sparse_categorical_accuracy: 0.5829
721/Unknown 300s 413ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5831
722/Unknown 301s 413ms/step - loss: 1.0657 - sparse_categorical_accuracy: 0.5832
723/Unknown 301s 413ms/step - loss: 1.0653 - sparse_categorical_accuracy: 0.5833
724/Unknown 301s 413ms/step - loss: 1.0650 - sparse_categorical_accuracy: 0.5834
725/Unknown 302s 413ms/step - loss: 1.0646 - sparse_categorical_accuracy: 0.5835
726/Unknown 302s 413ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5836
727/Unknown 303s 413ms/step - loss: 1.0640 - sparse_categorical_accuracy: 0.5837
728/Unknown 303s 413ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5839
729/Unknown 304s 413ms/step - loss: 1.0633 - sparse_categorical_accuracy: 0.5840
730/Unknown 304s 413ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5841
731/Unknown 305s 413ms/step - loss: 1.0626 - sparse_categorical_accuracy: 0.5842
732/Unknown 305s 413ms/step - loss: 1.0622 - sparse_categorical_accuracy: 0.5843
733/Unknown 305s 413ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5844
734/Unknown 306s 413ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5845
735/Unknown 306s 413ms/step - loss: 1.0612 - sparse_categorical_accuracy: 0.5847
736/Unknown 307s 413ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5848
737/Unknown 307s 413ms/step - loss: 1.0605 - sparse_categorical_accuracy: 0.5849
738/Unknown 308s 413ms/step - loss: 1.0602 - sparse_categorical_accuracy: 0.5850
739/Unknown 308s 414ms/step - loss: 1.0598 - sparse_categorical_accuracy: 0.5851
740/Unknown 309s 414ms/step - loss: 1.0595 - sparse_categorical_accuracy: 0.5852
741/Unknown 309s 414ms/step - loss: 1.0591 - sparse_categorical_accuracy: 0.5853
742/Unknown 310s 414ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5854
743/Unknown 310s 414ms/step - loss: 1.0585 - sparse_categorical_accuracy: 0.5856
744/Unknown 310s 414ms/step - loss: 1.0581 - sparse_categorical_accuracy: 0.5857
745/Unknown 311s 414ms/step - loss: 1.0578 - sparse_categorical_accuracy: 0.5858
746/Unknown 311s 413ms/step - loss: 1.0575 - sparse_categorical_accuracy: 0.5859
747/Unknown 312s 413ms/step - loss: 1.0571 - sparse_categorical_accuracy: 0.5860
748/Unknown 312s 413ms/step - loss: 1.0568 - sparse_categorical_accuracy: 0.5861
749/Unknown 312s 413ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5862
750/Unknown 313s 413ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5863
751/Unknown 313s 413ms/step - loss: 1.0558 - sparse_categorical_accuracy: 0.5864
752/Unknown 313s 413ms/step - loss: 1.0555 - sparse_categorical_accuracy: 0.5866
753/Unknown 314s 413ms/step - loss: 1.0551 - sparse_categorical_accuracy: 0.5867
754/Unknown 314s 413ms/step - loss: 1.0548 - sparse_categorical_accuracy: 0.5868
755/Unknown 314s 413ms/step - loss: 1.0545 - sparse_categorical_accuracy: 0.5869
756/Unknown 315s 413ms/step - loss: 1.0541 - sparse_categorical_accuracy: 0.5870
757/Unknown 315s 413ms/step - loss: 1.0538 - sparse_categorical_accuracy: 0.5871
758/Unknown 316s 413ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5872
759/Unknown 316s 413ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5873
760/Unknown 317s 413ms/step - loss: 1.0528 - sparse_categorical_accuracy: 0.5874
761/Unknown 317s 413ms/step - loss: 1.0525 - sparse_categorical_accuracy: 0.5875
762/Unknown 318s 413ms/step - loss: 1.0522 - sparse_categorical_accuracy: 0.5876
763/Unknown 318s 413ms/step - loss: 1.0518 - sparse_categorical_accuracy: 0.5877
764/Unknown 319s 413ms/step - loss: 1.0515 - sparse_categorical_accuracy: 0.5879
765/Unknown 319s 413ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.5880
766/Unknown 319s 413ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.5881
767/Unknown 320s 414ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.5882
768/Unknown 320s 414ms/step - loss: 1.0502 - sparse_categorical_accuracy: 0.5883
769/Unknown 321s 414ms/step - loss: 1.0499 - sparse_categorical_accuracy: 0.5884
770/Unknown 321s 414ms/step - loss: 1.0496 - sparse_categorical_accuracy: 0.5885
771/Unknown 322s 414ms/step - loss: 1.0493 - sparse_categorical_accuracy: 0.5886
772/Unknown 322s 414ms/step - loss: 1.0489 - sparse_categorical_accuracy: 0.5887
773/Unknown 322s 414ms/step - loss: 1.0486 - sparse_categorical_accuracy: 0.5888
774/Unknown 323s 414ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.5889
775/Unknown 323s 413ms/step - loss: 1.0480 - sparse_categorical_accuracy: 0.5890
776/Unknown 323s 413ms/step - loss: 1.0477 - sparse_categorical_accuracy: 0.5891
777/Unknown 324s 413ms/step - loss: 1.0473 - sparse_categorical_accuracy: 0.5892
778/Unknown 324s 413ms/step - loss: 1.0470 - sparse_categorical_accuracy: 0.5893
779/Unknown 325s 413ms/step - loss: 1.0467 - sparse_categorical_accuracy: 0.5894
780/Unknown 325s 413ms/step - loss: 1.0464 - sparse_categorical_accuracy: 0.5895
781/Unknown 325s 413ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.5896
782/Unknown 326s 413ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.5898
783/Unknown 326s 413ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.5899
784/Unknown 327s 413ms/step - loss: 1.0451 - sparse_categorical_accuracy: 0.5900
785/Unknown 327s 413ms/step - loss: 1.0448 - sparse_categorical_accuracy: 0.5901
786/Unknown 327s 413ms/step - loss: 1.0445 - sparse_categorical_accuracy: 0.5902
787/Unknown 328s 413ms/step - loss: 1.0442 - sparse_categorical_accuracy: 0.5903
788/Unknown 328s 413ms/step - loss: 1.0439 - sparse_categorical_accuracy: 0.5904
789/Unknown 329s 413ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.5905
790/Unknown 329s 413ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.5906
791/Unknown 330s 413ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.5907
792/Unknown 330s 413ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.5908
793/Unknown 331s 413ms/step - loss: 1.0423 - sparse_categorical_accuracy: 0.5909
794/Unknown 331s 414ms/step - loss: 1.0420 - sparse_categorical_accuracy: 0.5910
795/Unknown 331s 414ms/step - loss: 1.0417 - sparse_categorical_accuracy: 0.5911
796/Unknown 332s 414ms/step - loss: 1.0414 - sparse_categorical_accuracy: 0.5912
797/Unknown 332s 414ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.5913
798/Unknown 333s 414ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.5914
799/Unknown 333s 413ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.5915
800/Unknown 334s 414ms/step - loss: 1.0402 - sparse_categorical_accuracy: 0.5916
801/Unknown 334s 414ms/step - loss: 1.0399 - sparse_categorical_accuracy: 0.5917
802/Unknown 334s 414ms/step - loss: 1.0396 - sparse_categorical_accuracy: 0.5918
803/Unknown 335s 414ms/step - loss: 1.0393 - sparse_categorical_accuracy: 0.5919
804/Unknown 335s 413ms/step - loss: 1.0390 - sparse_categorical_accuracy: 0.5920
805/Unknown 335s 413ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.5921
806/Unknown 336s 413ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.5922
807/Unknown 336s 413ms/step - loss: 1.0381 - sparse_categorical_accuracy: 0.5923
808/Unknown 336s 413ms/step - loss: 1.0378 - sparse_categorical_accuracy: 0.5924
809/Unknown 337s 413ms/step - loss: 1.0375 - sparse_categorical_accuracy: 0.5925
810/Unknown 337s 413ms/step - loss: 1.0372 - sparse_categorical_accuracy: 0.5926
811/Unknown 338s 413ms/step - loss: 1.0369 - sparse_categorical_accuracy: 0.5927
812/Unknown 338s 413ms/step - loss: 1.0366 - sparse_categorical_accuracy: 0.5928
813/Unknown 338s 413ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.5929
814/Unknown 339s 413ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.5930
815/Unknown 339s 413ms/step - loss: 1.0357 - sparse_categorical_accuracy: 0.5931
816/Unknown 339s 413ms/step - loss: 1.0354 - sparse_categorical_accuracy: 0.5932
817/Unknown 340s 413ms/step - loss: 1.0351 - sparse_categorical_accuracy: 0.5933
818/Unknown 340s 413ms/step - loss: 1.0348 - sparse_categorical_accuracy: 0.5934
819/Unknown 341s 413ms/step - loss: 1.0345 - sparse_categorical_accuracy: 0.5935
820/Unknown 341s 412ms/step - loss: 1.0342 - sparse_categorical_accuracy: 0.5936
821/Unknown 341s 412ms/step - loss: 1.0339 - sparse_categorical_accuracy: 0.5937
822/Unknown 342s 412ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.5938
823/Unknown 342s 412ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.5939
824/Unknown 343s 412ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.5939
825/Unknown 343s 412ms/step - loss: 1.0327 - sparse_categorical_accuracy: 0.5940
826/Unknown 343s 412ms/step - loss: 1.0324 - sparse_categorical_accuracy: 0.5941
827/Unknown 344s 412ms/step - loss: 1.0322 - sparse_categorical_accuracy: 0.5942
828/Unknown 344s 412ms/step - loss: 1.0319 - sparse_categorical_accuracy: 0.5943
829/Unknown 344s 412ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.5944
830/Unknown 345s 412ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.5945
831/Unknown 345s 412ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.5946
832/Unknown 346s 412ms/step - loss: 1.0307 - sparse_categorical_accuracy: 0.5947
833/Unknown 346s 412ms/step - loss: 1.0304 - sparse_categorical_accuracy: 0.5948
834/Unknown 346s 412ms/step - loss: 1.0301 - sparse_categorical_accuracy: 0.5949
835/Unknown 347s 412ms/step - loss: 1.0298 - sparse_categorical_accuracy: 0.5950
836/Unknown 347s 412ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.5951
837/Unknown 348s 412ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.5952
838/Unknown 348s 412ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.5953
839/Unknown 348s 412ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.5954
840/Unknown 349s 412ms/step - loss: 1.0284 - sparse_categorical_accuracy: 0.5955
841/Unknown 349s 412ms/step - loss: 1.0281 - sparse_categorical_accuracy: 0.5956
842/Unknown 350s 412ms/step - loss: 1.0278 - sparse_categorical_accuracy: 0.5957
843/Unknown 350s 412ms/step - loss: 1.0276 - sparse_categorical_accuracy: 0.5958
844/Unknown 351s 412ms/step - loss: 1.0273 - sparse_categorical_accuracy: 0.5958
845/Unknown 351s 412ms/step - loss: 1.0270 - sparse_categorical_accuracy: 0.5959
846/Unknown 352s 412ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.5960
847/Unknown 352s 412ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.5961
848/Unknown 352s 412ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.5962
849/Unknown 353s 412ms/step - loss: 1.0259 - sparse_categorical_accuracy: 0.5963
850/Unknown 353s 412ms/step - loss: 1.0256 - sparse_categorical_accuracy: 0.5964
851/Unknown 354s 412ms/step - loss: 1.0253 - sparse_categorical_accuracy: 0.5965
852/Unknown 354s 412ms/step - loss: 1.0250 - sparse_categorical_accuracy: 0.5966
853/Unknown 354s 412ms/step - loss: 1.0247 - sparse_categorical_accuracy: 0.5967
854/Unknown 355s 412ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.5968
855/Unknown 355s 412ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.5969
856/Unknown 355s 412ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.5970
857/Unknown 356s 412ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.5970
858/Unknown 356s 412ms/step - loss: 1.0234 - sparse_categorical_accuracy: 0.5971
859/Unknown 357s 412ms/step - loss: 1.0231 - sparse_categorical_accuracy: 0.5972
860/Unknown 357s 412ms/step - loss: 1.0228 - sparse_categorical_accuracy: 0.5973
861/Unknown 357s 412ms/step - loss: 1.0225 - sparse_categorical_accuracy: 0.5974
862/Unknown 358s 412ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.5975
863/Unknown 358s 412ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.5976
864/Unknown 359s 412ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.5977
865/Unknown 359s 412ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.5978
866/Unknown 360s 412ms/step - loss: 1.0212 - sparse_categorical_accuracy: 0.5979
867/Unknown 360s 412ms/step - loss: 1.0209 - sparse_categorical_accuracy: 0.5980
868/Unknown 361s 412ms/step - loss: 1.0206 - sparse_categorical_accuracy: 0.5980
869/Unknown 361s 412ms/step - loss: 1.0203 - sparse_categorical_accuracy: 0.5981
870/Unknown 361s 412ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.5982
871/Unknown 362s 412ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.5983
872/Unknown 362s 412ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.5984
873/Unknown 363s 412ms/step - loss: 1.0193 - sparse_categorical_accuracy: 0.5985
874/Unknown 363s 412ms/step - loss: 1.0190 - sparse_categorical_accuracy: 0.5986
875/Unknown 364s 412ms/step - loss: 1.0187 - sparse_categorical_accuracy: 0.5987
876/Unknown 364s 412ms/step - loss: 1.0184 - sparse_categorical_accuracy: 0.5988
877/Unknown 364s 412ms/step - loss: 1.0182 - sparse_categorical_accuracy: 0.5988
878/Unknown 365s 412ms/step - loss: 1.0179 - sparse_categorical_accuracy: 0.5989
879/Unknown 365s 412ms/step - loss: 1.0176 - sparse_categorical_accuracy: 0.5990
880/Unknown 365s 412ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.5991
881/Unknown 366s 412ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.5992
882/Unknown 366s 412ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.5993
883/Unknown 367s 412ms/step - loss: 1.0166 - sparse_categorical_accuracy: 0.5994
884/Unknown 367s 412ms/step - loss: 1.0163 - sparse_categorical_accuracy: 0.5995
885/Unknown 367s 412ms/step - loss: 1.0160 - sparse_categorical_accuracy: 0.5996
886/Unknown 368s 412ms/step - loss: 1.0158 - sparse_categorical_accuracy: 0.5996
887/Unknown 368s 412ms/step - loss: 1.0155 - sparse_categorical_accuracy: 0.5997
888/Unknown 368s 412ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.5998
889/Unknown 369s 412ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.5999
890/Unknown 369s 412ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6000
891/Unknown 370s 412ms/step - loss: 1.0145 - sparse_categorical_accuracy: 0.6001
892/Unknown 370s 412ms/step - loss: 1.0142 - sparse_categorical_accuracy: 0.6002
893/Unknown 371s 412ms/step - loss: 1.0139 - sparse_categorical_accuracy: 0.6002
894/Unknown 371s 412ms/step - loss: 1.0137 - sparse_categorical_accuracy: 0.6003
895/Unknown 371s 412ms/step - loss: 1.0134 - sparse_categorical_accuracy: 0.6004
896/Unknown 372s 412ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6005
897/Unknown 372s 412ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6006
898/Unknown 373s 412ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6007
899/Unknown 373s 412ms/step - loss: 1.0124 - sparse_categorical_accuracy: 0.6008
900/Unknown 373s 412ms/step - loss: 1.0121 - sparse_categorical_accuracy: 0.6008
901/Unknown 374s 412ms/step - loss: 1.0119 - sparse_categorical_accuracy: 0.6009
902/Unknown 374s 412ms/step - loss: 1.0116 - sparse_categorical_accuracy: 0.6010
903/Unknown 374s 412ms/step - loss: 1.0113 - sparse_categorical_accuracy: 0.6011
904/Unknown 375s 412ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6012
905/Unknown 375s 412ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6013
906/Unknown 376s 412ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6014
907/Unknown 376s 412ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6014
908/Unknown 376s 412ms/step - loss: 1.0101 - sparse_categorical_accuracy: 0.6015
909/Unknown 377s 411ms/step - loss: 1.0098 - sparse_categorical_accuracy: 0.6016
910/Unknown 377s 411ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6017
911/Unknown 378s 411ms/step - loss: 1.0093 - sparse_categorical_accuracy: 0.6018
912/Unknown 378s 411ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6019
913/Unknown 378s 411ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6019
914/Unknown 379s 411ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6020
915/Unknown 379s 411ms/step - loss: 1.0083 - sparse_categorical_accuracy: 0.6021
916/Unknown 380s 412ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6022
917/Unknown 380s 412ms/step - loss: 1.0078 - sparse_categorical_accuracy: 0.6023
918/Unknown 380s 412ms/step - loss: 1.0075 - sparse_categorical_accuracy: 0.6024
919/Unknown 381s 411ms/step - loss: 1.0073 - sparse_categorical_accuracy: 0.6024
920/Unknown 381s 411ms/step - loss: 1.0070 - sparse_categorical_accuracy: 0.6025
921/Unknown 382s 411ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6026
922/Unknown 382s 411ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6027
923/Unknown 382s 411ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6028
924/Unknown 383s 411ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6029
925/Unknown 383s 411ms/step - loss: 1.0058 - sparse_categorical_accuracy: 0.6029
926/Unknown 383s 411ms/step - loss: 1.0055 - sparse_categorical_accuracy: 0.6030
927/Unknown 384s 411ms/step - loss: 1.0053 - sparse_categorical_accuracy: 0.6031
928/Unknown 384s 411ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6032
929/Unknown 384s 411ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6033
930/Unknown 385s 411ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6033
931/Unknown 385s 411ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6034
932/Unknown 386s 411ms/step - loss: 1.0041 - sparse_categorical_accuracy: 0.6035
933/Unknown 386s 411ms/step - loss: 1.0038 - sparse_categorical_accuracy: 0.6036
934/Unknown 386s 411ms/step - loss: 1.0036 - sparse_categorical_accuracy: 0.6037
935/Unknown 387s 411ms/step - loss: 1.0033 - sparse_categorical_accuracy: 0.6037
936/Unknown 387s 411ms/step - loss: 1.0031 - sparse_categorical_accuracy: 0.6038
937/Unknown 387s 411ms/step - loss: 1.0028 - sparse_categorical_accuracy: 0.6039
938/Unknown 388s 411ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6040
939/Unknown 388s 411ms/step - loss: 1.0024 - sparse_categorical_accuracy: 0.6041
940/Unknown 389s 411ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6042
941/Unknown 389s 410ms/step - loss: 1.0019 - sparse_categorical_accuracy: 0.6042
942/Unknown 389s 410ms/step - loss: 1.0016 - sparse_categorical_accuracy: 0.6043
943/Unknown 390s 411ms/step - loss: 1.0014 - sparse_categorical_accuracy: 0.6044
944/Unknown 390s 411ms/step - loss: 1.0011 - sparse_categorical_accuracy: 0.6045
945/Unknown 391s 411ms/step - loss: 1.0009 - sparse_categorical_accuracy: 0.6046
946/Unknown 391s 411ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6046
947/Unknown 392s 411ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6047
948/Unknown 392s 411ms/step - loss: 1.0002 - sparse_categorical_accuracy: 0.6048
949/Unknown 393s 411ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6049
950/Unknown 393s 411ms/step - loss: 0.9997 - sparse_categorical_accuracy: 0.6049
951/Unknown 393s 411ms/step - loss: 0.9995 - sparse_categorical_accuracy: 0.6050
952/Unknown 394s 411ms/step - loss: 0.9992 - sparse_categorical_accuracy: 0.6051
953/Unknown 394s 411ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6052
954/Unknown 394s 411ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6053
955/Unknown 395s 410ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6053
956/Unknown 395s 410ms/step - loss: 0.9983 - sparse_categorical_accuracy: 0.6054
957/Unknown 395s 410ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6055
958/Unknown 396s 410ms/step - loss: 0.9978 - sparse_categorical_accuracy: 0.6056
959/Unknown 396s 410ms/step - loss: 0.9976 - sparse_categorical_accuracy: 0.6057
960/Unknown 397s 410ms/step - loss: 0.9973 - sparse_categorical_accuracy: 0.6057
961/Unknown 397s 410ms/step - loss: 0.9971 - sparse_categorical_accuracy: 0.6058
962/Unknown 397s 410ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6059
963/Unknown 398s 410ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6060
964/Unknown 398s 410ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6060
965/Unknown 398s 410ms/step - loss: 0.9962 - sparse_categorical_accuracy: 0.6061
966/Unknown 399s 410ms/step - loss: 0.9959 - sparse_categorical_accuracy: 0.6062
967/Unknown 399s 410ms/step - loss: 0.9957 - sparse_categorical_accuracy: 0.6063
968/Unknown 400s 410ms/step - loss: 0.9955 - sparse_categorical_accuracy: 0.6064
969/Unknown 400s 410ms/step - loss: 0.9952 - sparse_categorical_accuracy: 0.6064
970/Unknown 401s 410ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6065
971/Unknown 401s 410ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6066
972/Unknown 402s 410ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6067
973/Unknown 402s 410ms/step - loss: 0.9943 - sparse_categorical_accuracy: 0.6067
974/Unknown 402s 410ms/step - loss: 0.9941 - sparse_categorical_accuracy: 0.6068
975/Unknown 403s 410ms/step - loss: 0.9938 - sparse_categorical_accuracy: 0.6069
976/Unknown 403s 410ms/step - loss: 0.9936 - sparse_categorical_accuracy: 0.6070
977/Unknown 404s 410ms/step - loss: 0.9934 - sparse_categorical_accuracy: 0.6070
978/Unknown 404s 410ms/step - loss: 0.9931 - sparse_categorical_accuracy: 0.6071
979/Unknown 404s 410ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6072
980/Unknown 405s 410ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6073
981/Unknown 405s 410ms/step - loss: 0.9925 - sparse_categorical_accuracy: 0.6073
982/Unknown 405s 410ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6074
983/Unknown 406s 410ms/step - loss: 0.9920 - sparse_categorical_accuracy: 0.6075
984/Unknown 406s 410ms/step - loss: 0.9918 - sparse_categorical_accuracy: 0.6076
985/Unknown 406s 410ms/step - loss: 0.9915 - sparse_categorical_accuracy: 0.6076
986/Unknown 407s 410ms/step - loss: 0.9913 - sparse_categorical_accuracy: 0.6077
987/Unknown 407s 410ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6078
988/Unknown 408s 410ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6079
989/Unknown 408s 410ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6079
990/Unknown 408s 410ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6080
991/Unknown 409s 410ms/step - loss: 0.9902 - sparse_categorical_accuracy: 0.6081
992/Unknown 409s 410ms/step - loss: 0.9900 - sparse_categorical_accuracy: 0.6082
993/Unknown 410s 410ms/step - loss: 0.9897 - sparse_categorical_accuracy: 0.6082
994/Unknown 410s 410ms/step - loss: 0.9895 - sparse_categorical_accuracy: 0.6083
995/Unknown 411s 410ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6084
996/Unknown 411s 410ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6085
997/Unknown 411s 410ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6085
998/Unknown 412s 410ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6086
999/Unknown 412s 410ms/step - loss: 0.9884 - sparse_categorical_accuracy: 0.6087
1000/未知 413秒 410毫秒/步 - loss: 0.9882 - sparse_categorical_accuracy: 0.6088
1001/未知 413秒 410毫秒/步 - loss: 0.9880 - sparse_categorical_accuracy: 0.6088
1002/未知 414秒 410毫秒/步 - loss: 0.9877 - sparse_categorical_accuracy: 0.6089
1003/未知 414秒 410毫秒/步 - loss: 0.9875 - sparse_categorical_accuracy: 0.6090
1004/未知 414秒 410毫秒/步 - loss: 0.9873 - sparse_categorical_accuracy: 0.6091
1005/未知 415秒 410毫秒/步 - loss: 0.9871 - sparse_categorical_accuracy: 0.6091
1006/未知 415秒 410毫秒/步 - loss: 0.9868 - sparse_categorical_accuracy: 0.6092
1007/未知 416秒 410毫秒/步 - loss: 0.9866 - sparse_categorical_accuracy: 0.6093
1008/未知 416秒 410毫秒/步 - loss: 0.9864 - sparse_categorical_accuracy: 0.6093
1009/未知 416秒 410毫秒/步 - loss: 0.9862 - sparse_categorical_accuracy: 0.6094
1010/未知 416秒 410毫秒/步 - loss: 0.9860 - sparse_categorical_accuracy: 0.6095
1011/未知 417秒 410毫秒/步 - loss: 0.9857 - sparse_categorical_accuracy: 0.6096
1012/未知 417秒 409毫秒/步 - loss: 0.9855 - sparse_categorical_accuracy: 0.6096
1013/未知 417秒 409毫秒/步 - loss: 0.9853 - sparse_categorical_accuracy: 0.6097
1014/未知 418秒 409毫秒/步 - loss: 0.9851 - sparse_categorical_accuracy: 0.6098
1015/未知 418秒 409毫秒/步 - loss: 0.9849 - sparse_categorical_accuracy: 0.6099
1016/未知 418秒 409毫秒/步 - loss: 0.9847 - sparse_categorical_accuracy: 0.6099
1017/未知 419秒 409毫秒/步 - loss: 0.9844 - sparse_categorical_accuracy: 0.6100
1018/未知 419秒 409毫秒/步 - loss: 0.9842 - sparse_categorical_accuracy: 0.6101
1019/未知 419秒 409毫秒/步 - loss: 0.9840 - sparse_categorical_accuracy: 0.6101
1020/未知 420秒 409毫秒/步 - loss: 0.9838 - sparse_categorical_accuracy: 0.6102
1021/未知 420秒 409毫秒/步 - loss: 0.9836 - sparse_categorical_accuracy: 0.6103
1022/未知 421秒 409毫秒/步 - loss: 0.9834 - sparse_categorical_accuracy: 0.6104
1023/未知 421秒 409毫秒/步 - loss: 0.9831 - sparse_categorical_accuracy: 0.6104
1024/未知 422秒 409毫秒/步 - loss: 0.9829 - sparse_categorical_accuracy: 0.6105
1025/未知 422秒 409毫秒/步 - loss: 0.9827 - sparse_categorical_accuracy: 0.6106
1026/未知 423秒 409毫秒/步 - loss: 0.9825 - sparse_categorical_accuracy: 0.6106
1027/未知 423秒 409毫秒/步 - loss: 0.9823 - sparse_categorical_accuracy: 0.6107
1028/未知 423秒 409毫秒/步 - loss: 0.9821 - sparse_categorical_accuracy: 0.6108
1029/未知 424秒 409毫秒/步 - loss: 0.9819 - sparse_categorical_accuracy: 0.6109
1030/未知 424秒 409毫秒/步 - loss: 0.9816 - sparse_categorical_accuracy: 0.6109
1031/未知 425秒 409毫秒/步 - loss: 0.9814 - sparse_categorical_accuracy: 0.6110
1032/未知 425秒 409毫秒/步 - loss: 0.9812 - sparse_categorical_accuracy: 0.6111
1033/未知 425秒 409毫秒/步 - loss: 0.9810 - sparse_categorical_accuracy: 0.6111
1034/未知 426秒 409毫秒/步 - loss: 0.9808 - sparse_categorical_accuracy: 0.6112
1035/未知 426秒 409毫秒/步 - loss: 0.9806 - sparse_categorical_accuracy: 0.6113
1036/未知 427秒 409毫秒/步 - loss: 0.9804 - sparse_categorical_accuracy: 0.6113
1037/未知 427秒 409毫秒/步 - loss: 0.9802 - sparse_categorical_accuracy: 0.6114
1038/未知 427秒 409毫秒/步 - loss: 0.9799 - sparse_categorical_accuracy: 0.6115
1039/未知 428秒 409毫秒/步 - loss: 0.9797 - sparse_categorical_accuracy: 0.6116
1040/未知 428秒 409毫秒/步 - loss: 0.9795 - sparse_categorical_accuracy: 0.6116
1041/未知 428秒 409毫秒/步 - loss: 0.9793 - sparse_categorical_accuracy: 0.6117
1042/未知 429秒 409毫秒/步 - loss: 0.9791 - sparse_categorical_accuracy: 0.6118
1043/未知 429秒 409毫秒/步 - loss: 0.9789 - sparse_categorical_accuracy: 0.6118
1044/未知 430秒 409毫秒/步 - loss: 0.9787 - sparse_categorical_accuracy: 0.6119
1045/未知 430秒 409毫秒/步 - loss: 0.9785 - sparse_categorical_accuracy: 0.6120
1046/未知 430秒 409毫秒/步 - loss: 0.9783 - sparse_categorical_accuracy: 0.6120
1047/未知 431秒 409毫秒/步 - loss: 0.9781 - sparse_categorical_accuracy: 0.6121
1048/未知 431秒 409毫秒/步 - loss: 0.9779 - sparse_categorical_accuracy: 0.6122
1049/未知 432秒 409毫秒/步 - loss: 0.9777 - sparse_categorical_accuracy: 0.6122
1050/未知 432秒 409毫秒/步 - loss: 0.9774 - sparse_categorical_accuracy: 0.6123
1051/未知 433秒 409毫秒/步 - loss: 0.9772 - sparse_categorical_accuracy: 0.6124
1052/未知 433秒 409毫秒/步 - loss: 0.9770 - sparse_categorical_accuracy: 0.6125
1053/未知 433秒 409毫秒/步 - loss: 0.9768 - sparse_categorical_accuracy: 0.6125
1054/未知 434秒 409毫秒/步 - loss: 0.9766 - sparse_categorical_accuracy: 0.6126
1055/未知 434秒 409毫秒/步 - loss: 0.9764 - sparse_categorical_accuracy: 0.6127
1056/未知 435秒 409毫秒/步 - loss: 0.9762 - sparse_categorical_accuracy: 0.6127
1057/未知 435秒 409毫秒/步 - loss: 0.9760 - sparse_categorical_accuracy: 0.6128
1058/未知 435秒 409毫秒/步 - loss: 0.9758 - sparse_categorical_accuracy: 0.6129
1059/未知 436秒 409毫秒/步 - loss: 0.9756 - sparse_categorical_accuracy: 0.6129
1060/未知 436秒 409毫秒/步 - loss: 0.9754 - sparse_categorical_accuracy: 0.6130
1061/未知 436秒 409毫秒/步 - loss: 0.9752 - sparse_categorical_accuracy: 0.6131
1062/未知 437秒 409毫秒/步 - loss: 0.9750 - sparse_categorical_accuracy: 0.6131
1063/未知 437秒 409毫秒/步 - loss: 0.9748 - sparse_categorical_accuracy: 0.6132
1064/未知 438秒 409毫秒/步 - loss: 0.9746 - sparse_categorical_accuracy: 0.6133
1065/未知 438秒 409毫秒/步 - loss: 0.9744 - sparse_categorical_accuracy: 0.6133
1066/未知 439秒 409毫秒/步 - loss: 0.9742 - sparse_categorical_accuracy: 0.6134
1067/未知 439秒 409毫秒/步 - loss: 0.9740 - sparse_categorical_accuracy: 0.6135
1068/未知 440秒 409毫秒/步 - loss: 0.9738 - sparse_categorical_accuracy: 0.6135
1069/未知 440秒 409毫秒/步 - loss: 0.9736 - sparse_categorical_accuracy: 0.6136
1070/未知 441秒 409毫秒/步 - loss: 0.9734 - sparse_categorical_accuracy: 0.6137
1071/未知 441秒 409毫秒/步 - loss: 0.9732 - sparse_categorical_accuracy: 0.6137
1072/未知 442秒 409毫秒/步 - loss: 0.9730 - sparse_categorical_accuracy: 0.6138
1073/未知 442秒 409毫秒/步 - loss: 0.9728 - sparse_categorical_accuracy: 0.6139
1074/未知 443秒 410毫秒/步 - loss: 0.9726 - sparse_categorical_accuracy: 0.6139
1075/未知 443秒 410毫秒/步 - loss: 0.9723 - sparse_categorical_accuracy: 0.6140
1076/未知 444秒 410毫秒/步 - loss: 0.9721 - sparse_categorical_accuracy: 0.6141
1077/未知 444秒 410毫秒/步 - loss: 0.9719 - sparse_categorical_accuracy: 0.6141
1078/未知 445秒 410毫秒/步 - loss: 0.9717 - sparse_categorical_accuracy: 0.6142
1079/未知 445秒 410毫秒/步 - loss: 0.9716 - sparse_categorical_accuracy: 0.6143
1080/未知 445秒 410毫秒/步 - loss: 0.9714 - sparse_categorical_accuracy: 0.6143
1081/未知 446秒 410毫秒/步 - loss: 0.9712 - sparse_categorical_accuracy: 0.6144
1082/未知 446秒 410毫秒/步 - loss: 0.9710 - sparse_categorical_accuracy: 0.6145
1083/未知 447秒 410毫秒/步 - loss: 0.9708 - sparse_categorical_accuracy: 0.6145
1084/未知 447秒 410毫秒/步 - loss: 0.9706 - sparse_categorical_accuracy: 0.6146
1085/未知 448秒 410毫秒/步 - loss: 0.9704 - sparse_categorical_accuracy: 0.6147
1086/未知 448秒 410毫秒/步 - loss: 0.9702 - sparse_categorical_accuracy: 0.6147
1087/未知 449秒 410毫秒/步 - loss: 0.9700 - sparse_categorical_accuracy: 0.6148
1088/未知 449秒 410毫秒/步 - loss: 0.9698 - sparse_categorical_accuracy: 0.6149
1089/未知 449秒 410毫秒/步 - loss: 0.9696 - sparse_categorical_accuracy: 0.6149
1090/未知 450秒 410毫秒/步 - loss: 0.9694 - sparse_categorical_accuracy: 0.6150
1091/未知 450秒 410毫秒/步 - loss: 0.9692 - sparse_categorical_accuracy: 0.6150
1092/未知 451秒 410毫秒/步 - loss: 0.9690 - sparse_categorical_accuracy: 0.6151
1093/未知 451秒 411毫秒/步 - loss: 0.9688 - sparse_categorical_accuracy: 0.6152
1094/未知 452秒 411毫秒/步 - loss: 0.9686 - sparse_categorical_accuracy: 0.6152
1095/未知 452秒 411毫秒/步 - loss: 0.9684 - sparse_categorical_accuracy: 0.6153
1096/未知 453秒 411毫秒/步 - loss: 0.9682 - sparse_categorical_accuracy: 0.6154
1097/未知 453秒 411毫秒/步 - loss: 0.9680 - sparse_categorical_accuracy: 0.6154
1098/未知 454秒 411毫秒/步 - loss: 0.9678 - sparse_categorical_accuracy: 0.6155
1099/未知 454秒 411毫秒/步 - loss: 0.9676 - sparse_categorical_accuracy: 0.6156
1100/未知 455秒 411毫秒/步 - loss: 0.9674 - sparse_categorical_accuracy: 0.6156
1101/未知 455秒 411毫秒/步 - loss: 0.9672 - sparse_categorical_accuracy: 0.6157
1102/未知 456秒 411毫秒/步 - loss: 0.9670 - sparse_categorical_accuracy: 0.6158
1103/未知 456秒 411毫秒/步 - loss: 0.9668 - sparse_categorical_accuracy: 0.6158
1104/未知 457秒 411毫秒/步 - loss: 0.9667 - sparse_categorical_accuracy: 0.6159
1105/未知 457秒 411毫秒/步 - loss: 0.9665 - sparse_categorical_accuracy: 0.6159
1106/未知 457秒 411毫秒/步 - loss: 0.9663 - sparse_categorical_accuracy: 0.6160
1107/未知 458秒 411毫秒/步 - loss: 0.9661 - sparse_categorical_accuracy: 0.6161
1108/未知 458秒 411毫秒/步 - loss: 0.9659 - sparse_categorical_accuracy: 0.6161
1109/未知 459秒 411毫秒/步 - loss: 0.9657 - sparse_categorical_accuracy: 0.6162
1110/未知 459秒 411毫秒/步 - loss: 0.9655 - sparse_categorical_accuracy: 0.6163
1111/未知 459秒 411毫秒/步 - loss: 0.9653 - sparse_categorical_accuracy: 0.6163
1112/未知 460秒 411毫秒/步 - loss: 0.9651 - sparse_categorical_accuracy: 0.6164
1113/未知 460秒 411毫秒/步 - loss: 0.9649 - sparse_categorical_accuracy: 0.6165
1114/未知 461秒 411毫秒/步 - loss: 0.9647 - sparse_categorical_accuracy: 0.6165
1115/未知 461秒 411毫秒/步 - loss: 0.9645 - sparse_categorical_accuracy: 0.6166
1116/未知 462秒 411毫秒/步 - loss: 0.9644 - sparse_categorical_accuracy: 0.6166
1117/未知 462秒 412毫秒/步 - loss: 0.9642 - sparse_categorical_accuracy: 0.6167
1118/未知 463秒 412毫秒/步 - loss: 0.9640 - sparse_categorical_accuracy: 0.6168
1119/未知 463秒 412毫秒/步 - loss: 0.9638 - sparse_categorical_accuracy: 0.6168
1120/未知 464秒 412毫秒/步 - loss: 0.9636 - sparse_categorical_accuracy: 0.6169
1121/未知 464秒 412毫秒/步 - loss: 0.9634 - sparse_categorical_accuracy: 0.6170
1122/未知 465秒 412毫秒/步 - loss: 0.9632 - sparse_categorical_accuracy: 0.6170
1123/未知 465秒 412毫秒/步 - loss: 0.9630 - sparse_categorical_accuracy: 0.6171
1124/未知 466秒 412毫秒/步 - loss: 0.9628 - sparse_categorical_accuracy: 0.6171
1125/未知 466秒 412毫秒/步 - loss: 0.9627 - sparse_categorical_accuracy: 0.6172
1126/未知 467秒 412毫秒/步 - loss: 0.9625 - sparse_categorical_accuracy: 0.6173
1127/未知 467秒 412毫秒/步 - loss: 0.9623 - sparse_categorical_accuracy: 0.6173
1128/未知 468秒 412毫秒/步 - loss: 0.9621 - sparse_categorical_accuracy: 0.6174
1129/未知 468秒 412毫秒/步 - loss: 0.9619 - sparse_categorical_accuracy: 0.6174
1130/未知 469秒 412毫秒/步 - loss: 0.9617 - sparse_categorical_accuracy: 0.6175
1131/未知 469秒 412毫秒/步 - loss: 0.9615 - sparse_categorical_accuracy: 0.6176
1132/未知 470秒 412毫秒/步 - loss: 0.9614 - sparse_categorical_accuracy: 0.6176
1133/未知 470秒 412毫秒/步 - loss: 0.9612 - sparse_categorical_accuracy: 0.6177
1134/未知 471秒 413毫秒/步 - loss: 0.9610 - sparse_categorical_accuracy: 0.6178
1135/未知 471秒 413毫秒/步 - loss: 0.9608 - sparse_categorical_accuracy: 0.6178
1136/未知 471秒 413毫秒/步 - loss: 0.9606 - sparse_categorical_accuracy: 0.6179
1137/未知 472秒 413毫秒/步 - loss: 0.9604 - sparse_categorical_accuracy: 0.6179
1138/未知 472秒 413毫秒/步 - loss: 0.9602 - sparse_categorical_accuracy: 0.6180
1139/未知 473秒 413毫秒/步 - loss: 0.9601 - sparse_categorical_accuracy: 0.6181
1140/未知 473秒 413毫秒/步 - loss: 0.9599 - sparse_categorical_accuracy: 0.6181
1141/未知 474秒 413毫秒/步 - loss: 0.9597 - sparse_categorical_accuracy: 0.6182
1142/未知 474秒 413毫秒/步 - loss: 0.9595 - sparse_categorical_accuracy: 0.6182
1143/未知 475秒 413毫秒/步 - loss: 0.9593 - sparse_categorical_accuracy: 0.6183
1144/未知 475秒 413毫秒/步 - loss: 0.9591 - sparse_categorical_accuracy: 0.6184
1145/未知 476秒 413毫秒/步 - loss: 0.9590 - sparse_categorical_accuracy: 0.6184
1146/未知 476秒 413毫秒/步 - loss: 0.9588 - sparse_categorical_accuracy: 0.6185
1147/未知 477秒 413毫秒/步 - loss: 0.9586 - sparse_categorical_accuracy: 0.6185
1148/未知 477秒 413毫秒/步 - loss: 0.9584 - sparse_categorical_accuracy: 0.6186
1149/未知 478秒 413毫秒/步 - loss: 0.9582 - sparse_categorical_accuracy: 0.6187
1150/未知 478秒 413毫秒/步 - loss: 0.9580 - sparse_categorical_accuracy: 0.6187
1151/未知 479秒 413毫秒/步 - loss: 0.9579 - sparse_categorical_accuracy: 0.6188
1152/未知 479秒 413毫秒/步 - loss: 0.9577 - sparse_categorical_accuracy: 0.6188
1153/未知 479秒 413毫秒/步 - loss: 0.9575 - sparse_categorical_accuracy: 0.6189
1154/未知 480秒 413毫秒/步 - loss: 0.9573 - sparse_categorical_accuracy: 0.6190
1155/未知 480秒 413毫秒/步 - loss: 0.9571 - sparse_categorical_accuracy: 0.6190
1156/未知 480秒 413毫秒/步 - loss: 0.9570 - sparse_categorical_accuracy: 0.6191
1157/未知 481秒 413毫秒/步 - loss: 0.9568 - sparse_categorical_accuracy: 0.6191
1158/未知 481秒 413毫秒/步 - loss: 0.9566 - sparse_categorical_accuracy: 0.6192
1159/未知 482秒 413毫秒/步 - loss: 0.9564 - sparse_categorical_accuracy: 0.6193
1160/未知 482秒 413毫秒/步 - loss: 0.9562 - sparse_categorical_accuracy: 0.6193
1161/未知 482秒 413毫秒/步 - loss: 0.9561 - sparse_categorical_accuracy: 0.6194
1162/未知 483秒 413毫秒/步 - loss: 0.9559 - sparse_categorical_accuracy: 0.6194
1163/未知 483秒 413毫秒/步 - loss: 0.9557 - sparse_categorical_accuracy: 0.6195
1164/未知 484秒 413毫秒/步 - loss: 0.9555 - sparse_categorical_accuracy: 0.6196
1165/未知 484秒 413毫秒/步 - loss: 0.9554 - sparse_categorical_accuracy: 0.6196
1166/未知 484秒 413毫秒/步 - loss: 0.9552 - sparse_categorical_accuracy: 0.6197
1167/未知 485秒 413毫秒/步 - loss: 0.9550 - sparse_categorical_accuracy: 0.6197
1168/未知 485秒 413毫秒/步 - loss: 0.9548 - sparse_categorical_accuracy: 0.6198
1169/未知 486秒 413毫秒/步 - loss: 0.9546 - sparse_categorical_accuracy: 0.6199
1170/未知 486秒 413毫秒/步 - loss: 0.9545 - sparse_categorical_accuracy: 0.6199
1171/未知 487秒 413毫秒/步 - loss: 0.9543 - sparse_categorical_accuracy: 0.6200
1172/未知 487秒 413毫秒/步 - loss: 0.9541 - sparse_categorical_accuracy: 0.6200
1173/未知 488秒 413毫秒/步 - loss: 0.9539 - sparse_categorical_accuracy: 0.6201
1174/未知 488秒 413毫秒/步 - loss: 0.9538 - sparse_categorical_accuracy: 0.6201
1175/未知 489秒 413毫秒/步 - loss: 0.9536 - sparse_categorical_accuracy: 0.6202
1176/未知 489秒 413毫秒/步 - loss: 0.9534 - sparse_categorical_accuracy: 0.6203
1177/未知 489秒 413毫秒/步 - loss: 0.9532 - sparse_categorical_accuracy: 0.6203
1178/未知 490秒 413毫秒/步 - loss: 0.9531 - sparse_categorical_accuracy: 0.6204
1179/未知 490秒 413毫秒/步 - loss: 0.9529 - sparse_categorical_accuracy: 0.6204
1180/未知 491秒 414毫秒/步 - loss: 0.9527 - sparse_categorical_accuracy: 0.6205
1181/未知 491秒 414毫秒/步 - loss: 0.9525 - sparse_categorical_accuracy: 0.6206
1182/未知 492秒 414毫秒/步 - loss: 0.9524 - sparse_categorical_accuracy: 0.6206
1183/未知 492秒 414毫秒/步 - loss: 0.9522 - sparse_categorical_accuracy: 0.6207
1184/未知 492秒 414毫秒/步 - loss: 0.9520 - sparse_categorical_accuracy: 0.6207
1185/未知 493秒 414毫秒/步 - loss: 0.9518 - sparse_categorical_accuracy: 0.6208
1186/未知 493秒 413毫秒/步 - loss: 0.9517 - sparse_categorical_accuracy: 0.6208
1187/未知 493秒 413毫秒/步 - loss: 0.9515 - sparse_categorical_accuracy: 0.6209
1188/未知 494秒 413毫秒/步 - loss: 0.9513 - sparse_categorical_accuracy: 0.6210
1189/未知 494秒 413毫秒/步 - loss: 0.9511 - sparse_categorical_accuracy: 0.6210
1190/未知 495秒 413毫秒/步 - loss: 0.9510 - sparse_categorical_accuracy: 0.6211
1191/未知 495秒 413毫秒/步 - loss: 0.9508 - sparse_categorical_accuracy: 0.6211
1192/未知 495秒 413毫秒/步 - loss: 0.9506 - sparse_categorical_accuracy: 0.6212
1193/未知 496秒 413毫秒/步 - loss: 0.9504 - sparse_categorical_accuracy: 0.6212
1194/未知 496秒 413毫秒/步 - loss: 0.9503 - sparse_categorical_accuracy: 0.6213
1195/未知 496秒 413毫秒/步 - loss: 0.9501 - sparse_categorical_accuracy: 0.6214
1196/未知 497秒 413毫秒/步 - loss: 0.9499 - sparse_categorical_accuracy: 0.6214
1197/未知 497秒 413毫秒/步 - loss: 0.9498 - sparse_categorical_accuracy: 0.6215
1198/未知 498秒 413毫秒/步 - loss: 0.9496 - sparse_categorical_accuracy: 0.6215
1199/未知 498秒 413毫秒/步 - loss: 0.9494 - sparse_categorical_accuracy: 0.6216
1200/未知 499秒 413毫秒/步 - loss: 0.9492 - sparse_categorical_accuracy: 0.6216
1201/未知 499秒 413毫秒/步 - loss: 0.9491 - sparse_categorical_accuracy: 0.6217
1202/未知 500秒 413毫秒/步 - loss: 0.9489 - sparse_categorical_accuracy: 0.6218
1203/未知 500秒 413毫秒/步 - loss: 0.9487 - sparse_categorical_accuracy: 0.6218
1204/未知 500秒 413毫秒/步 - loss: 0.9486 - sparse_categorical_accuracy: 0.6219
1205/未知 501秒 413毫秒/步 - loss: 0.9484 - sparse_categorical_accuracy: 0.6219
1206/未知 501秒 413毫秒/步 - loss: 0.9482 - sparse_categorical_accuracy: 0.6220
1207/未知 501秒 413毫秒/步 - loss: 0.9481 - sparse_categorical_accuracy: 0.6220
1208/未知 502秒 413毫秒/步 - loss: 0.9479 - sparse_categorical_accuracy: 0.6221
1209/未知 502秒 413毫秒/步 - loss: 0.9477 - sparse_categorical_accuracy: 0.6221
1210/未知 503秒 413毫秒/步 - loss: 0.9476 - sparse_categorical_accuracy: 0.6222
1211/未知 503秒 413毫秒/步 - loss: 0.9474 - sparse_categorical_accuracy: 0.6223
1212/未知 503秒 413毫秒/步 - loss: 0.9472 - sparse_categorical_accuracy: 0.6223
1213/未知 504秒 413毫秒/步 - loss: 0.9470 - sparse_categorical_accuracy: 0.6224
1214/未知 504秒 413毫秒/步 - loss: 0.9469 - sparse_categorical_accuracy: 0.6224
1215/未知 505秒 413毫秒/步 - loss: 0.9467 - sparse_categorical_accuracy: 0.6225
1216/未知 505秒 413毫秒/步 - loss: 0.9465 - sparse_categorical_accuracy: 0.6225
1217/未知 506秒 413毫秒/步 - loss: 0.9464 - sparse_categorical_accuracy: 0.6226
1218/未知 506秒 413毫秒/步 - loss: 0.9462 - sparse_categorical_accuracy: 0.6226
1219/未知 506秒 413毫秒/步 - loss: 0.9460 - sparse_categorical_accuracy: 0.6227
1220/未知 507秒 413毫秒/步 - loss: 0.9459 - sparse_categorical_accuracy: 0.6228
1221/未知 507秒 413毫秒/步 - loss: 0.9457 - sparse_categorical_accuracy: 0.6228
1222/未知 508秒 413毫秒/步 - 损失: 0.9455 - 稀疏分类准确率: 0.6229
1223/未知 508秒 413毫秒/步 - 损失: 0.9454 - 稀疏分类准确率: 0.6229
1224/未知 509秒 413毫秒/步 - 损失: 0.9452 - 稀疏分类准确率: 0.6230
1225/未知 509秒 413毫秒/步 - 损失: 0.9450 - 稀疏分类准确率: 0.6230
1226/未知 509秒 413毫秒/步 - 损失: 0.9449 - 稀疏分类准确率: 0.6231
1227/未知 510秒 413毫秒/步 - 损失: 0.9447 - 稀疏分类准确率: 0.6231
1228/未知 510秒 413毫秒/步 - 损失: 0.9446 - 稀疏分类准确率: 0.6232
1229/未知 511秒 413毫秒/步 - 损失: 0.9444 - 稀疏分类准确率: 0.6233
1230/未知 511秒 413毫秒/步 - 损失: 0.9442 - 稀疏分类准确率: 0.6233
1231/未知 512秒 413毫秒/步 - 损失: 0.9441 - 稀疏分类准确率: 0.6234
1232/未知 512秒 414毫秒/步 - 损失: 0.9439 - 稀疏分类准确率: 0.6234
1233/未知 513秒 414毫秒/步 - 损失: 0.9437 - 稀疏分类准确率: 0.6235
1234/未知 513秒 414毫秒/步 - 损失: 0.9436 - 稀疏分类准确率: 0.6235
1235/未知 513秒 414毫秒/步 - 损失: 0.9434 - 稀疏分类准确率: 0.6236
1236/未知 514秒 414毫秒/步 - 损失: 0.9432 - 稀疏分类准确率: 0.6236
1237/未知 514秒 414毫秒/步 - 损失: 0.9431 - 稀疏分类准确率: 0.6237
1238/未知 515秒 414毫秒/步 - 损失: 0.9429 - 稀疏分类准确率: 0.6237
1239/未知 515秒 414毫秒/步 - 损失: 0.9427 - 稀疏分类准确率: 0.6238
1240/未知 516秒 414毫秒/步 - 损失: 0.9426 - 稀疏分类准确率: 0.6239
1241/未知 516秒 414毫秒/步 - 损失: 0.9424 - 稀疏分类准确率: 0.6239
1242/未知 517秒 414毫秒/步 - 损失: 0.9423 - 稀疏分类准确率: 0.6240
1243/未知 517秒 414毫秒/步 - 损失: 0.9421 - 稀疏分类准确率: 0.6240
1244/未知 518秒 414毫秒/步 - 损失: 0.9419 - 稀疏分类准确率: 0.6241
1245/未知 518秒 414毫秒/步 - 损失: 0.9418 - 稀疏分类准确率: 0.6241
1246/未知 519秒 414毫秒/步 - 损失: 0.9416 - 稀疏分类准确率: 0.6242
1247/未知 519秒 414毫秒/步 - 损失: 0.9415 - 稀疏分类准确率: 0.6242
1248/未知 519秒 414毫秒/步 - 损失: 0.9413 - 稀疏分类准确率: 0.6243
1249/未知 520秒 414毫秒/步 - 损失: 0.9411 - 稀疏分类准确率: 0.6243
1250/未知 520秒 414毫秒/步 - 损失: 0.9410 - 稀疏分类准确率: 0.6244
1251/未知 521秒 414毫秒/步 - 损失: 0.9408 - 稀疏分类准确率: 0.6244
1252/未知 521秒 414毫秒/步 - 损失: 0.9406 - 稀疏分类准确率: 0.6245
1253/未知 521秒 414毫秒/步 - 损失: 0.9405 - 稀疏分类准确率: 0.6245
1254/未知 522秒 414毫秒/步 - 损失: 0.9403 - 稀疏分类准确率: 0.6246
1255/未知 522秒 414毫秒/步 - 损失: 0.9402 - 稀疏分类准确率: 0.6247
1256/未知 522秒 414毫秒/步 - 损失: 0.9400 - 稀疏分类准确率: 0.6247
1257/未知 523秒 414毫秒/步 - 损失: 0.9398 - 稀疏分类准确率: 0.6248
1258/未知 523秒 414毫秒/步 - 损失: 0.9397 - 稀疏分类准确率: 0.6248
1259/未知 524秒 414毫秒/步 - 损失: 0.9395 - 稀疏分类准确率: 0.6249
1260/未知 524秒 414毫秒/步 - 损失: 0.9394 - 稀疏分类准确率: 0.6249
1261/未知 524秒 414毫秒/步 - 损失: 0.9392 - 稀疏分类准确率: 0.6250
1262/未知 525秒 414毫秒/步 - 损失: 0.9391 - 稀疏分类准确率: 0.6250
1263/未知 525秒 414毫秒/步 - 损失: 0.9389 - 稀疏分类准确率: 0.6251
1264/未知 526秒 414毫秒/步 - 损失: 0.9387 - 稀疏分类准确率: 0.6251
1265/未知 526秒 414毫秒/步 - 损失: 0.9386 - 稀疏分类准确率: 0.6252
1266/未知 527秒 414毫秒/步 - 损失: 0.9384 - 稀疏分类准确率: 0.6252
1267/未知 527秒 414毫秒/步 - 损失: 0.9383 - 稀疏分类准确率: 0.6253
1268/未知 527秒 414毫秒/步 - 损失: 0.9381 - 稀疏分类准确率: 0.6253
1269/未知 528秒 414毫秒/步 - 损失: 0.9380 - 稀疏分类准确率: 0.6254
1270/未知 528秒 414毫秒/步 - 损失: 0.9378 - 稀疏分类准确率: 0.6254
1271/未知 529秒 414毫秒/步 - 损失: 0.9376 - 稀疏分类准确率: 0.6255
1272/未知 529秒 414毫秒/步 - 损失: 0.9375 - 稀疏分类准确率: 0.6255
1273/未知 530秒 414毫秒/步 - 损失: 0.9373 - 稀疏分类准确率: 0.6256
1274/未知 530秒 414毫秒/步 - 损失: 0.9372 - 稀疏分类准确率: 0.6256
1275/未知 531秒 414毫秒/步 - 损失: 0.9370 - 稀疏分类准确率: 0.6257
1276/未知 531秒 414毫秒/步 - 损失: 0.9369 - 稀疏分类准确率: 0.6257
1277/未知 532秒 414毫秒/步 - 损失: 0.9367 - 稀疏分类准确率: 0.6258
1278/未知 532秒 414毫秒/步 - 损失: 0.9365 - 稀疏分类准确率: 0.6259
1279/未知 532秒 414毫秒/步 - 损失: 0.9364 - 稀疏分类准确率: 0.6259
1280/未知 533秒 414毫秒/步 - 损失: 0.9362 - 稀疏分类准确率: 0.6260
1281/未知 533秒 414毫秒/步 - 损失: 0.9361 - 稀疏分类准确率: 0.6260
1282/未知 534秒 414毫秒/步 - 损失: 0.9359 - 稀疏分类准确率: 0.6261
1283/未知 534秒 414毫秒/步 - 损失: 0.9358 - 稀疏分类准确率: 0.6261
1284/未知 535秒 414毫秒/步 - 损失: 0.9356 - 稀疏分类准确率: 0.6262
1285/未知 535秒 414毫秒/步 - 损失: 0.9355 - 稀疏分类准确率: 0.6262
1286/未知 535秒 414毫秒/步 - 损失: 0.9353 - 稀疏分类准确率: 0.6263
1287/未知 536秒 414毫秒/步 - 损失: 0.9352 - 稀疏分类准确率: 0.6263
1288/未知 536秒 414毫秒/步 - 损失: 0.9350 - 稀疏分类准确率: 0.6264
1289/未知 537秒 414毫秒/步 - 损失: 0.9348 - 稀疏分类准确率: 0.6264
1290/未知 537秒 414毫秒/步 - 损失: 0.9347 - 稀疏分类准确率: 0.6265
1291/未知 537秒 414毫秒/步 - 损失: 0.9345 - 稀疏分类准确率: 0.6265
1292/未知 538秒 414毫秒/步 - 损失: 0.9344 - 稀疏分类准确率: 0.6266
1293/未知 538秒 414毫秒/步 - 损失: 0.9342 - 稀疏分类准确率: 0.6266
1294/未知 539秒 414毫秒/步 - 损失: 0.9341 - 稀疏分类准确率: 0.6267
1295/未知 539秒 414毫秒/步 - 损失: 0.9339 - 稀疏分类准确率: 0.6267
1296/未知 539秒 414毫秒/步 - 损失: 0.9338 - 稀疏分类准确率: 0.6268
1297/未知 540秒 414毫秒/步 - 损失: 0.9336 - 稀疏分类准确率: 0.6268
1298/未知 540秒 414毫秒/步 - 损失: 0.9335 - 稀疏分类准确率: 0.6269
1299/未知 540秒 414毫秒/步 - 损失: 0.9333 - 稀疏分类准确率: 0.6269
1300/未知 541秒 414毫秒/步 - 损失: 0.9332 - 稀疏分类准确率: 0.6270
1301/未知 541秒 414毫秒/步 - 损失: 0.9330 - 稀疏分类准确率: 0.6270
1302/未知 542秒 414毫秒/步 - 损失: 0.9329 - 稀疏分类准确率: 0.6271
1303/未知 542秒 414毫秒/步 - 损失: 0.9327 - 稀疏分类准确率: 0.6271
1304/未知 542秒 414毫秒/步 - 损失: 0.9326 - 稀疏分类准确率: 0.6272
1305/未知 543秒 414毫秒/步 - 损失: 0.9324 - 稀疏分类准确率: 0.6272
1306/未知 543秒 414毫秒/步 - 损失: 0.9323 - 稀疏分类准确率: 0.6273
1307/未知 544秒 414毫秒/步 - 损失: 0.9321 - 稀疏分类准确率: 0.6273
1308/未知 544秒 414毫秒/步 - 损失: 0.9320 - 稀疏分类准确率: 0.6274
1309/未知 544秒 414毫秒/步 - 损失: 0.9318 - 稀疏分类准确率: 0.6274
1310/未知 545秒 414毫秒/步 - 损失: 0.9317 - 稀疏分类准确率: 0.6275
1311/未知 545秒 414毫秒/步 - 损失: 0.9315 - 稀疏分类准确率: 0.6275
1312/未知 546秒 414毫秒/步 - 损失: 0.9314 - 稀疏分类准确率: 0.6276
1313/未知 546秒 414毫秒/步 - 损失: 0.9312 - 稀疏分类准确率: 0.6276
1314/未知 547秒 414毫秒/步 - 损失: 0.9311 - 稀疏分类准确率: 0.6277
1315/未知 547秒 414毫秒/步 - 损失: 0.9309 - 稀疏分类准确率: 0.6277
1316/未知 548秒 414毫秒/步 - 损失: 0.9308 - 稀疏分类准确率: 0.6278
1317/未知 548秒 414毫秒/步 - 损失: 0.9306 - 稀疏分类准确率: 0.6278
1318/未知 549秒 414毫秒/步 - 损失: 0.9305 - 稀疏分类准确率: 0.6279
1319/未知 549秒 414毫秒/步 - 损失: 0.9303 - 稀疏分类准确率: 0.6279
1320/未知 550秒 414毫秒/步 - 损失: 0.9302 - 稀疏分类准确率: 0.6280
1321/未知 550秒 414毫秒/步 - 损失: 0.9300 - 稀疏分类准确率: 0.6280
1322/未知 551秒 414毫秒/步 - 损失: 0.9299 - 稀疏分类准确率: 0.6281
1323/未知 551秒 415毫秒/步 - 损失: 0.9297 - 稀疏分类准确率: 0.6281
1324/未知 552秒 415毫秒/步 - 损失: 0.9296 - 稀疏分类准确率: 0.6282
1325/未知 552秒 415毫秒/步 - 损失: 0.9294 - 稀疏分类准确率: 0.6282
1326/未知 553秒 415毫秒/步 - 损失: 0.9293 - 稀疏分类准确率: 0.6283
1327/未知 553秒 415毫秒/步 - 损失: 0.9291 - 稀疏分类准确率: 0.6283
1328/未知 553秒 415毫秒/步 - 损失: 0.9290 - 稀疏分类准确率: 0.6284
1329/未知 554秒 415毫秒/步 - 损失: 0.9288 - 稀疏分类准确率: 0.6284
1330/未知 554秒 415毫秒/步 - 损失: 0.9287 - 稀疏分类准确率: 0.6285
1331/未知 555秒 415毫秒/步 - 损失: 0.9285 - 稀疏分类准确率: 0.6285
1332/未知 555秒 415毫秒/步 - 损失: 0.9284 - 稀疏分类准确率: 0.6285
1333/未知 556秒 415毫秒/步 - 损失: 0.9283 - 稀疏分类准确率: 0.6286
1334/未知 556秒 415毫秒/步 - 损失: 0.9281 - 稀疏分类准确率: 0.6286
1335/未知 556秒 415毫秒/步 - 损失: 0.9280 - 稀疏分类准确率: 0.6287
1336/未知 557秒 415毫秒/步 - 损失: 0.9278 - 稀疏分类准确率: 0.6287
1337/未知 557秒 415毫秒/步 - 损失: 0.9277 - 稀疏分类准确率: 0.6288
1338/未知 558秒 415毫秒/步 - 损失: 0.9275 - 稀疏分类准确率: 0.6288
1339/未知 558秒 415毫秒/步 - 损失: 0.9274 - 稀疏分类准确率: 0.6289
1340/未知 559秒 415毫秒/步 - 损失: 0.9272 - 稀疏分类准确率: 0.6289
1341/未知 559秒 415毫秒/步 - 损失: 0.9271 - 稀疏分类准确率: 0.6290
1342/未知 560秒 415毫秒/步 - 损失: 0.9269 - 稀疏分类准确率: 0.6290
1343/未知 560秒 415毫秒/步 - 损失: 0.9268 - 稀疏分类准确率: 0.6291
1344/未知 561秒 415毫秒/步 - 损失: 0.9267 - 稀疏分类准确率: 0.6291
1345/未知 561秒 415毫秒/步 - 损失: 0.9265 - 稀疏分类准确率: 0.6292
1346/未知 561秒 415毫秒/步 - 损失: 0.9264 - 稀疏分类准确率: 0.6292
1347/未知 562秒 415毫秒/步 - 损失: 0.9262 - 稀疏分类准确率: 0.6293
1348/未知 562秒 415毫秒/步 - 损失: 0.9261 - 稀疏分类准确率: 0.6293
1349/未知 563秒 415毫秒/步 - 损失: 0.9259 - 稀疏分类准确率: 0.6294
1350/未知 563秒 415毫秒/步 - 损失: 0.9258 - 稀疏分类准确率: 0.6294
1351/未知 564秒 415毫秒/步 - 损失: 0.9256 - 稀疏分类准确率: 0.6295
1352/未知 564秒 415毫秒/步 - 损失: 0.9255 - 稀疏分类准确率: 0.6295
1353/未知 564秒 415毫秒/步 - 损失: 0.9254 - 稀疏分类准确率: 0.6296
1354/未知 565秒 415毫秒/步 - 损失: 0.9252 - 稀疏分类准确率: 0.6296
1355/未知 565秒 415毫秒/步 - 损失: 0.9251 - 稀疏分类准确率: 0.6296
1356/未知 565秒 415毫秒/步 - 损失: 0.9249 - 稀疏分类准确率: 0.6297
1357/未知 566秒 415毫秒/步 - 损失: 0.9248 - 稀疏分类准确率: 0.6297
1358/未知 566秒 415毫秒/步 - 损失: 0.9246 - 稀疏分类准确率: 0.6298
1359/未知 566秒 415毫秒/步 - 损失: 0.9245 - 稀疏分类准确率: 0.6298
1360/未知 567秒 415毫秒/步 - 损失: 0.9244 - 稀疏分类准确率: 0.6299
1361/未知 567秒 415毫秒/步 - 损失: 0.9242 - 稀疏分类准确率: 0.6299
1362/未知 568秒 415毫秒/步 - 损失: 0.9241 - 稀疏分类准确率: 0.6300
1363/未知 568秒 415毫秒/步 - 损失: 0.9239 - 稀疏分类准确率: 0.6300
1364/未知 568秒 415毫秒/步 - 损失: 0.9238 - 稀疏分类准确率: 0.6301
1365/未知 569秒 415毫秒/步 - 损失: 0.9237 - 稀疏分类准确率: 0.6301
1366/未知 569秒 415毫秒/步 - 损失: 0.9235 - 稀疏分类准确率: 0.6302
1367/未知 570秒 415毫秒/步 - 损失: 0.9234 - 稀疏分类准确率: 0.6302
1368/未知 570秒 415毫秒/步 - 损失: 0.9232 - 稀疏分类准确率: 0.6303
1369/未知 571秒 415毫秒/步 - 损失: 0.9231 - 稀疏分类准确率: 0.6303
1370/未知 571秒 415毫秒/步 - 损失: 0.9229 - 稀疏分类准确率: 0.6304
1371/未知 572秒 415毫秒/步 - 损失: 0.9228 - 稀疏分类准确率: 0.6304
1372/未知 572秒 415毫秒/步 - 损失: 0.9227 - 稀疏分类准确率: 0.6304
1373/未知 573秒 415毫秒/步 - 损失: 0.9225 - 稀疏分类准确率: 0.6305
1374/未知 573秒 415毫秒/步 - 损失: 0.9224 - 稀疏分类准确率: 0.6305
1375/未知 574秒 415毫秒/步 - 损失: 0.9222 - 稀疏分类准确率: 0.6306
1376/未知 574秒 415毫秒/步 - 损失: 0.9221 - 稀疏分类准确率: 0.6306
1377/未知 574秒 415毫秒/步 - 损失: 0.9220 - 稀疏分类准确率: 0.6307
1378/未知 575秒 415毫秒/步 - 损失: 0.9218 - 稀疏分类准确率: 0.6307
1379/未知 575秒 415毫秒/步 - 损失: 0.9217 - 稀疏分类准确率: 0.6308
1380/未知 575秒 415毫秒/步 - 损失: 0.9215 - 稀疏分类准确率: 0.6308
1381/未知 576秒 415毫秒/步 - 损失: 0.9214 - 稀疏分类准确率: 0.6309
1382/未知 576秒 415毫秒/步 - 损失: 0.9213 - 稀疏分类准确率: 0.6309
1383/未知 576秒 415毫秒/步 - 损失: 0.9211 - 稀疏分类准确率: 0.6309
1384/未知 577秒 415毫秒/步 - 损失: 0.9210 - 稀疏分类准确率: 0.6310
1385/未知 577秒 415毫秒/步 - 损失: 0.9209 - 稀疏分类准确率: 0.6310
1386/未知 578秒 415毫秒/步 - 损失: 0.9207 - 稀疏分类准确率: 0.6311
1387/未知 578秒 415毫秒/步 - 损失: 0.9206 - 稀疏分类准确率: 0.6311
1388/未知 578秒 415毫秒/步 - 损失: 0.9204 - 稀疏分类准确率: 0.6312
1389/未知 579秒 415毫秒/步 - 损失: 0.9203 - 稀疏分类准确率: 0.6312
1390/未知 579秒 415毫秒/步 - 损失: 0.9202 - 稀疏分类准确率: 0.6313
1391/未知 580秒 415毫秒/步 - 损失: 0.9200 - 稀疏分类准确率: 0.6313
1392/未知 580秒 415毫秒/步 - 损失: 0.9199 - 稀疏分类准确率: 0.6314
1393/未知 580秒 415毫秒/步 - 损失: 0.9198 - 稀疏分类准确率: 0.6314
1394/未知 581秒 415毫秒/步 - 损失: 0.9196 - 稀疏分类准确率: 0.6315
1395/未知 581秒 415毫秒/步 - 损失: 0.9195 - 稀疏分类准确率: 0.6315
1396/未知 582秒 415毫秒/步 - 损失: 0.9193 - 稀疏分类准确率: 0.6315
1397/未知 582秒 415毫秒/步 - 损失: 0.9192 - 稀疏分类准确率: 0.6316
1398/未知 583秒 415毫秒/步 - 损失: 0.9191 - 稀疏分类准确率: 0.6316
1399/未知 583秒 415毫秒/步 - 损失: 0.9189 - 稀疏分类准确率: 0.6317
1400/未知 583秒 415毫秒/步 - 损失: 0.9188 - 稀疏分类准确率: 0.6317
1401/未知 584秒 415毫秒/步 - 损失: 0.9187 - 稀疏分类准确率: 0.6318
1402/未知 584秒 415毫秒/步 - 损失: 0.9185 - 稀疏分类准确率: 0.6318
1403/未知 585秒 415毫秒/步 - 损失: 0.9184 - 稀疏分类准确率: 0.6319
1404/未知 585秒 415毫秒/步 - 损失: 0.9183 - 稀疏分类准确率: 0.6319
1405/未知 586秒 415毫秒/步 - 损失: 0.9181 - 稀疏分类准确率: 0.6319
1406/未知 586秒 415毫秒/步 - 损失: 0.9180 - 稀疏分类准确率: 0.6320
1407/未知 587秒 415毫秒/步 - 损失: 0.9178 - 稀疏分类准确率: 0.6320
1408/未知 587秒 415毫秒/步 - 损失: 0.9177 - 稀疏分类准确率: 0.6321
1409/未知 588秒 415毫秒/步 - 损失: 0.9176 - 稀疏分类准确率: 0.6321
1410/未知 588秒 415毫秒/步 - 损失: 0.9174 - 稀疏分类准确率: 0.6322
1411/未知 589秒 415毫秒/步 - 损失: 0.9173 - 稀疏分类准确率: 0.6322
1412/未知 589秒 415毫秒/步 - 损失: 0.9172 - 稀疏分类准确率: 0.6323
1413/未知 590秒 415毫秒/步 - 损失: 0.9170 - 稀疏分类准确率: 0.6323
1414/未知 590秒 415毫秒/步 - 损失: 0.9169 - 稀疏分类准确率: 0.6323
1415/未知 591秒 415毫秒/步 - 损失: 0.9168 - 稀疏分类准确率: 0.6324
1416/未知 591秒 415毫秒/步 - 损失: 0.9166 - 稀疏分类准确率: 0.6324
1417/未知 591秒 415毫秒/步 - 损失: 0.9165 - 稀疏分类准确率: 0.6325
1418/未知 592秒 415毫秒/步 - 损失: 0.9164 - 稀疏分类准确率: 0.6325
1419/未知 592秒 415毫秒/步 - 损失: 0.9162 - 稀疏分类准确率: 0.6326
1420/未知 592秒 415毫秒/步 - 损失: 0.9161 - 稀疏分类准确率: 0.6326
1421/未知 593秒 415毫秒/步 - 损失: 0.9160 - 稀疏分类准确率: 0.6327
1422/未知 593秒 415毫秒/步 - 损失: 0.9158 - 稀疏分类准确率: 0.6327
1423/未知 594秒 415毫秒/步 - 损失: 0.9157 - 稀疏分类准确率: 0.6327
1424/未知 594秒 415毫秒/步 - 损失: 0.9156 - 稀疏分类准确率: 0.6328
1425/未知 594秒 415毫秒/步 - 损失: 0.9154 - 稀疏分类准确率: 0.6328
1426/未知 595秒 415毫秒/步 - 损失: 0.9153 - 稀疏分类准确率: 0.6329
1427/未知 595秒 415毫秒/步 - 损失: 0.9152 - 稀疏分类准确率: 0.6329
1428/未知 596秒 415毫秒/步 - 损失: 0.9150 - 稀疏分类准确率: 0.6330
1429/未知 596秒 415毫秒/步 - 损失: 0.9149 - 稀疏分类准确率: 0.6330
1430/未知 596秒 415毫秒/步 - 损失: 0.9148 - 稀疏分类准确率: 0.6331
1431/未知 597秒 415毫秒/步 - 损失: 0.9146 - 稀疏分类准确率: 0.6331
1432/未知 597秒 415毫秒/步 - 损失: 0.9145 - 稀疏分类准确率: 0.6331
1433/未知 598秒 415毫秒/步 - 损失: 0.9144 - 稀疏分类准确率: 0.6332
1434/未知 598秒 415毫秒/步 - 损失: 0.9142 - 稀疏分类准确率: 0.6332
1435/未知 599秒 415毫秒/步 - 损失: 0.9141 - 稀疏分类准确率: 0.6333
1436/未知 599秒 415毫秒/步 - 损失: 0.9140 - 稀疏分类准确率: 0.6333
1437/未知 599秒 415毫秒/步 - 损失: 0.9139 - 稀疏分类准确率: 0.6334
1438/未知 600秒 415毫秒/步 - 损失: 0.9137 - 稀疏分类准确率: 0.6334
1439/未知 600秒 415毫秒/步 - 损失: 0.9136 - 稀疏分类准确率: 0.6334
1440/未知 601秒 415毫秒/步 - 损失: 0.9135 - 稀疏分类准确率: 0.6335
1441/未知 601秒 415毫秒/步 - 损失: 0.9133 - 稀疏分类准确率: 0.6335
1442/未知 602秒 416毫秒/步 - 损失: 0.9132 - 稀疏分类准确率: 0.6336
1443/未知 602秒 416毫秒/步 - 损失: 0.9131 - 稀疏分类准确率: 0.6336
1444/未知 603秒 416毫秒/步 - 损失: 0.9129 - 稀疏分类准确率: 0.6337
1445/未知 603秒 416毫秒/步 - 损失: 0.9128 - 稀疏分类准确率: 0.6337
1446/未知 604秒 416毫秒/步 - 损失: 0.9127 - 稀疏分类准确率: 0.6337
1447/未知 604秒 416毫秒/步 - 损失: 0.9126 - 稀疏分类准确率: 0.6338
1448/未知 605秒 416毫秒/步 - 损失: 0.9124 - 稀疏分类准确率: 0.6338
1449/未知 605秒 416毫秒/步 - 损失: 0.9123 - 稀疏分类准确率: 0.6339
1450/未知 606秒 416毫秒/步 - 损失: 0.9122 - 稀疏分类准确率: 0.6339
1451/未知 606秒 416毫秒/步 - 损失: 0.9120 - 稀疏分类准确率: 0.6340
1452/未知 606秒 416毫秒/步 - 损失: 0.9119 - 稀疏分类准确率: 0.6340
1453/未知 607秒 416毫秒/步 - 损失: 0.9118 - 稀疏分类准确率: 0.6340
1454/未知 607秒 416毫秒/步 - 损失: 0.9116 - 稀疏分类准确率: 0.6341
1455/未知 608秒 416毫秒/步 - 损失: 0.9115 - 稀疏分类准确率: 0.6341
1456/未知 608秒 416毫秒/步 - 损失: 0.9114 - 稀疏分类准确率: 0.6342
1457/未知 609秒 416毫秒/步 - 损失: 0.9113 - 稀疏分类准确率: 0.6342
1458/未知 609秒 416毫秒/步 - 损失: 0.9111 - 稀疏分类准确率: 0.6343
1459/未知 610秒 416毫秒/步 - 损失: 0.9110 - 稀疏分类准确率: 0.6343
1460/未知 610秒 416毫秒/步 - 损失: 0.9109 - 稀疏分类准确率: 0.6343
1461/未知 610秒 416毫秒/步 - 损失: 0.9108 - 稀疏分类准确率: 0.6344
1462/未知 611秒 416毫秒/步 - 损失: 0.9106 - 稀疏分类准确率: 0.6344
1463/未知 611秒 416毫秒/步 - 损失: 0.9105 - 稀疏分类准确率: 0.6345
1464/未知 612秒 416毫秒/步 - 损失: 0.9104 - 稀疏分类准确率: 0.6345
1465/未知 612秒 416毫秒/步 - 损失: 0.9102 - 稀疏分类准确率: 0.6345
1466/未知 613秒 416毫秒/步 - 损失: 0.9101 - 稀疏分类准确率: 0.6346
1467/未知 613秒 416毫秒/步 - 损失: 0.9100 - 稀疏分类准确率: 0.6346
1468/未知 613秒 416毫秒/步 - 损失: 0.9099 - 稀疏分类准确率: 0.6347
1469/未知 614秒 416毫秒/步 - 损失: 0.9097 - 稀疏分类准确率: 0.6347
1470/未知 614秒 416毫秒/步 - 损失: 0.9096 - 稀疏分类准确率: 0.6348
1471/未知 614秒 416毫秒/步 - 损失: 0.9095 - 稀疏分类准确率: 0.6348
1472/未知 615秒 416毫秒/步 - 损失: 0.9094 - 稀疏分类准确率: 0.6348
1473/未知 615秒 416毫秒/步 - 损失: 0.9092 - 稀疏分类准确率: 0.6349
1474/未知 615秒 416毫秒/步 - 损失: 0.9091 - 稀疏分类准确率: 0.6349
1475/未知 616秒 416毫秒/步 - 损失: 0.9090 - 稀疏分类准确率: 0.6350
1476/未知 616秒 416毫秒/步 - 损失: 0.9089 - 稀疏分类准确率: 0.6350
1477/未知 616秒 416毫秒/步 - 损失: 0.9087 - 稀疏分类准确率: 0.6350
1478/未知 617秒 415毫秒/步 - 损失: 0.9086 - 稀疏分类准确率: 0.6351
1479/未知 617秒 415毫秒/步 - 损失: 0.9085 - 稀疏分类准确率: 0.6351
1480/未知 617秒 415毫秒/步 - 损失: 0.9083 - 稀疏分类准确率: 0.6352
1481/未知 618秒 415毫秒/步 - 损失: 0.9082 - 稀疏分类准确率: 0.6352
1482/未知 618秒 415毫秒/步 - 损失: 0.9081 - 稀疏分类准确率: 0.6353
1483/未知 619秒 415毫秒/步 - 损失: 0.9080 - 稀疏分类准确率: 0.6353
1484/未知 619秒 415毫秒/步 - 损失: 0.9078 - 稀疏分类准确率: 0.6353
1485/未知 620秒 415毫秒/步 - 损失: 0.9077 - 稀疏分类准确率: 0.6354
1486/未知 620秒 415毫秒/步 - 损失: 0.9076 - 稀疏分类准确率: 0.6354
1487/未知 620秒 415毫秒/步 - 损失: 0.9075 - 稀疏分类准确率: 0.6355
1488/未知 621秒 416毫秒/步 - 损失: 0.9073 - 稀疏分类准确率: 0.6355
1489/未知 621秒 416毫秒/步 - 损失: 0.9072 - 稀疏分类准确率: 0.6355
1490/未知 622秒 416毫秒/步 - 损失: 0.9071 - 稀疏分类准确率: 0.6356
1491/未知 622秒 416毫秒/步 - 损失: 0.9070 - 稀疏分类准确率: 0.6356
1492/未知 623秒 416毫秒/步 - 损失: 0.9069 - 稀疏分类准确率: 0.6357
1493/未知 623秒 416毫秒/步 - 损失: 0.9067 - 稀疏分类准确率: 0.6357
1494/未知 624秒 416毫秒/步 - 损失: 0.9066 - 稀疏分类准确率: 0.6358
1495/未知 624秒 416毫秒/步 - 损失: 0.9065 - 稀疏分类准确率: 0.6358
1496/未知 624秒 416毫秒/步 - 损失: 0.9064 - 稀疏分类准确率: 0.6358
1497/未知 625秒 416毫秒/步 - 损失: 0.9062 - 稀疏分类准确率: 0.6359
1498/未知 625秒 416毫秒/步 - 损失: 0.9061 - 稀疏分类准确率: 0.6359
1499/未知 626秒 416毫秒/步 - 损失: 0.9060 - 稀疏分类准确率: 0.6360
1500/未知 626秒 416毫秒/步 - 损失: 0.9059 - 稀疏分类准确率: 0.6360
1501/未知 627秒 416毫秒/步 - 损失: 0.9057 - 稀疏分类准确率: 0.6360
1502/未知 627秒 416毫秒/步 - 损失: 0.9056 - 稀疏分类准确率: 0.6361
1503/未知 628秒 416毫秒/步 - 损失: 0.9055 - 稀疏分类准确率: 0.6361
1504/未知 628秒 416毫秒/步 - 损失: 0.9054 - 稀疏分类准确率: 0.6362
1505/未知 628秒 416毫秒/步 - 损失: 0.9053 - 稀疏分类准确率: 0.6362
1506/未知 629秒 416毫秒/步 - 损失: 0.9051 - 稀疏分类准确率: 0.6362
1507/未知 629秒 416毫秒/步 - 损失: 0.9050 - 稀疏分类准确率: 0.6363
1508/未知 630秒 416毫秒/步 - 损失: 0.9049 - 稀疏分类准确率: 0.6363
1509/未知 630秒 416毫秒/步 - 损失: 0.9048 - 稀疏分类准确率: 0.6364
1510/未知 631秒 416毫秒/步 - 损失: 0.9046 - 稀疏分类准确率: 0.6364
1511/未知 631秒 416毫秒/步 - 损失: 0.9045 - 稀疏分类准确率: 0.6364
1512/未知 631秒 416毫秒/步 - 损失: 0.9044 - 稀疏分类准确率: 0.6365
1513/未知 632秒 416毫秒/步 - 损失: 0.9043 - 稀疏分类准确率: 0.6365
1514/未知 632秒 416毫秒/步 - 损失: 0.9042 - 稀疏分类准确率: 0.6366
1515/未知 632秒 416毫秒/步 - 损失: 0.9040 - 稀疏分类准确率: 0.6366
1516/未知 633秒 416毫秒/步 - 损失: 0.9039 - 稀疏分类准确率: 0.6366
1517/未知 633秒 416毫秒/步 - 损失: 0.9038 - 稀疏分类准确率: 0.6367
1518/未知 634秒 416毫秒/步 - 损失: 0.9037 - 稀疏分类准确率: 0.6367
1519/未知 634秒 416毫秒/步 - 损失: 0.9036 - 稀疏分类准确率: 0.6368
1520/未知 634秒 415毫秒/步 - 损失: 0.9034 - 稀疏分类准确率: 0.6368
1521/未知 635秒 415毫秒/步 - 损失: 0.9033 - 稀疏分类准确率: 0.6368
1522/未知 635秒 415毫秒/步 - 损失: 0.9032 - 稀疏分类准确率: 0.6369
1523/未知 635秒 415毫秒/步 - 损失: 0.9031 - 稀疏分类准确率: 0.6369
1524/未知 636秒 415毫秒/步 - 损失: 0.9029 - 稀疏分类准确率: 0.6370
1525/未知 636秒 415毫秒/步 - 损失: 0.9028 - 稀疏分类准确率: 0.6370
1526/未知 637秒 415毫秒/步 - 损失: 0.9027 - 稀疏分类准确率: 0.6370
1527/未知 637秒 415毫秒/步 - 损失: 0.9026 - 稀疏分类准确率: 0.6371
1528/未知 638秒 416毫秒/步 - 损失: 0.9025 - 稀疏分类准确率: 0.6371
1529/未知 638秒 416毫秒/步 - 损失: 0.9023 - 稀疏分类准确率: 0.6372
1530/未知 639秒 416毫秒/步 - 损失: 0.9022 - 稀疏分类准确率: 0.6372
1531/未知 639秒 416毫秒/步 - 损失: 0.9021 - 稀疏分类准确率: 0.6372
1532/未知 640秒 416毫秒/步 - 损失: 0.9020 - 稀疏分类准确率: 0.6373
1533/未知 640秒 416毫秒/步 - 损失: 0.9019 - 稀疏分类准确率: 0.6373
1534/未知 641秒 416毫秒/步 - 损失: 0.9018 - 稀疏分类准确率: 0.6374
1535/未知 641秒 416毫秒/步 - 损失: 0.9016 - 稀疏分类准确率: 0.6374
1536/未知 641秒 416毫秒/步 - 损失: 0.9015 - 稀疏分类准确率: 0.6374
1537/未知 642秒 416毫秒/步 - 损失: 0.9014 - 稀疏分类准确率: 0.6375
1538/未知 642秒 416毫秒/步 - 损失: 0.9013 - 稀疏分类准确率: 0.6375
1539/未知 643秒 416毫秒/步 - 损失: 0.9012 - 稀疏分类准确率: 0.6376
1540/未知 643秒 416毫秒/步 - 损失: 0.9010 - 稀疏分类准确率: 0.6376
1541/未知 644秒 416毫秒/步 - 损失: 0.9009 - 稀疏分类准确率: 0.6376
1542/未知 644秒 416毫秒/步 - 损失: 0.9008 - 稀疏分类准确率: 0.6377
1543/未知 645秒 416毫秒/步 - 损失: 0.9007 - 稀疏分类准确率: 0.6377
1544/未知 645秒 416毫秒/步 - 损失: 0.9006 - 稀疏分类准确率: 0.6378
1545/未知 645秒 416毫秒/步 - 损失: 0.9004 - 稀疏分类准确率: 0.6378
1546/未知 646秒 416毫秒/步 - 损失: 0.9003 - 稀疏分类准确率: 0.6378
1547/未知 646秒 416毫秒/步 - 损失: 0.9002 - 稀疏分类准确率: 0.6379
1548/未知 646秒 416毫秒/步 - 损失: 0.9001 - 稀疏分类准确率: 0.6379
1549/未知 647秒 416毫秒/步 - 损失: 0.9000 - 稀疏分类准确率: 0.6379
1550/未知 647秒 416毫秒/步 - 损失: 0.8999 - 稀疏分类准确率: 0.6380
1551/未知 648秒 416毫秒/步 - 损失: 0.8997 - 稀疏分类准确率: 0.6380
1552/未知 648秒 416毫秒/步 - 损失: 0.8996 - 稀疏分类准确率: 0.6381
1553/未知 648秒 416毫秒/步 - 损失: 0.8995 - 稀疏分类准确率: 0.6381
1554/未知 649秒 416毫秒/步 - 损失: 0.8994 - 稀疏分类准确率: 0.6381
1555/未知 649秒 416毫秒/步 - 损失: 0.8993 - 稀疏分类准确率: 0.6382
1556/未知 650秒 416毫秒/步 - 损失: 0.8992 - 稀疏分类准确率: 0.6382
1557/未知 650秒 416毫秒/步 - 损失: 0.8990 - 稀疏分类准确率: 0.6383
1558/未知 650秒 416毫秒/步 - 损失: 0.8989 - 稀疏分类准确率: 0.6383
1559/未知 651秒 416毫秒/步 - 损失: 0.8988 - 稀疏分类准确率: 0.6383
1560/未知 651秒 416毫秒/步 - 损失: 0.8987 - 稀疏分类准确率: 0.6384
1561/未知 652秒 416毫秒/步 - 损失: 0.8986 - 稀疏分类准确率: 0.6384
1562/未知 652秒 416毫秒/步 - 损失: 0.8985 - 稀疏分类准确率: 0.6385
1563/未知 653秒 416毫秒/步 - 损失: 0.8983 - 稀疏分类准确率: 0.6385
1564/未知 653秒 416毫秒/步 - 损失: 0.8982 - 稀疏分类准确率: 0.6385
1565/未知 654秒 416毫秒/步 - 损失: 0.8981 - 稀疏分类准确率: 0.6386
1566/未知 654秒 416毫秒/步 - 损失: 0.8980 - 稀疏分类准确率: 0.6386
1567/未知 655秒 416毫秒/步 - 损失: 0.8979 - 稀疏分类准确率: 0.6386
1568/未知 655秒 416毫秒/步 - 损失: 0.8978 - 稀疏分类准确率: 0.6387
1569/未知 656秒 416毫秒/步 - 损失: 0.8977 - 稀疏分类准确率: 0.6387
1570/未知 656秒 416毫秒/步 - 损失: 0.8975 - 稀疏分类准确率: 0.6388
1571/未知 656秒 416毫秒/步 - 损失: 0.8974 - 稀疏分类准确率: 0.6388
1572/未知 657秒 416毫秒/步 - 损失: 0.8973 - 稀疏分类准确率: 0.6388
1573/未知 657秒 416毫秒/步 - 损失: 0.8972 - 稀疏分类准确率: 0.6389
1574/未知 658秒 416毫秒/步 - 损失: 0.8971 - 稀疏分类准确率: 0.6389
1575/未知 658秒 416毫秒/步 - 损失: 0.8970 - 稀疏分类准确率: 0.6389
1576/未知 659秒 416毫秒/步 - 损失: 0.8969 - 稀疏分类准确率: 0.6390
1577/未知 659秒 416毫秒/步 - 损失: 0.8967 - 稀疏分类准确率: 0.6390
1578/未知 660秒 416毫秒/步 - 损失: 0.8966 - 稀疏分类准确率: 0.6391
1579/未知 660秒 416毫秒/步 - 损失: 0.8965 - 稀疏分类准确率: 0.6391
1580/未知 661秒 416毫秒/步 - 损失: 0.8964 - 稀疏分类准确率: 0.6391
1581/未知 661秒 416毫秒/步 - 损失: 0.8963 - 稀疏分类准确率: 0.6392
1582/未知 662秒 416毫秒/步 - 损失: 0.8962 - 稀疏分类准确率: 0.6392
1583/未知 662秒 417毫秒/步 - 损失: 0.8961 - 稀疏分类准确率: 0.6392
1584/未知 662秒 417毫秒/步 - 损失: 0.8959 - 稀疏分类准确率: 0.6393
1585/未知 663秒 417毫秒/步 - 损失: 0.8958 - 稀疏分类准确率: 0.6393
1586/未知 663秒 417毫秒/步 - 损失: 0.8957 - 稀疏分类准确率: 0.6394
1587/未知 664秒 417毫秒/步 - 损失: 0.8956 - 稀疏分类准确率: 0.6394
1588/未知 664秒 417毫秒/步 - 损失: 0.8955 - 稀疏分类准确率: 0.6394
1589/未知 665秒 417毫秒/步 - 损失: 0.8954 - 稀疏分类准确率: 0.6395
1590/未知 665秒 417毫秒/步 - 损失: 0.8953 - 稀疏分类准确率: 0.6395
1591/未知 666秒 417毫秒/步 - 损失: 0.8952 - 稀疏分类准确率: 0.6395
1592/未知 666秒 417毫秒/步 - 损失: 0.8950 - 稀疏分类准确率: 0.6396
1593/未知 666秒 417毫秒/步 - 损失: 0.8949 - 稀疏分类准确率: 0.6396
1594/未知 667秒 417毫秒/步 - 损失: 0.8948 - 稀疏分类准确率: 0.6397
1595/未知 667秒 417毫秒/步 - 损失: 0.8947 - 稀疏分类准确率: 0.6397
1596/未知 668秒 417毫秒/步 - 损失: 0.8946 - 稀疏分类准确率: 0.6397
1597/未知 668秒 417毫秒/步 - 损失: 0.8945 - 稀疏分类准确率: 0.6398
1598/未知 669秒 417毫秒/步 - 损失: 0.8944 - 稀疏分类准确率: 0.6398
1599/未知 669秒 417毫秒/步 - 损失: 0.8943 - 稀疏分类准确率: 0.6398
1600/未知 669秒 417毫秒/步 - 损失: 0.8941 - 稀疏分类准确率: 0.6399
1601/未知 670秒 417毫秒/步 - 损失: 0.8940 - 稀疏分类准确率: 0.6399
1602/未知 670秒 417毫秒/步 - 损失: 0.8939 - 稀疏分类准确率: 0.6400
1603/未知 671秒 417毫秒/步 - 损失: 0.8938 - 稀疏分类准确率: 0.6400
1604/未知 671秒 417毫秒/步 - 损失: 0.8937 - 稀疏分类准确率: 0.6400
1605/未知 672秒 417毫秒/步 - 损失: 0.8936 - 稀疏分类准确率: 0.6401
1606/未知 672秒 417毫秒/步 - 损失: 0.8935 - 稀疏分类准确率: 0.6401
1607/未知 673秒 417毫秒/步 - 损失: 0.8934 - 稀疏分类准确率: 0.6401
1608/未知 673秒 417毫秒/步 - 损失: 0.8933 - 稀疏分类准确率: 0.6402
1609/未知 673秒 417毫秒/步 - 损失: 0.8931 - 稀疏分类准确率: 0.6402
1610/未知 674秒 417毫秒/步 - 损失: 0.8930 - 稀疏分类准确率: 0.6403
1611/未知 674秒 417毫秒/步 - 损失: 0.8929 - 稀疏分类准确率: 0.6403
1612/未知 675秒 417毫秒/步 - 损失: 0.8928 - 稀疏分类准确率: 0.6403
1613/未知 675秒 417毫秒/步 - 损失: 0.8927 - 稀疏分类准确率: 0.6404
1614/未知 675秒 417毫秒/步 - 损失: 0.8926 - 稀疏分类准确率: 0.6404
1615/未知 676秒 417毫秒/步 - 损失: 0.8925 - 稀疏分类准确率: 0.6404
1616/未知 676秒 417毫秒/步 - 损失: 0.8924 - 稀疏分类准确率: 0.6405
1617/未知 677秒 417毫秒/步 - 损失: 0.8923 - 稀疏分类准确率: 0.6405
1618/未知 677秒 417毫秒/步 - 损失: 0.8922 - 稀疏分类准确率: 0.6405
1619/未知 677秒 417毫秒/步 - 损失: 0.8920 - 稀疏分类准确率: 0.6406
1620/未知 678秒 417毫秒/步 - 损失: 0.8919 - 稀疏分类准确率: 0.6406
1621/未知 678秒 417毫秒/步 - 损失: 0.8918 - 稀疏分类准确率: 0.6407
1622/未知 678秒 417毫秒/步 - 损失: 0.8917 - 稀疏分类准确率: 0.6407
1623/未知 679秒 417毫秒/步 - 损失: 0.8916 - 稀疏分类准确率: 0.6407
1624/未知 679秒 417毫秒/步 - 损失: 0.8915 - 稀疏分类准确率: 0.6408
1625/未知 679秒 416毫秒/步 - 损失: 0.8914 - 稀疏分类准确率: 0.6408
1626/未知 680秒 416毫秒/步 - 损失: 0.8913 - 稀疏分类准确率: 0.6408
1627/未知 680秒 417毫秒/步 - 损失: 0.8912 - 稀疏分类准确率: 0.6409
1628/未知 681秒 417毫秒/步 - 损失: 0.8911 - 稀疏分类准确率: 0.6409
1629/未知 681秒 417毫秒/步 - 损失: 0.8909 - 稀疏分类准确率: 0.6409
1630/未知 682秒 417毫秒/步 - 损失: 0.8908 - 稀疏分类准确率: 0.6410
1631/未知 682秒 417毫秒/步 - 损失: 0.8907 - 稀疏分类准确率: 0.6410
1632/未知 683秒 417毫秒/步 - 损失: 0.8906 - 稀疏分类准确率: 0.6411
1633/未知 683秒 417毫秒/步 - 损失: 0.8905 - 稀疏分类准确率: 0.6411
1634/未知 684秒 417毫秒/步 - 损失: 0.8904 - 稀疏分类准确率: 0.6411
1635/未知 684秒 417毫秒/步 - 损失: 0.8903 - 稀疏分类准确率: 0.6412
1636/未知 685秒 417毫秒/步 - 损失: 0.8902 - 稀疏分类准确率: 0.6412
1637/未知 685秒 417毫秒/步 - 损失: 0.8901 - 稀疏分类准确率: 0.6412
1638/未知 686秒 417毫秒/步 - 损失: 0.8900 - 稀疏分类准确率: 0.6413
1639/未知 686秒 417毫秒/步 - 损失: 0.8899 - 稀疏分类准确率: 0.6413
1640/未知 686秒 417毫秒/步 - 损失: 0.8898 - 稀疏分类准确率: 0.6413
1641/未知 687秒 417毫秒/步 - 损失: 0.8897 - 稀疏分类准确率: 0.6414
1642/未知 687秒 417毫秒/步 - 损失: 0.8895 - 稀疏分类准确率: 0.6414
1643/未知 688秒 417毫秒/步 - 损失: 0.8894 - 稀疏分类准确率: 0.6414
1644/未知 688秒 417毫秒/步 - 损失: 0.8893 - 稀疏分类准确率: 0.6415
1645/未知 689秒 417毫秒/步 - 损失: 0.8892 - 稀疏分类准确率: 0.6415
1646/未知 689秒 417毫秒/步 - 损失: 0.8891 - 稀疏分类准确率: 0.6416
1647/未知 690秒 417毫秒/步 - 损失: 0.8890 - 稀疏分类准确率: 0.6416
1648/未知 690秒 417毫秒/步 - 损失: 0.8889 - 稀疏分类准确率: 0.6416
1649/未知 690秒 417毫秒/步 - 损失: 0.8888 - 稀疏分类准确率: 0.6417
1650/未知 691秒 417毫秒/步 - 损失: 0.8887 - 稀疏分类准确率: 0.6417
1651/未知 691秒 417毫秒/步 - 损失: 0.8886 - 稀疏分类准确率: 0.6417
1652/未知 692秒 417毫秒/步 - 损失: 0.8885 - 稀疏分类准确率: 0.6418
1653/未知 692秒 417毫秒/步 - 损失: 0.8884 - 稀疏分类准确率: 0.6418
1654/未知 693秒 417毫秒/步 - 损失: 0.8883 - 稀疏分类准确率: 0.6418
1655/未知 693秒 417毫秒/步 - 损失: 0.8882 - 稀疏分类准确率: 0.6419
1656/未知 693秒 417毫秒/步 - 损失: 0.8880 - 稀疏分类准确率: 0.6419
1657/未知 694秒 417毫秒/步 - 损失: 0.8879 - 稀疏分类准确率: 0.6419
1658/未知 694秒 417毫秒/步 - 损失: 0.8878 - 稀疏分类准确率: 0.6420
1659/未知 695秒 417毫秒/步 - 损失: 0.8877 - 稀疏分类准确率: 0.6420
1660/未知 695秒 417毫秒/步 - 损失: 0.8876 - 稀疏分类准确率: 0.6420
1661/未知 695秒 417毫秒/步 - 损失: 0.8875 - 稀疏分类准确率: 0.6421
1662/未知 696秒 417毫秒/步 - 损失: 0.8874 - 稀疏分类准确率: 0.6421
1663/未知 696秒 417毫秒/步 - 损失: 0.8873 - 稀疏分类准确率: 0.6422
1664/未知 696秒 417毫秒/步 - 损失: 0.8872 - 稀疏分类准确率: 0.6422
1665/未知 697秒 417毫秒/步 - 损失: 0.8871 - 稀疏分类准确率: 0.6422
1666/未知 697秒 417毫秒/步 - 损失: 0.8870 - 稀疏分类准确率: 0.6423
1667/未知 698秒 417毫秒/步 - 损失: 0.8869 - 稀疏分类准确率: 0.6423
1668/未知 698秒 417毫秒/步 - 损失: 0.8868 - 稀疏分类准确率: 0.6423
1669/未知 698秒 417毫秒/步 - 损失: 0.8867 - 稀疏分类准确率: 0.6424
1670/未知 699秒 417毫秒/步 - 损失: 0.8866 - 稀疏分类准确率: 0.6424
1671/未知 699秒 417毫秒/步 - 损失: 0.8865 - 稀疏分类准确率: 0.6424
1672/未知 700秒 417毫秒/步 - 损失: 0.8864 - 稀疏分类准确率: 0.6425
1673/未知 700秒 417毫秒/步 - 损失: 0.8863 - 稀疏分类准确率: 0.6425
1674/未知 700秒 417毫秒/步 - 损失: 0.8862 - 稀疏分类准确率: 0.6425
1675/未知 701秒 417毫秒/步 - 损失: 0.8861 - 稀疏分类准确率: 0.6426
1676/未知 701秒 417毫秒/步 - 损失: 0.8859 - 稀疏分类准确率: 0.6426
1677/未知 702秒 417毫秒/步 - 损失: 0.8858 - 稀疏分类准确率: 0.6426
1678/未知 702秒 417毫秒/步 - 损失: 0.8857 - 稀疏分类准确率: 0.6427
1679/未知 703秒 417毫秒/步 - 损失: 0.8856 - 稀疏分类准确率: 0.6427
1680/未知 703秒 417毫秒/步 - 损失: 0.8855 - 稀疏分类准确率: 0.6427
1681/未知 704秒 417毫秒/步 - 损失: 0.8854 - 稀疏分类准确率: 0.6428
1682/未知 704秒 417毫秒/步 - 损失: 0.8853 - 稀疏分类准确率: 0.6428
1683/未知 705秒 417毫秒/步 - 损失: 0.8852 - 稀疏分类准确率: 0.6428
1684/未知 705秒 417毫秒/步 - 损失: 0.8851 - 稀疏分类准确率: 0.6429
1685/未知 706秒 417毫秒/步 - 损失: 0.8850 - 稀疏分类准确率: 0.6429
1686/未知 706秒 417毫秒/步 - 损失: 0.8849 - 稀疏分类准确率: 0.6429
1687/未知 706秒 417毫秒/步 - 损失: 0.8848 - 稀疏分类准确率: 0.6430
1688/未知 707秒 417毫秒/步 - 损失: 0.8847 - 稀疏分类准确率: 0.6430
1689/未知 707秒 417毫秒/步 - 损失: 0.8846 - 稀疏分类准确率: 0.6431
1690/未知 708秒 417毫秒/步 - 损失: 0.8845 - 稀疏分类准确率: 0.6431
1691/未知 708秒 417毫秒/步 - 损失: 0.8844 - 稀疏分类准确率: 0.6431
1692/未知 709秒 417毫秒/步 - 损失: 0.8843 - 稀疏分类准确率: 0.6432
1693/未知 709秒 417毫秒/步 - 损失: 0.8842 - 稀疏分类准确率: 0.6432
1694/未知 709秒 417毫秒/步 - 损失: 0.8841 - 稀疏分类准确率: 0.6432
1695/未知 710秒 417毫秒/步 - 损失: 0.8840 - 稀疏分类准确率: 0.6433
1696/未知 710秒 417毫秒/步 - 损失: 0.8839 - 稀疏分类准确率: 0.6433
1697/未知 711秒 417毫秒/步 - 损失: 0.8838 - 稀疏分类准确率: 0.6433
1698/未知 711秒 417毫秒/步 - 损失: 0.8837 - 稀疏分类准确率: 0.6434
1699/未知 711秒 417毫秒/步 - 损失: 0.8836 - 稀疏分类准确率: 0.6434
1700/未知 712秒 417毫秒/步 - 损失: 0.8835 - 稀疏分类准确率: 0.6434
1701/未知 712秒 417毫秒/步 - 损失: 0.8834 - 稀疏分类准确率: 0.6435
1702/未知 713秒 417毫秒/步 - 损失: 0.8833 - 稀疏分类准确率: 0.6435
1703/未知 713秒 417毫秒/步 - 损失: 0.8832 - 稀疏分类准确率: 0.6435
1704/未知 713秒 417毫秒/步 - 损失: 0.8831 - 稀疏分类准确率: 0.6436
1705/未知 714秒 417毫秒/步 - 损失: 0.8830 - 稀疏分类准确率: 0.6436
1706/未知 714秒 417毫秒/步 - 损失: 0.8829 - 稀疏分类准确率: 0.6436
1707/未知 714秒 417毫秒/步 - 损失: 0.8828 - 稀疏分类准确率: 0.6437
1708/未知 715秒 417毫秒/步 - 损失: 0.8827 - 稀疏分类准确率: 0.6437
1709/未知 715秒 417毫秒/步 - 损失: 0.8826 - 稀疏分类准确率: 0.6437
1710/未知 716秒 417毫秒/步 - 损失: 0.8825 - 稀疏分类准确率: 0.6438
1711/未知 716秒 417毫秒/步 - 损失: 0.8824 - 稀疏分类准确率: 0.6438
1712/未知 717秒 417毫秒/步 - 损失: 0.8823 - 稀疏分类准确率: 0.6438
1713/未知 717秒 417毫秒/步 - 损失: 0.8822 - 稀疏分类准确率: 0.6439
1714/未知 718秒 417毫秒/步 - 损失: 0.8821 - 稀疏分类准确率: 0.6439
1715/未知 718秒 417毫秒/步 - 损失: 0.8820 - 稀疏分类准确率: 0.6439
1716/未知 719秒 417毫秒/步 - 损失: 0.8818 - 稀疏分类准确率: 0.6440
1717/未知 719秒 417毫秒/步 - 损失: 0.8817 - 稀疏分类准确率: 0.6440
1718/未知 719秒 417毫秒/步 - 损失: 0.8816 - 稀疏分类准确率: 0.6440
1719/未知 720秒 417毫秒/步 - 损失: 0.8815 - 稀疏分类准确率: 0.6441
1720/未知 720秒 417毫秒/步 - 损失: 0.8814 - 稀疏分类准确率: 0.6441
1721/未知 720秒 417毫秒/步 - 损失: 0.8813 - 稀疏分类准确率: 0.6441
1722/未知 721秒 417毫秒/步 - 损失: 0.8812 - 稀疏分类准确率: 0.6442
1723/未知 721秒 417毫秒/步 - 损失: 0.8811 - 稀疏分类准确率: 0.6442
1724/未知 722秒 417毫秒/步 - 损失: 0.8810 - 稀疏分类准确率: 0.6442
1725/未知 722秒 417毫秒/步 - 损失: 0.8809 - 稀疏分类准确率: 0.6443
1726/未知 722秒 417毫秒/步 - 损失: 0.8808 - 稀疏分类准确率: 0.6443
1727/未知 723秒 417毫秒/步 - 损失: 0.8807 - 稀疏分类准确率: 0.6443
1728/未知 723秒 417毫秒/步 - 损失: 0.8806 - 稀疏分类准确率: 0.6444
1729/未知 723秒 417毫秒/步 - 损失: 0.8805 - 稀疏分类准确率: 0.6444
1730/未知 724秒 417毫秒/步 - 损失: 0.8804 - 稀疏分类准确率: 0.6444
1731/未知 724秒 417毫秒/步 - 损失: 0.8804 - 稀疏分类准确率: 0.6445
1732/未知 725秒 417毫秒/步 - 损失: 0.8803 - 稀疏分类准确率: 0.6445
1733/未知 725秒 417毫秒/步 - 损失: 0.8802 - 稀疏分类准确率: 0.6445
1734/未知 726秒 417毫秒/步 - 损失: 0.8801 - 稀疏分类准确率: 0.6446
1735/未知 726秒 417毫秒/步 - 损失: 0.8800 - 稀疏分类准确率: 0.6446
1736/未知 727秒 417毫秒/步 - 损失: 0.8799 - 稀疏分类准确率: 0.6446
1737/未知 727秒 417毫秒/步 - 损失: 0.8798 - 稀疏分类准确率: 0.6447
1738/未知 727秒 417毫秒/步 - 损失: 0.8797 - 稀疏分类准确率: 0.6447
1739/未知 728秒 417毫秒/步 - 损失: 0.8796 - 稀疏分类准确率: 0.6447
1740/未知 728秒 417毫秒/步 - 损失: 0.8795 - 稀疏分类准确率: 0.6448
1741/未知 729秒 417毫秒/步 - 损失: 0.8794 - 稀疏分类准确率: 0.6448
1742/未知 729秒 417毫秒/步 - 损失: 0.8793 - 稀疏分类准确率: 0.6448
1743/未知 730秒 417毫秒/步 - 损失: 0.8792 - 稀疏分类准确率: 0.6449
1744/未知 730秒 417毫秒/步 - 损失: 0.8791 - 稀疏分类准确率: 0.6449
1745/未知 730秒 417毫秒/步 - 损失: 0.8790 - 稀疏分类准确率: 0.6449
1746/未知 731秒 417毫秒/步 - 损失: 0.8789 - 稀疏分类准确率: 0.6450
1747/未知 731秒 417毫秒/步 - 损失: 0.8788 - 稀疏分类准确率: 0.6450
1748/未知 731秒 417毫秒/步 - 损失: 0.8787 - 稀疏分类准确率: 0.6450
1749/未知 732秒 417毫秒/步 - 损失: 0.8786 - 稀疏分类准确率: 0.6451
1750/未知 732秒 417毫秒/步 - 损失: 0.8785 - 稀疏分类准确率: 0.6451
1751/未知 733秒 417毫秒/步 - 损失: 0.8784 - 稀疏分类准确率: 0.6451
1752/未知 733秒 417毫秒/步 - 损失: 0.8783 - 稀疏分类准确率: 0.6452
1753/未知 733秒 417毫秒/步 - 损失: 0.8782 - 稀疏分类准确率: 0.6452
1754/未知 734秒 417毫秒/步 - 损失: 0.8781 - 稀疏分类准确率: 0.6452
1755/未知 734秒 417毫秒/步 - 损失: 0.8780 - 稀疏分类准确率: 0.6453
1756/未知 735秒 417毫秒/步 - 损失: 0.8779 - 稀疏分类准确率: 0.6453
1757/未知 735秒 417毫秒/步 - 损失: 0.8778 - 稀疏分类准确率: 0.6453
1758/未知 736秒 417毫秒/步 - 损失: 0.8777 - 稀疏分类准确率: 0.6453
1759/未知 736秒 417毫秒/步 - 损失: 0.8776 - 稀疏分类准确率: 0.6454
1760/未知 737秒 417毫秒/步 - 损失: 0.8775 - 稀疏分类准确率: 0.6454
1761/未知 737秒 417毫秒/步 - 损失: 0.8774 - 稀疏分类准确率: 0.6454
1762/未知 738秒 417毫秒/步 - 损失: 0.8773 - 稀疏分类准确率: 0.6455
1763/未知 738秒 417毫秒/步 - 损失: 0.8772 - 稀疏分类准确率: 0.6455
1764/未知 738秒 417毫秒/步 - 损失: 0.8771 - 稀疏分类准确率: 0.6455
1765/未知 739秒 417毫秒/步 - 损失: 0.8770 - 稀疏分类准确率: 0.6456
1766/未知 739秒 417毫秒/步 - 损失: 0.8769 - 稀疏分类准确率: 0.6456
1767/未知 739秒 417毫秒/步 - 损失: 0.8768 - 稀疏分类准确率: 0.6456
1768/未知 740秒 417毫秒/步 - 损失: 0.8767 - 稀疏分类准确率: 0.6457
1769/未知 740秒 417毫秒/步 - 损失: 0.8766 - 稀疏分类准确率: 0.6457
1770/未知 741秒 417毫秒/步 - 损失: 0.8765 - 稀疏分类准确率: 0.6457
1771/未知 741秒 417毫秒/步 - 损失: 0.8764 - 稀疏分类准确率: 0.6458
1772/未知 741秒 417毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6458
1773/未知 742秒 417毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6458
1774/未知 742秒 417毫秒/步 - 损失: 0.8762 - 稀疏分类准确率: 0.6459
1775/未知 743秒 417毫秒/步 - 损失: 0.8761 - 稀疏分类准确率: 0.6459
1776/未知 743秒 417毫秒/步 - 损失: 0.8760 - 稀疏分类准确率: 0.6459
1777/未知 743秒 417毫秒/步 - 损失: 0.8759 - 稀疏分类准确率: 0.6460
1778/未知 744秒 417毫秒/步 - 损失: 0.8758 - 稀疏分类准确率: 0.6460
1779/未知 744秒 417毫秒/步 - 损失: 0.8757 - 稀疏分类准确率: 0.6460
1780/未知 745秒 417毫秒/步 - 损失: 0.8756 - 稀疏分类准确率: 0.6461
1781/未知 745秒 417毫秒/步 - 损失: 0.8755 - 稀疏分类准确率: 0.6461
1782/未知 746秒 417毫秒/步 - 损失: 0.8754 - 稀疏分类准确率: 0.6461
1783/未知 746秒 417毫秒/步 - 损失: 0.8753 - 稀疏分类准确率: 0.6461
1784/未知 747秒 417毫秒/步 - 损失: 0.8752 - 稀疏分类准确率: 0.6462
1785/未知 747秒 417毫秒/步 - 损失: 0.8751 - 稀疏分类准确率: 0.6462
1786/未知 747秒 417毫秒/步 - 损失: 0.8750 - 稀疏分类准确率: 0.6462
1787/未知 748秒 417毫秒/步 - 损失: 0.8749 - 稀疏分类准确率: 0.6463
1788/未知 748秒 417毫秒/步 - 损失: 0.8748 - 稀疏分类准确率: 0.6463
1789/未知 749秒 417毫秒/步 - 损失: 0.8747 - 稀疏分类准确率: 0.6463
1790/未知 749秒 417毫秒/步 - 损失: 0.8746 - 稀疏分类准确率: 0.6464
1791/未知 750秒 417毫秒/步 - 损失: 0.8745 - 稀疏分类准确率: 0.6464
1792/未知 750秒 417毫秒/步 - 损失: 0.8744 - 稀疏分类准确率: 0.6464
1793/未知 751秒 417毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6465
1794/未知 751秒 417毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6465
1795/未知 752秒 417毫秒/步 - 损失: 0.8742 - 稀疏分类准确率: 0.6465
1796/未知 752秒 417毫秒/步 - 损失: 0.8741 - 稀疏分类准确率: 0.6466
1797/未知 753秒 417毫秒/步 - 损失: 0.8740 - 稀疏分类准确率: 0.6466
1798/未知 753秒 417毫秒/步 - 损失: 0.8739 - 稀疏分类准确率: 0.6466
1799/未知 753秒 417毫秒/步 - 损失: 0.8738 - 稀疏分类准确率: 0.6466
1800/未知 754秒 417毫秒/步 - 损失: 0.8737 - 稀疏分类准确率: 0.6467
1801/未知 754秒 417毫秒/步 - 损失: 0.8736 - 稀疏分类准确率: 0.6467
1802/未知 755秒 417毫秒/步 - 损失: 0.8735 - 稀疏分类准确率: 0.6467
1803/未知 755秒 417毫秒/步 - 损失: 0.8734 - 稀疏分类准确率: 0.6468
1804/未知 756秒 417毫秒/步 - 损失: 0.8733 - 稀疏分类准确率: 0.6468
1805/未知 756秒 417毫秒/步 - 损失: 0.8732 - 稀疏分类准确率: 0.6468
1806/未知 757秒 417毫秒/步 - 损失: 0.8731 - 稀疏分类准确率: 0.6469
1807/未知 757秒 417毫秒/步 - 损失: 0.8730 - 稀疏分类准确率: 0.6469
1808/未知 757秒 417毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6469
1809/未知 758秒 417毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6470
1810/未知 758秒 417毫秒/步 - 损失: 0.8728 - 稀疏分类准确率: 0.6470
1811/未知 758秒 417毫秒/步 - 损失: 0.8727 - 稀疏分类准确率: 0.6470
1812/未知 759秒 417毫秒/步 - 损失: 0.8726 - 稀疏分类准确率: 0.6471
1813/未知 759秒 417毫秒/步 - 损失: 0.8725 - 稀疏分类准确率: 0.6471
1814/未知 760秒 417毫秒/步 - 损失: 0.8724 - 稀疏分类准确率: 0.6471
1815/未知 760秒 417毫秒/步 - 损失: 0.8723 - 稀疏分类准确率: 0.6471
1816/未知 760秒 417毫秒/步 - 损失: 0.8722 - 稀疏分类准确率: 0.6472
1817/未知 761秒 417毫秒/步 - 损失: 0.8721 - 稀疏分类准确率: 0.6472
1818/未知 761秒 417毫秒/步 - 损失: 0.8720 - 稀疏分类准确率: 0.6472
1819/未知 761秒 417毫秒/步 - 损失: 0.8719 - 稀疏分类准确率: 0.6473
1820/未知 762秒 417毫秒/步 - 损失: 0.8718 - 稀疏分类准确率: 0.6473
1821/未知 762秒 417毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6473
1822/未知 763秒 417毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6474
1823/未知 763秒 417毫秒/步 - 损失: 0.8716 - 稀疏分类准确率: 0.6474
1824/未知 764秒 417毫秒/步 - 损失: 0.8715 - 稀疏分类准确率: 0.6474
1825/未知 764秒 417毫秒/步 - 损失: 0.8714 - 稀疏分类准确率: 0.6475
1826/未知 765秒 417毫秒/步 - 损失: 0.8713 - 稀疏分类准确率: 0.6475
1827/未知 765秒 417毫秒/步 - 损失: 0.8712 - 稀疏分类准确率: 0.6475
1828/未知 766秒 417毫秒/步 - 损失: 0.8711 - 稀疏分类准确率: 0.6475
1829/未知 766秒 417毫秒/步 - 损失: 0.8710 - 稀疏分类准确率: 0.6476
1830/未知 767秒 417毫秒/步 - 损失: 0.8709 - 稀疏分类准确率: 0.6476
1831/未知 767秒 417毫秒/步 - 损失: 0.8708 - 稀疏分类准确率: 0.6476
1832/未知 767秒 417毫秒/步 - 损失: 0.8707 - 稀疏分类准确率: 0.6477
1833/未知 768秒 417毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6477
1834/未知 768秒 417毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6477
1835/未知 769秒 418毫秒/步 - 损失: 0.8705 - 稀疏分类准确率: 0.6478
1836/未知 769秒 418毫秒/步 - 损失: 0.8704 - 稀疏分类准确率: 0.6478
1837/未知 770秒 418毫秒/步 - 损失: 0.8703 - 稀疏分类准确率: 0.6478
1838/未知 770秒 418毫秒/步 - 损失: 0.8702 - 稀疏分类准确率: 0.6478
1839/未知 771秒 418毫秒/步 - 损失: 0.8701 - 稀疏分类准确率: 0.6479
1840/未知 771秒 418毫秒/步 - 损失: 0.8700 - 稀疏分类准确率: 0.6479
1841/未知 771秒 417毫秒/步 - 损失: 0.8699 - 稀疏分类准确率: 0.6479
1842/未知 772秒 417毫秒/步 - 损失: 0.8698 - 稀疏分类准确率: 0.6480
1843/未知 772秒 417毫秒/步 - 损失: 0.8697 - 稀疏分类准确率: 0.6480
1844/未知 772秒 417毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6480
1845/未知 773秒 417毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6481
1846/未知 773秒 417毫秒/步 - 损失: 0.8695 - 稀疏分类准确率: 0.6481
1847/未知 774秒 417毫秒/步 - 损失: 0.8694 - 稀疏分类准确率: 0.6481
1848/未知 774秒 417毫秒/步 - 损失: 0.8693 - 稀疏分类准确率: 0.6481
1849/未知 774秒 417毫秒/步 - 损失: 0.8692 - 稀疏分类准确率: 0.6482
1850/未知 775秒 417毫秒/步 - 损失: 0.8691 - 稀疏分类准确率: 0.6482
1851/未知 775秒 417毫秒/步 - 损失: 0.8690 - 稀疏分类准确率: 0.6482
1852/未知 776秒 417毫秒/步 - 损失: 0.8689 - 稀疏分类准确率: 0.6483
1853/未知 776秒 417毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6483
1854/未知 777秒 417毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6483
1855/未知 777秒 417毫秒/步 - 损失: 0.8687 - 稀疏分类准确率: 0.6484
1856/未知 778秒 417毫秒/步 - 损失: 0.8686 - 稀疏分类准确率: 0.6484
1857/未知 778秒 417毫秒/步 - 损失: 0.8685 - 稀疏分类准确率: 0.6484
1858/未知 778秒 417毫秒/步 - 损失: 0.8684 - 稀疏分类准确率: 0.6484
1859/未知 779秒 417毫秒/步 - 损失: 0.8683 - 稀疏分类准确率: 0.6485
1860/未知 779秒 417毫秒/步 - 损失: 0.8682 - 稀疏分类准确率: 0.6485
1861/未知 779秒 417毫秒/步 - 损失: 0.8681 - 稀疏分类准确率: 0.6485
1862/未知 780秒 417毫秒/步 - 损失: 0.8680 - 稀疏分类准确率: 0.6486
1863/未知 780秒 417毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6486
1864/未知 781秒 417毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6486
1865/未知 781秒 417毫秒/步 - 损失: 0.8678 - 稀疏分类准确率: 0.6486
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 781秒 417毫秒/步 - 损失: 0.8677 - 稀疏分类准确率: 0.6487
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 74.5%
Wide & Deep 模型达到了约 79% 的测试准确率。
在第三个实验中,我们创建了一个 Deep & Cross 模型。该模型的深度部分与前一个实验中创建的深度部分相同。交叉部分的关键思想是以有效的方式应用显式特征交叉,其中交叉特征的程度随层深度而增长。
def create_deep_and_cross_model():
inputs = create_model_inputs()
x0 = encode_inputs(inputs, use_embedding=True)
cross = x0
for _ in hidden_units:
units = cross.shape[-1]
x = layers.Dense(units)(cross)
cross = x0 * x + cross
cross = layers.BatchNormalization()(cross)
deep = x0
for units in hidden_units:
deep = layers.Dense(units)(deep)
deep = layers.BatchNormalization()(deep)
deep = layers.ReLU()(deep)
deep = layers.Dropout(dropout_rate)(deep)
merged = layers.concatenate([cross, deep])
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
deep_and_cross_model = create_deep_and_cross_model()
keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR")
让我们运行它
run_experiment(deep_and_cross_model)
Start training the model...
1/Unknown 1s 993ms/step - loss: 2.4838 - sparse_categorical_accuracy: 0.1057
2/Unknown 1s 465ms/step - loss: 2.4552 - sparse_categorical_accuracy: 0.1113
3/Unknown 2s 483ms/step - loss: 2.4419 - sparse_categorical_accuracy: 0.1124
4/Unknown 2s 462ms/step - loss: 2.4248 - sparse_categorical_accuracy: 0.1140
5/Unknown 3s 468ms/step - loss: 2.4071 - sparse_categorical_accuracy: 0.1150
6/Unknown 3s 460ms/step - loss: 2.3918 - sparse_categorical_accuracy: 0.1176
7/Unknown 4s 467ms/step - loss: 2.3763 - sparse_categorical_accuracy: 0.1209
8/Unknown 4s 466ms/step - loss: 2.3613 - sparse_categorical_accuracy: 0.1243
9/Unknown 5s 467ms/step - loss: 2.3470 - sparse_categorical_accuracy: 0.1277
10/Unknown 5s 465ms/step - loss: 2.3333 - sparse_categorical_accuracy: 0.1311
11/Unknown 6s 540ms/step - loss: 2.3202 - sparse_categorical_accuracy: 0.1346
12/Unknown 7s 558ms/step - loss: 2.3077 - sparse_categorical_accuracy: 0.1380
13/Unknown 8s 554ms/step - loss: 2.2955 - sparse_categorical_accuracy: 0.1414
14/Unknown 8s 549ms/step - loss: 2.2834 - sparse_categorical_accuracy: 0.1451
15/Unknown 9s 545ms/step - loss: 2.2716 - sparse_categorical_accuracy: 0.1489
16/Unknown 9s 540ms/step - loss: 2.2602 - sparse_categorical_accuracy: 0.1526
17/Unknown 10s 535ms/step - loss: 2.2494 - sparse_categorical_accuracy: 0.1562
18/Unknown 10s 532ms/step - loss: 2.2387 - sparse_categorical_accuracy: 0.1598
19/Unknown 11s 528ms/step - loss: 2.2280 - sparse_categorical_accuracy: 0.1634
20/Unknown 11s 524ms/step - loss: 2.2174 - sparse_categorical_accuracy: 0.1672
21/Unknown 11s 520ms/step - loss: 2.2071 - sparse_categorical_accuracy: 0.1707
22/Unknown 12s 518ms/step - loss: 2.1971 - sparse_categorical_accuracy: 0.1742
23/Unknown 12s 514ms/step - loss: 2.1872 - sparse_categorical_accuracy: 0.1778
24/Unknown 13s 513ms/step - loss: 2.1775 - sparse_categorical_accuracy: 0.1813
25/Unknown 13s 513ms/step - loss: 2.1680 - sparse_categorical_accuracy: 0.1848
26/Unknown 14s 512ms/step - loss: 2.1587 - sparse_categorical_accuracy: 0.1882
27/Unknown 14s 509ms/step - loss: 2.1495 - sparse_categorical_accuracy: 0.1917
28/Unknown 15s 509ms/step - loss: 2.1405 - sparse_categorical_accuracy: 0.1951
29/Unknown 15s 508ms/step - loss: 2.1316 - sparse_categorical_accuracy: 0.1986
30/Unknown 16s 505ms/step - loss: 2.1228 - sparse_categorical_accuracy: 0.2020
31/Unknown 16s 504ms/step - loss: 2.1142 - sparse_categorical_accuracy: 0.2054
32/Unknown 17s 502ms/step - loss: 2.1056 - sparse_categorical_accuracy: 0.2089
33/Unknown 17s 502ms/step - loss: 2.0971 - sparse_categorical_accuracy: 0.2123
34/Unknown 18s 502ms/step - loss: 2.0888 - sparse_categorical_accuracy: 0.2156
35/Unknown 18s 500ms/step - loss: 2.0807 - sparse_categorical_accuracy: 0.2190
36/Unknown 18s 497ms/step - loss: 2.0726 - sparse_categorical_accuracy: 0.2223
37/Unknown 19s 499ms/step - loss: 2.0646 - sparse_categorical_accuracy: 0.2257
38/Unknown 19s 497ms/step - loss: 2.0567 - sparse_categorical_accuracy: 0.2290
39/Unknown 20s 495ms/step - loss: 2.0490 - sparse_categorical_accuracy: 0.2322
40/Unknown 20s 494ms/step - loss: 2.0414 - sparse_categorical_accuracy: 0.2354
41/Unknown 21s 490ms/step - loss: 2.0339 - sparse_categorical_accuracy: 0.2386
42/Unknown 21s 487ms/step - loss: 2.0265 - sparse_categorical_accuracy: 0.2417
43/Unknown 21s 485ms/step - loss: 2.0192 - sparse_categorical_accuracy: 0.2448
44/Unknown 22s 483ms/step - loss: 2.0120 - sparse_categorical_accuracy: 0.2479
45/Unknown 22s 482ms/step - loss: 2.0049 - sparse_categorical_accuracy: 0.2509
46/Unknown 23s 480ms/step - loss: 1.9980 - sparse_categorical_accuracy: 0.2539
47/Unknown 23s 479ms/step - loss: 1.9911 - sparse_categorical_accuracy: 0.2569
48/Unknown 23s 478ms/step - loss: 1.9843 - sparse_categorical_accuracy: 0.2598
49/Unknown 24s 476ms/step - loss: 1.9777 - sparse_categorical_accuracy: 0.2627
50/Unknown 24s 475ms/step - loss: 1.9711 - sparse_categorical_accuracy: 0.2655
51/Unknown 25s 473ms/step - loss: 1.9646 - sparse_categorical_accuracy: 0.2683
52/Unknown 25s 472ms/step - loss: 1.9581 - sparse_categorical_accuracy: 0.2711
53/Unknown 26s 473ms/step - loss: 1.9517 - sparse_categorical_accuracy: 0.2739
54/Unknown 26s 474ms/step - loss: 1.9454 - sparse_categorical_accuracy: 0.2766
55/Unknown 27s 474ms/step - loss: 1.9392 - sparse_categorical_accuracy: 0.2793
56/Unknown 27s 474ms/step - loss: 1.9331 - sparse_categorical_accuracy: 0.2819
57/Unknown 28s 474ms/step - loss: 1.9271 - sparse_categorical_accuracy: 0.2845
58/Unknown 28s 474ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.2871
59/Unknown 28s 474ms/step - loss: 1.9152 - sparse_categorical_accuracy: 0.2897
60/Unknown 29s 473ms/step - loss: 1.9093 - sparse_categorical_accuracy: 0.2922
61/Unknown 29s 473ms/step - loss: 1.9035 - sparse_categorical_accuracy: 0.2947
62/Unknown 30s 473ms/step - loss: 1.8977 - sparse_categorical_accuracy: 0.2971
63/Unknown 30s 472ms/step - loss: 1.8921 - sparse_categorical_accuracy: 0.2996
64/Unknown 31s 471ms/step - loss: 1.8864 - sparse_categorical_accuracy: 0.3020
65/Unknown 31s 471ms/step - loss: 1.8809 - sparse_categorical_accuracy: 0.3043
66/Unknown 32s 470ms/step - loss: 1.8754 - sparse_categorical_accuracy: 0.3067
67/Unknown 32s 471ms/step - loss: 1.8699 - sparse_categorical_accuracy: 0.3090
68/Unknown 32s 470ms/step - loss: 1.8645 - sparse_categorical_accuracy: 0.3112
69/Unknown 33s 471ms/step - loss: 1.8592 - sparse_categorical_accuracy: 0.3135
70/Unknown 33s 470ms/step - loss: 1.8540 - sparse_categorical_accuracy: 0.3157
71/Unknown 34s 470ms/step - loss: 1.8487 - sparse_categorical_accuracy: 0.3179
72/Unknown 34s 470ms/step - loss: 1.8436 - sparse_categorical_accuracy: 0.3201
73/Unknown 35s 470ms/step - loss: 1.8385 - sparse_categorical_accuracy: 0.3222
74/Unknown 35s 470ms/step - loss: 1.8335 - sparse_categorical_accuracy: 0.3243
75/Unknown 36s 470ms/step - loss: 1.8285 - sparse_categorical_accuracy: 0.3264
76/Unknown 36s 471ms/step - loss: 1.8236 - sparse_categorical_accuracy: 0.3285
77/Unknown 37s 471ms/step - loss: 1.8187 - sparse_categorical_accuracy: 0.3306
78/Unknown 37s 471ms/step - loss: 1.8138 - sparse_categorical_accuracy: 0.3326
79/Unknown 38s 470ms/step - loss: 1.8090 - sparse_categorical_accuracy: 0.3346
80/Unknown 38s 469ms/step - loss: 1.8042 - sparse_categorical_accuracy: 0.3366
81/Unknown 38s 468ms/step - loss: 1.7995 - sparse_categorical_accuracy: 0.3385
82/Unknown 39s 467ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3404
83/Unknown 39s 466ms/step - loss: 1.7903 - sparse_categorical_accuracy: 0.3423
84/Unknown 40s 466ms/step - loss: 1.7857 - sparse_categorical_accuracy: 0.3442
85/Unknown 40s 465ms/step - loss: 1.7812 - sparse_categorical_accuracy: 0.3461
86/Unknown 40s 464ms/step - loss: 1.7767 - sparse_categorical_accuracy: 0.3479
87/Unknown 41s 463ms/step - loss: 1.7722 - sparse_categorical_accuracy: 0.3497
88/Unknown 41s 463ms/step - loss: 1.7678 - sparse_categorical_accuracy: 0.3515
89/Unknown 42s 462ms/step - loss: 1.7635 - sparse_categorical_accuracy: 0.3533
90/Unknown 42s 462ms/step - loss: 1.7591 - sparse_categorical_accuracy: 0.3550
91/Unknown 43s 462ms/step - loss: 1.7549 - sparse_categorical_accuracy: 0.3568
92/Unknown 43s 462ms/step - loss: 1.7506 - sparse_categorical_accuracy: 0.3585
93/Unknown 44s 462ms/step - loss: 1.7464 - sparse_categorical_accuracy: 0.3602
94/Unknown 44s 462ms/step - loss: 1.7423 - sparse_categorical_accuracy: 0.3618
95/Unknown 44s 463ms/step - loss: 1.7381 - sparse_categorical_accuracy: 0.3635
96/Unknown 45s 463ms/step - loss: 1.7340 - sparse_categorical_accuracy: 0.3651
97/Unknown 46s 464ms/step - loss: 1.7300 - sparse_categorical_accuracy: 0.3667
98/Unknown 46s 465ms/step - loss: 1.7259 - sparse_categorical_accuracy: 0.3683
99/Unknown 47s 465ms/step - loss: 1.7219 - sparse_categorical_accuracy: 0.3699
100/Unknown 47s 465ms/step - loss: 1.7180 - sparse_categorical_accuracy: 0.3715
101/Unknown 47s 465ms/step - loss: 1.7141 - sparse_categorical_accuracy: 0.3730
102/Unknown 48s 464ms/step - loss: 1.7102 - sparse_categorical_accuracy: 0.3745
103/Unknown 48s 464ms/step - loss: 1.7064 - sparse_categorical_accuracy: 0.3760
104/Unknown 49s 464ms/step - loss: 1.7025 - sparse_categorical_accuracy: 0.3775
105/Unknown 49s 465ms/step - loss: 1.6988 - sparse_categorical_accuracy: 0.3790
106/Unknown 50s 465ms/step - loss: 1.6950 - sparse_categorical_accuracy: 0.3804
107/Unknown 50s 465ms/step - loss: 1.6913 - sparse_categorical_accuracy: 0.3819
108/Unknown 51s 465ms/step - loss: 1.6876 - sparse_categorical_accuracy: 0.3833
109/Unknown 51s 465ms/step - loss: 1.6840 - sparse_categorical_accuracy: 0.3847
110/Unknown 52s 464ms/step - loss: 1.6804 - sparse_categorical_accuracy: 0.3861
111/Unknown 52s 463ms/step - loss: 1.6768 - sparse_categorical_accuracy: 0.3874
112/Unknown 52s 462ms/step - loss: 1.6732 - sparse_categorical_accuracy: 0.3888
113/Unknown 53s 461ms/step - loss: 1.6697 - sparse_categorical_accuracy: 0.3901
114/Unknown 53s 461ms/step - loss: 1.6662 - sparse_categorical_accuracy: 0.3914
115/Unknown 53s 460ms/step - loss: 1.6628 - sparse_categorical_accuracy: 0.3927
116/Unknown 54s 459ms/step - loss: 1.6593 - sparse_categorical_accuracy: 0.3940
117/Unknown 54s 459ms/step - loss: 1.6559 - sparse_categorical_accuracy: 0.3953
118/Unknown 55s 458ms/step - loss: 1.6526 - sparse_categorical_accuracy: 0.3966
119/Unknown 55s 458ms/step - loss: 1.6492 - sparse_categorical_accuracy: 0.3979
120/Unknown 55s 457ms/step - loss: 1.6459 - sparse_categorical_accuracy: 0.3991
121/Unknown 56s 458ms/step - loss: 1.6426 - sparse_categorical_accuracy: 0.4003
122/Unknown 56s 458ms/step - loss: 1.6393 - sparse_categorical_accuracy: 0.4016
123/Unknown 57s 458ms/step - loss: 1.6361 - sparse_categorical_accuracy: 0.4028
124/Unknown 57s 458ms/step - loss: 1.6329 - sparse_categorical_accuracy: 0.4040
125/Unknown 58s 459ms/step - loss: 1.6297 - sparse_categorical_accuracy: 0.4052
126/Unknown 58s 459ms/step - loss: 1.6265 - sparse_categorical_accuracy: 0.4063
127/Unknown 59s 459ms/step - loss: 1.6234 - sparse_categorical_accuracy: 0.4075
128/Unknown 59s 459ms/step - loss: 1.6203 - sparse_categorical_accuracy: 0.4087
129/Unknown 60s 459ms/step - loss: 1.6172 - sparse_categorical_accuracy: 0.4098
130/Unknown 60s 459ms/step - loss: 1.6142 - sparse_categorical_accuracy: 0.4109
131/Unknown 61s 459ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.4121
132/Unknown 61s 458ms/step - loss: 1.6081 - sparse_categorical_accuracy: 0.4132
133/Unknown 61s 457ms/step - loss: 1.6051 - sparse_categorical_accuracy: 0.4143
134/Unknown 62s 457ms/step - loss: 1.6021 - sparse_categorical_accuracy: 0.4154
135/Unknown 62s 457ms/step - loss: 1.5992 - sparse_categorical_accuracy: 0.4164
136/Unknown 63s 456ms/step - loss: 1.5963 - sparse_categorical_accuracy: 0.4175
137/Unknown 63s 456ms/step - loss: 1.5934 - sparse_categorical_accuracy: 0.4186
138/Unknown 63s 455ms/step - loss: 1.5905 - sparse_categorical_accuracy: 0.4196
139/Unknown 64s 455ms/step - loss: 1.5876 - sparse_categorical_accuracy: 0.4207
140/Unknown 64s 455ms/step - loss: 1.5848 - sparse_categorical_accuracy: 0.4217
141/Unknown 65s 455ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4227
142/Unknown 65s 455ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4237
143/Unknown 66s 455ms/step - loss: 1.5764 - sparse_categorical_accuracy: 0.4247
144/Unknown 66s 455ms/step - loss: 1.5737 - sparse_categorical_accuracy: 0.4257
145/Unknown 67s 455ms/step - loss: 1.5710 - sparse_categorical_accuracy: 0.4267
146/Unknown 67s 455ms/step - loss: 1.5683 - sparse_categorical_accuracy: 0.4277
147/Unknown 68s 456ms/step - loss: 1.5656 - sparse_categorical_accuracy: 0.4287
148/Unknown 68s 456ms/step - loss: 1.5629 - sparse_categorical_accuracy: 0.4297
149/Unknown 69s 456ms/step - loss: 1.5602 - sparse_categorical_accuracy: 0.4306
150/Unknown 69s 456ms/step - loss: 1.5576 - sparse_categorical_accuracy: 0.4316
151/Unknown 69s 457ms/step - loss: 1.5550 - sparse_categorical_accuracy: 0.4325
152/Unknown 70s 457ms/step - loss: 1.5524 - sparse_categorical_accuracy: 0.4335
153/Unknown 70s 457ms/step - loss: 1.5498 - sparse_categorical_accuracy: 0.4344
154/Unknown 71s 457ms/step - loss: 1.5472 - sparse_categorical_accuracy: 0.4353
155/Unknown 71s 456ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4362
156/Unknown 72s 456ms/step - loss: 1.5421 - sparse_categorical_accuracy: 0.4371
157/Unknown 72s 455ms/step - loss: 1.5396 - sparse_categorical_accuracy: 0.4381
158/Unknown 72s 455ms/step - loss: 1.5371 - sparse_categorical_accuracy: 0.4390
159/Unknown 73s 454ms/step - loss: 1.5346 - sparse_categorical_accuracy: 0.4398
160/Unknown 73s 454ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4407
161/Unknown 74s 454ms/step - loss: 1.5297 - sparse_categorical_accuracy: 0.4416
162/Unknown 74s 453ms/step - loss: 1.5273 - sparse_categorical_accuracy: 0.4425
163/Unknown 74s 453ms/step - loss: 1.5249 - sparse_categorical_accuracy: 0.4433
164/Unknown 75s 453ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4442
165/Unknown 75s 453ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4450
166/Unknown 76s 453ms/step - loss: 1.5178 - sparse_categorical_accuracy: 0.4459
167/Unknown 76s 452ms/step - loss: 1.5154 - sparse_categorical_accuracy: 0.4467
168/Unknown 77s 452ms/step - loss: 1.5131 - sparse_categorical_accuracy: 0.4475
169/Unknown 77s 452ms/step - loss: 1.5108 - sparse_categorical_accuracy: 0.4483
170/Unknown 77s 453ms/step - loss: 1.5085 - sparse_categorical_accuracy: 0.4491
171/Unknown 78s 453ms/step - loss: 1.5062 - sparse_categorical_accuracy: 0.4500
172/Unknown 78s 453ms/step - loss: 1.5039 - sparse_categorical_accuracy: 0.4508
173/Unknown 79s 453ms/step - loss: 1.5017 - sparse_categorical_accuracy: 0.4515
174/Unknown 79s 452ms/step - loss: 1.4994 - sparse_categorical_accuracy: 0.4523
175/Unknown 80s 452ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4531
176/Unknown 80s 452ms/step - loss: 1.4950 - sparse_categorical_accuracy: 0.4539
177/Unknown 80s 451ms/step - loss: 1.4928 - sparse_categorical_accuracy: 0.4547
178/Unknown 81s 451ms/step - loss: 1.4906 - sparse_categorical_accuracy: 0.4554
179/Unknown 81s 450ms/step - loss: 1.4884 - sparse_categorical_accuracy: 0.4562
180/Unknown 82s 450ms/step - loss: 1.4863 - sparse_categorical_accuracy: 0.4570
181/Unknown 82s 450ms/step - loss: 1.4841 - sparse_categorical_accuracy: 0.4577
182/Unknown 82s 449ms/step - loss: 1.4820 - sparse_categorical_accuracy: 0.4585
183/Unknown 83s 449ms/step - loss: 1.4799 - sparse_categorical_accuracy: 0.4592
184/Unknown 83s 449ms/step - loss: 1.4778 - sparse_categorical_accuracy: 0.4599
185/Unknown 84s 449ms/step - loss: 1.4757 - sparse_categorical_accuracy: 0.4607
186/Unknown 84s 448ms/step - loss: 1.4736 - sparse_categorical_accuracy: 0.4614
187/Unknown 84s 448ms/step - loss: 1.4715 - sparse_categorical_accuracy: 0.4621
188/Unknown 85s 448ms/step - loss: 1.4695 - sparse_categorical_accuracy: 0.4628
189/Unknown 85s 448ms/step - loss: 1.4674 - sparse_categorical_accuracy: 0.4635
190/Unknown 86s 448ms/step - loss: 1.4654 - sparse_categorical_accuracy: 0.4643
191/Unknown 86s 449ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4650
192/Unknown 87s 449ms/step - loss: 1.4614 - sparse_categorical_accuracy: 0.4656
193/Unknown 87s 449ms/step - loss: 1.4594 - sparse_categorical_accuracy: 0.4663
194/Unknown 88s 448ms/step - loss: 1.4574 - sparse_categorical_accuracy: 0.4670
195/Unknown 88s 448ms/step - loss: 1.4554 - sparse_categorical_accuracy: 0.4677
196/Unknown 88s 449ms/step - loss: 1.4535 - sparse_categorical_accuracy: 0.4684
197/Unknown 89s 449ms/step - loss: 1.4515 - sparse_categorical_accuracy: 0.4691
198/Unknown 89s 449ms/step - loss: 1.4496 - sparse_categorical_accuracy: 0.4697
199/Unknown 90s 449ms/step - loss: 1.4476 - sparse_categorical_accuracy: 0.4704
200/Unknown 90s 449ms/step - loss: 1.4457 - sparse_categorical_accuracy: 0.4711
201/Unknown 91s 449ms/step - loss: 1.4438 - sparse_categorical_accuracy: 0.4717
202/Unknown 91s 449ms/step - loss: 1.4419 - sparse_categorical_accuracy: 0.4724
203/Unknown 92s 449ms/step - loss: 1.4401 - sparse_categorical_accuracy: 0.4730
204/Unknown 92s 449ms/step - loss: 1.4382 - sparse_categorical_accuracy: 0.4737
205/Unknown 92s 448ms/step - loss: 1.4363 - sparse_categorical_accuracy: 0.4743
206/Unknown 93s 448ms/step - loss: 1.4345 - sparse_categorical_accuracy: 0.4749
207/Unknown 93s 447ms/step - loss: 1.4327 - sparse_categorical_accuracy: 0.4756
208/Unknown 94s 447ms/step - loss: 1.4308 - sparse_categorical_accuracy: 0.4762
209/Unknown 94s 447ms/step - loss: 1.4290 - sparse_categorical_accuracy: 0.4768
210/Unknown 94s 446ms/step - loss: 1.4272 - sparse_categorical_accuracy: 0.4774
211/Unknown 95s 446ms/step - loss: 1.4254 - sparse_categorical_accuracy: 0.4780
212/Unknown 95s 446ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4786
213/Unknown 95s 446ms/step - loss: 1.4219 - sparse_categorical_accuracy: 0.4793
214/Unknown 96s 445ms/step - loss: 1.4201 - sparse_categorical_accuracy: 0.4799
215/Unknown 96s 445ms/step - loss: 1.4184 - sparse_categorical_accuracy: 0.4805
216/Unknown 97s 445ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4811
217/Unknown 97s 445ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4816
218/Unknown 98s 445ms/step - loss: 1.4132 - sparse_categorical_accuracy: 0.4822
219/Unknown 98s 445ms/step - loss: 1.4115 - sparse_categorical_accuracy: 0.4828
220/Unknown 98s 445ms/step - loss: 1.4098 - sparse_categorical_accuracy: 0.4834
221/Unknown 99s 445ms/step - loss: 1.4081 - sparse_categorical_accuracy: 0.4840
222/Unknown 99s 445ms/step - loss: 1.4064 - sparse_categorical_accuracy: 0.4846
223/Unknown 100s 444ms/step - loss: 1.4047 - sparse_categorical_accuracy: 0.4851
224/Unknown 100s 444ms/step - loss: 1.4030 - sparse_categorical_accuracy: 0.4857
225/Unknown 100s 444ms/step - loss: 1.4014 - sparse_categorical_accuracy: 0.4863
226/Unknown 101s 443ms/step - loss: 1.3997 - sparse_categorical_accuracy: 0.4868
227/Unknown 101s 442ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4874
228/Unknown 101s 442ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4879
229/Unknown 102s 441ms/step - loss: 1.3948 - sparse_categorical_accuracy: 0.4885
230/Unknown 102s 441ms/step - loss: 1.3932 - sparse_categorical_accuracy: 0.4890
231/Unknown 102s 441ms/step - loss: 1.3916 - sparse_categorical_accuracy: 0.4896
232/Unknown 103s 440ms/step - loss: 1.3900 - sparse_categorical_accuracy: 0.4901
233/Unknown 103s 440ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4907
234/Unknown 103s 440ms/step - loss: 1.3868 - sparse_categorical_accuracy: 0.4912
235/Unknown 104s 439ms/step - loss: 1.3853 - sparse_categorical_accuracy: 0.4917
236/Unknown 104s 439ms/step - loss: 1.3837 - sparse_categorical_accuracy: 0.4923
237/Unknown 105s 439ms/step - loss: 1.3821 - sparse_categorical_accuracy: 0.4928
238/Unknown 105s 439ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4933
239/Unknown 105s 439ms/step - loss: 1.3791 - sparse_categorical_accuracy: 0.4939
240/Unknown 106s 439ms/step - loss: 1.3775 - sparse_categorical_accuracy: 0.4944
241/Unknown 106s 439ms/step - loss: 1.3760 - sparse_categorical_accuracy: 0.4949
242/Unknown 107s 439ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4954
243/Unknown 107s 440ms/step - loss: 1.3730 - sparse_categorical_accuracy: 0.4959
244/Unknown 108s 440ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4964
245/Unknown 108s 440ms/step - loss: 1.3700 - sparse_categorical_accuracy: 0.4969
246/Unknown 109s 440ms/step - loss: 1.3685 - sparse_categorical_accuracy: 0.4974
247/Unknown 109s 440ms/step - loss: 1.3670 - sparse_categorical_accuracy: 0.4979
248/Unknown 110s 440ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4984
249/Unknown 110s 440ms/step - loss: 1.3641 - sparse_categorical_accuracy: 0.4989
250/Unknown 111s 440ms/step - loss: 1.3626 - sparse_categorical_accuracy: 0.4994
251/Unknown 111s 440ms/step - loss: 1.3612 - sparse_categorical_accuracy: 0.4999
252/Unknown 111s 440ms/step - loss: 1.3597 - sparse_categorical_accuracy: 0.5004
253/Unknown 112s 440ms/step - loss: 1.3583 - sparse_categorical_accuracy: 0.5009
254/Unknown 112s 440ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.5014
255/Unknown 113s 440ms/step - loss: 1.3554 - sparse_categorical_accuracy: 0.5018
256/Unknown 113s 439ms/step - loss: 1.3540 - sparse_categorical_accuracy: 0.5023
257/Unknown 113s 439ms/step - loss: 1.3526 - sparse_categorical_accuracy: 0.5028
258/Unknown 114s 439ms/step - loss: 1.3512 - sparse_categorical_accuracy: 0.5032
259/Unknown 114s 439ms/step - loss: 1.3498 - sparse_categorical_accuracy: 0.5037
260/Unknown 115s 438ms/step - loss: 1.3484 - sparse_categorical_accuracy: 0.5042
261/Unknown 115s 438ms/step - loss: 1.3471 - sparse_categorical_accuracy: 0.5046
262/Unknown 115s 438ms/step - loss: 1.3457 - sparse_categorical_accuracy: 0.5051
263/Unknown 116s 438ms/step - loss: 1.3443 - sparse_categorical_accuracy: 0.5055
264/Unknown 116s 438ms/step - loss: 1.3430 - sparse_categorical_accuracy: 0.5060
265/Unknown 117s 438ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.5065
266/Unknown 117s 437ms/step - loss: 1.3403 - sparse_categorical_accuracy: 0.5069
267/Unknown 117s 437ms/step - loss: 1.3389 - sparse_categorical_accuracy: 0.5074
268/Unknown 118s 437ms/step - loss: 1.3376 - sparse_categorical_accuracy: 0.5078
269/Unknown 118s 438ms/step - loss: 1.3363 - sparse_categorical_accuracy: 0.5082
270/Unknown 119s 438ms/step - loss: 1.3349 - sparse_categorical_accuracy: 0.5087
271/Unknown 119s 438ms/step - loss: 1.3336 - sparse_categorical_accuracy: 0.5091
272/Unknown 120s 438ms/step - loss: 1.3323 - sparse_categorical_accuracy: 0.5096
273/Unknown 120s 438ms/step - loss: 1.3310 - sparse_categorical_accuracy: 0.5100
274/Unknown 121s 439ms/step - loss: 1.3297 - sparse_categorical_accuracy: 0.5104
275/Unknown 121s 439ms/step - loss: 1.3284 - sparse_categorical_accuracy: 0.5108
276/Unknown 122s 439ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.5113
277/Unknown 122s 439ms/step - loss: 1.3259 - sparse_categorical_accuracy: 0.5117
278/Unknown 123s 439ms/step - loss: 1.3246 - sparse_categorical_accuracy: 0.5121
279/Unknown 123s 439ms/step - loss: 1.3233 - sparse_categorical_accuracy: 0.5125
280/Unknown 123s 439ms/step - loss: 1.3221 - sparse_categorical_accuracy: 0.5130
281/Unknown 124s 439ms/step - loss: 1.3208 - sparse_categorical_accuracy: 0.5134
282/Unknown 124s 439ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5138
283/Unknown 125s 439ms/step - loss: 1.3183 - sparse_categorical_accuracy: 0.5142
284/Unknown 125s 439ms/step - loss: 1.3171 - sparse_categorical_accuracy: 0.5146
285/Unknown 126s 439ms/step - loss: 1.3158 - sparse_categorical_accuracy: 0.5150
286/Unknown 126s 438ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5154
287/Unknown 126s 438ms/step - loss: 1.3134 - sparse_categorical_accuracy: 0.5158
288/Unknown 127s 438ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5162
289/Unknown 127s 438ms/step - loss: 1.3110 - sparse_categorical_accuracy: 0.5166
290/Unknown 128s 438ms/step - loss: 1.3097 - sparse_categorical_accuracy: 0.5170
291/Unknown 128s 438ms/step - loss: 1.3085 - sparse_categorical_accuracy: 0.5174
292/Unknown 128s 438ms/step - loss: 1.3073 - sparse_categorical_accuracy: 0.5178
293/Unknown 129s 437ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5182
294/Unknown 129s 437ms/step - loss: 1.3050 - sparse_categorical_accuracy: 0.5186
295/Unknown 130s 437ms/step - loss: 1.3038 - sparse_categorical_accuracy: 0.5190
296/Unknown 130s 438ms/step - loss: 1.3026 - sparse_categorical_accuracy: 0.5194
297/Unknown 131s 438ms/step - loss: 1.3014 - sparse_categorical_accuracy: 0.5198
298/Unknown 131s 438ms/step - loss: 1.3003 - sparse_categorical_accuracy: 0.5202
299/Unknown 131s 438ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5205
300/Unknown 132s 438ms/step - loss: 1.2980 - sparse_categorical_accuracy: 0.5209
301/Unknown 132s 438ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5213
302/Unknown 133s 438ms/step - loss: 1.2957 - sparse_categorical_accuracy: 0.5217
303/Unknown 133s 438ms/step - loss: 1.2945 - sparse_categorical_accuracy: 0.5221
304/Unknown 134s 438ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5224
305/Unknown 134s 438ms/step - loss: 1.2923 - sparse_categorical_accuracy: 0.5228
306/Unknown 135s 439ms/step - loss: 1.2911 - sparse_categorical_accuracy: 0.5232
307/Unknown 135s 439ms/step - loss: 1.2900 - sparse_categorical_accuracy: 0.5235
308/Unknown 136s 439ms/step - loss: 1.2889 - sparse_categorical_accuracy: 0.5239
309/Unknown 136s 439ms/step - loss: 1.2878 - sparse_categorical_accuracy: 0.5243
310/Unknown 137s 439ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5246
311/Unknown 137s 439ms/step - loss: 1.2856 - sparse_categorical_accuracy: 0.5250
312/Unknown 137s 439ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5254
313/Unknown 138s 439ms/step - loss: 1.2834 - sparse_categorical_accuracy: 0.5257
314/Unknown 138s 439ms/step - loss: 1.2823 - sparse_categorical_accuracy: 0.5261
315/Unknown 139s 439ms/step - loss: 1.2812 - sparse_categorical_accuracy: 0.5264
316/Unknown 139s 439ms/step - loss: 1.2801 - sparse_categorical_accuracy: 0.5268
317/Unknown 140s 439ms/step - loss: 1.2790 - sparse_categorical_accuracy: 0.5271
318/Unknown 140s 439ms/step - loss: 1.2780 - sparse_categorical_accuracy: 0.5275
319/Unknown 141s 439ms/step - loss: 1.2769 - sparse_categorical_accuracy: 0.5278
320/Unknown 141s 439ms/step - loss: 1.2758 - sparse_categorical_accuracy: 0.5282
321/Unknown 142s 439ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5285
322/Unknown 142s 439ms/step - loss: 1.2737 - sparse_categorical_accuracy: 0.5289
323/Unknown 143s 439ms/step - loss: 1.2727 - sparse_categorical_accuracy: 0.5292
324/Unknown 143s 440ms/step - loss: 1.2716 - sparse_categorical_accuracy: 0.5296
325/Unknown 143s 440ms/step - loss: 1.2706 - sparse_categorical_accuracy: 0.5299
326/Unknown 144s 439ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5303
327/Unknown 144s 439ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5306
328/Unknown 145s 439ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5309
329/Unknown 145s 439ms/step - loss: 1.2664 - sparse_categorical_accuracy: 0.5313
330/Unknown 145s 439ms/step - loss: 1.2654 - sparse_categorical_accuracy: 0.5316
331/Unknown 146s 438ms/step - loss: 1.2644 - sparse_categorical_accuracy: 0.5319
332/Unknown 146s 438ms/step - loss: 1.2634 - sparse_categorical_accuracy: 0.5323
333/Unknown 147s 438ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5326
334/Unknown 147s 438ms/step - loss: 1.2614 - sparse_categorical_accuracy: 0.5329
335/Unknown 147s 438ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5333
336/Unknown 148s 438ms/step - loss: 1.2594 - sparse_categorical_accuracy: 0.5336
337/Unknown 148s 438ms/step - loss: 1.2584 - sparse_categorical_accuracy: 0.5339
338/Unknown 148s 438ms/step - loss: 1.2574 - sparse_categorical_accuracy: 0.5342
339/Unknown 149s 438ms/step - loss: 1.2564 - sparse_categorical_accuracy: 0.5345
340/Unknown 149s 438ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5349
341/Unknown 150s 438ms/step - loss: 1.2545 - sparse_categorical_accuracy: 0.5352
342/Unknown 150s 438ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5355
343/Unknown 151s 438ms/step - loss: 1.2525 - sparse_categorical_accuracy: 0.5358
344/Unknown 151s 438ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5361
345/Unknown 152s 438ms/step - loss: 1.2506 - sparse_categorical_accuracy: 0.5364
346/Unknown 152s 439ms/step - loss: 1.2496 - sparse_categorical_accuracy: 0.5368
347/Unknown 153s 439ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5371
348/Unknown 153s 439ms/step - loss: 1.2477 - sparse_categorical_accuracy: 0.5374
349/Unknown 154s 439ms/step - loss: 1.2468 - sparse_categorical_accuracy: 0.5377
350/Unknown 154s 439ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5380
351/Unknown 154s 438ms/step - loss: 1.2449 - sparse_categorical_accuracy: 0.5383
352/Unknown 155s 439ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5386
353/Unknown 155s 439ms/step - loss: 1.2430 - sparse_categorical_accuracy: 0.5389
354/Unknown 156s 439ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5392
355/Unknown 156s 439ms/step - loss: 1.2412 - sparse_categorical_accuracy: 0.5395
356/Unknown 157s 439ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5398
357/Unknown 157s 439ms/step - loss: 1.2393 - sparse_categorical_accuracy: 0.5401
358/Unknown 158s 439ms/step - loss: 1.2384 - sparse_categorical_accuracy: 0.5404
359/Unknown 158s 439ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5407
360/Unknown 159s 439ms/step - loss: 1.2366 - sparse_categorical_accuracy: 0.5410
361/Unknown 159s 439ms/step - loss: 1.2357 - sparse_categorical_accuracy: 0.5413
362/Unknown 160s 440ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5416
363/Unknown 160s 440ms/step - loss: 1.2339 - sparse_categorical_accuracy: 0.5419
364/Unknown 161s 440ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5421
365/Unknown 161s 440ms/step - loss: 1.2321 - sparse_categorical_accuracy: 0.5424
366/Unknown 162s 440ms/step - loss: 1.2312 - sparse_categorical_accuracy: 0.5427
367/Unknown 162s 441ms/step - loss: 1.2303 - sparse_categorical_accuracy: 0.5430
368/Unknown 163s 441ms/step - loss: 1.2294 - sparse_categorical_accuracy: 0.5433
369/Unknown 163s 441ms/step - loss: 1.2285 - sparse_categorical_accuracy: 0.5436
370/Unknown 164s 441ms/step - loss: 1.2277 - sparse_categorical_accuracy: 0.5439
371/Unknown 164s 441ms/step - loss: 1.2268 - sparse_categorical_accuracy: 0.5441
372/Unknown 165s 441ms/step - loss: 1.2259 - sparse_categorical_accuracy: 0.5444
373/Unknown 165s 441ms/step - loss: 1.2251 - sparse_categorical_accuracy: 0.5447
374/Unknown 165s 441ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5450
375/Unknown 166s 441ms/step - loss: 1.2233 - sparse_categorical_accuracy: 0.5453
376/Unknown 166s 441ms/step - loss: 1.2225 - sparse_categorical_accuracy: 0.5455
377/Unknown 167s 440ms/step - loss: 1.2216 - sparse_categorical_accuracy: 0.5458
378/Unknown 167s 440ms/step - loss: 1.2208 - sparse_categorical_accuracy: 0.5461
379/Unknown 167s 440ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5464
380/Unknown 168s 440ms/step - loss: 1.2191 - sparse_categorical_accuracy: 0.5466
381/Unknown 168s 440ms/step - loss: 1.2182 - sparse_categorical_accuracy: 0.5469
382/Unknown 169s 440ms/step - loss: 1.2174 - sparse_categorical_accuracy: 0.5472
383/Unknown 169s 440ms/step - loss: 1.2165 - sparse_categorical_accuracy: 0.5475
384/Unknown 169s 440ms/step - loss: 1.2157 - sparse_categorical_accuracy: 0.5477
385/Unknown 170s 439ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5480
386/Unknown 170s 440ms/step - loss: 1.2140 - sparse_categorical_accuracy: 0.5483
387/Unknown 171s 440ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5485
388/Unknown 171s 440ms/step - loss: 1.2124 - sparse_categorical_accuracy: 0.5488
389/Unknown 172s 440ms/step - loss: 1.2116 - sparse_categorical_accuracy: 0.5491
390/Unknown 172s 440ms/step - loss: 1.2108 - sparse_categorical_accuracy: 0.5493
391/Unknown 173s 440ms/step - loss: 1.2099 - sparse_categorical_accuracy: 0.5496
392/Unknown 173s 440ms/step - loss: 1.2091 - sparse_categorical_accuracy: 0.5499
393/Unknown 174s 440ms/step - loss: 1.2083 - sparse_categorical_accuracy: 0.5501
394/Unknown 174s 440ms/step - loss: 1.2075 - sparse_categorical_accuracy: 0.5504
395/Unknown 175s 440ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5506
396/Unknown 175s 441ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5509
397/Unknown 175s 441ms/step - loss: 1.2051 - sparse_categorical_accuracy: 0.5512
398/Unknown 176s 440ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5514
399/Unknown 176s 440ms/step - loss: 1.2035 - sparse_categorical_accuracy: 0.5517
400/Unknown 177s 440ms/step - loss: 1.2027 - sparse_categorical_accuracy: 0.5519
401/Unknown 177s 441ms/step - loss: 1.2019 - sparse_categorical_accuracy: 0.5522
402/Unknown 178s 441ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5524
403/Unknown 178s 441ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5527
404/Unknown 179s 441ms/step - loss: 1.1996 - sparse_categorical_accuracy: 0.5529
405/Unknown 179s 441ms/step - loss: 1.1988 - sparse_categorical_accuracy: 0.5532
406/Unknown 180s 441ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5534
407/Unknown 180s 441ms/step - loss: 1.1973 - sparse_categorical_accuracy: 0.5537
408/Unknown 181s 441ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5539
409/Unknown 181s 442ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5542
410/Unknown 182s 442ms/step - loss: 1.1950 - sparse_categorical_accuracy: 0.5544
411/Unknown 182s 442ms/step - loss: 1.1942 - sparse_categorical_accuracy: 0.5547
412/Unknown 183s 442ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5549
413/Unknown 183s 442ms/step - loss: 1.1927 - sparse_categorical_accuracy: 0.5552
414/Unknown 184s 442ms/step - loss: 1.1919 - sparse_categorical_accuracy: 0.5554
415/Unknown 184s 442ms/step - loss: 1.1912 - sparse_categorical_accuracy: 0.5556
416/Unknown 185s 442ms/step - loss: 1.1904 - sparse_categorical_accuracy: 0.5559
417/Unknown 185s 443ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5561
418/Unknown 186s 443ms/step - loss: 1.1890 - sparse_categorical_accuracy: 0.5564
419/Unknown 186s 443ms/step - loss: 1.1882 - sparse_categorical_accuracy: 0.5566
420/Unknown 187s 443ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5568
421/Unknown 187s 443ms/step - loss: 1.1867 - sparse_categorical_accuracy: 0.5571
422/Unknown 187s 443ms/step - loss: 1.1860 - sparse_categorical_accuracy: 0.5573
423/Unknown 188s 443ms/step - loss: 1.1853 - sparse_categorical_accuracy: 0.5575
424/Unknown 188s 443ms/step - loss: 1.1846 - sparse_categorical_accuracy: 0.5578
425/Unknown 189s 443ms/step - loss: 1.1838 - sparse_categorical_accuracy: 0.5580
426/Unknown 190s 444ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5582
427/Unknown 190s 444ms/step - loss: 1.1824 - sparse_categorical_accuracy: 0.5585
428/Unknown 190s 444ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5587
429/Unknown 191s 444ms/step - loss: 1.1810 - sparse_categorical_accuracy: 0.5589
430/Unknown 191s 444ms/step - loss: 1.1802 - sparse_categorical_accuracy: 0.5592
431/Unknown 192s 444ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5594
432/Unknown 192s 444ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5596
433/Unknown 193s 444ms/step - loss: 1.1781 - sparse_categorical_accuracy: 0.5599
434/Unknown 193s 444ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5601
435/Unknown 195s 446ms/step - loss: 1.1767 - sparse_categorical_accuracy: 0.5603
436/Unknown 195s 447ms/step - loss: 1.1760 - sparse_categorical_accuracy: 0.5605
437/Unknown 196s 447ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5608
438/Unknown 196s 447ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5610
439/Unknown 197s 447ms/step - loss: 1.1739 - sparse_categorical_accuracy: 0.5612
440/Unknown 197s 447ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5614
441/Unknown 198s 447ms/step - loss: 1.1726 - sparse_categorical_accuracy: 0.5616
442/Unknown 198s 447ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5619
443/Unknown 199s 447ms/step - loss: 1.1712 - sparse_categorical_accuracy: 0.5621
444/Unknown 199s 447ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5623
445/Unknown 199s 447ms/step - loss: 1.1698 - sparse_categorical_accuracy: 0.5625
446/Unknown 200s 447ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5627
447/Unknown 200s 447ms/step - loss: 1.1685 - sparse_categorical_accuracy: 0.5629
448/Unknown 201s 447ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5632
449/Unknown 201s 447ms/step - loss: 1.1671 - sparse_categorical_accuracy: 0.5634
450/Unknown 202s 447ms/step - loss: 1.1665 - sparse_categorical_accuracy: 0.5636
451/Unknown 202s 447ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5638
452/Unknown 203s 448ms/step - loss: 1.1651 - sparse_categorical_accuracy: 0.5640
453/Unknown 203s 448ms/step - loss: 1.1645 - sparse_categorical_accuracy: 0.5642
454/Unknown 204s 448ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5644
455/Unknown 204s 448ms/step - loss: 1.1631 - sparse_categorical_accuracy: 0.5647
456/Unknown 205s 448ms/step - loss: 1.1625 - sparse_categorical_accuracy: 0.5649
457/Unknown 205s 448ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5651
458/Unknown 206s 448ms/step - loss: 1.1612 - sparse_categorical_accuracy: 0.5653
459/Unknown 206s 448ms/step - loss: 1.1605 - sparse_categorical_accuracy: 0.5655
460/Unknown 207s 448ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5657
461/Unknown 207s 448ms/step - loss: 1.1592 - sparse_categorical_accuracy: 0.5659
462/Unknown 208s 448ms/step - loss: 1.1586 - sparse_categorical_accuracy: 0.5661
463/Unknown 208s 448ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5663
464/Unknown 209s 448ms/step - loss: 1.1573 - sparse_categorical_accuracy: 0.5665
465/Unknown 209s 448ms/step - loss: 1.1566 - sparse_categorical_accuracy: 0.5667
466/Unknown 210s 448ms/step - loss: 1.1560 - sparse_categorical_accuracy: 0.5669
467/Unknown 210s 449ms/step - loss: 1.1554 - sparse_categorical_accuracy: 0.5671
468/Unknown 211s 449ms/step - loss: 1.1547 - sparse_categorical_accuracy: 0.5674
469/Unknown 211s 449ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5676
470/Unknown 212s 449ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5678
471/Unknown 212s 449ms/step - loss: 1.1528 - sparse_categorical_accuracy: 0.5680
472/Unknown 212s 449ms/step - loss: 1.1522 - sparse_categorical_accuracy: 0.5682
473/Unknown 213s 449ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5684
474/Unknown 213s 449ms/step - loss: 1.1510 - sparse_categorical_accuracy: 0.5686
475/Unknown 214s 449ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5688
476/Unknown 214s 449ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5690
477/Unknown 215s 449ms/step - loss: 1.1491 - sparse_categorical_accuracy: 0.5692
478/Unknown 215s 449ms/step - loss: 1.1485 - sparse_categorical_accuracy: 0.5694
479/Unknown 216s 449ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5695
480/Unknown 216s 450ms/step - loss: 1.1473 - sparse_categorical_accuracy: 0.5697
481/Unknown 217s 450ms/step - loss: 1.1466 - sparse_categorical_accuracy: 0.5699
482/Unknown 217s 450ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5701
483/Unknown 218s 450ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5703
484/Unknown 218s 450ms/step - loss: 1.1448 - sparse_categorical_accuracy: 0.5705
485/Unknown 219s 450ms/step - loss: 1.1442 - sparse_categorical_accuracy: 0.5707
486/Unknown 219s 450ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5709
487/Unknown 220s 450ms/step - loss: 1.1430 - sparse_categorical_accuracy: 0.5711
488/Unknown 220s 450ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5713
489/Unknown 221s 450ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5715
490/Unknown 221s 450ms/step - loss: 1.1412 - sparse_categorical_accuracy: 0.5717
491/Unknown 222s 450ms/step - loss: 1.1406 - sparse_categorical_accuracy: 0.5719
492/Unknown 222s 450ms/step - loss: 1.1400 - sparse_categorical_accuracy: 0.5720
493/Unknown 223s 450ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5722
494/Unknown 223s 451ms/step - loss: 1.1389 - sparse_categorical_accuracy: 0.5724
495/Unknown 224s 451ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5726
496/Unknown 224s 451ms/step - loss: 1.1377 - sparse_categorical_accuracy: 0.5728
497/Unknown 225s 451ms/step - loss: 1.1371 - sparse_categorical_accuracy: 0.5730
498/Unknown 225s 451ms/step - loss: 1.1365 - sparse_categorical_accuracy: 0.5732
499/Unknown 226s 451ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5734
500/Unknown 226s 451ms/step - loss: 1.1354 - sparse_categorical_accuracy: 0.5735
501/Unknown 227s 451ms/step - loss: 1.1348 - sparse_categorical_accuracy: 0.5737
502/Unknown 227s 451ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5739
503/Unknown 228s 451ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5741
504/Unknown 228s 451ms/step - loss: 1.1330 - sparse_categorical_accuracy: 0.5743
505/Unknown 229s 452ms/step - loss: 1.1325 - sparse_categorical_accuracy: 0.5745
506/Unknown 229s 452ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5746
507/Unknown 230s 452ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5748
508/Unknown 230s 452ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5750
509/Unknown 230s 451ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5752
510/Unknown 231s 452ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5754
511/Unknown 231s 452ms/step - loss: 1.1291 - sparse_categorical_accuracy: 0.5755
512/Unknown 232s 452ms/step - loss: 1.1285 - sparse_categorical_accuracy: 0.5757
513/Unknown 232s 452ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5759
514/Unknown 233s 452ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5761
515/Unknown 233s 452ms/step - loss: 1.1268 - sparse_categorical_accuracy: 0.5762
516/Unknown 234s 452ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5764
517/Unknown 234s 452ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5766
518/Unknown 235s 452ms/step - loss: 1.1252 - sparse_categorical_accuracy: 0.5768
519/Unknown 235s 452ms/step - loss: 1.1246 - sparse_categorical_accuracy: 0.5769
520/Unknown 236s 452ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5771
521/Unknown 236s 452ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5773
522/Unknown 237s 452ms/step - loss: 1.1230 - sparse_categorical_accuracy: 0.5775
523/Unknown 237s 452ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5776
524/Unknown 238s 452ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5778
525/Unknown 238s 452ms/step - loss: 1.1214 - sparse_categorical_accuracy: 0.5780
526/Unknown 239s 453ms/step - loss: 1.1208 - sparse_categorical_accuracy: 0.5782
527/Unknown 239s 453ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5783
528/Unknown 240s 453ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5785
529/Unknown 240s 453ms/step - loss: 1.1192 - sparse_categorical_accuracy: 0.5787
530/Unknown 241s 453ms/step - loss: 1.1187 - sparse_categorical_accuracy: 0.5788
531/Unknown 241s 453ms/step - loss: 1.1182 - sparse_categorical_accuracy: 0.5790
532/Unknown 242s 453ms/step - loss: 1.1176 - sparse_categorical_accuracy: 0.5792
533/Unknown 242s 453ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5793
534/Unknown 243s 453ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5795
535/Unknown 243s 453ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5797
536/Unknown 244s 453ms/step - loss: 1.1155 - sparse_categorical_accuracy: 0.5798
537/Unknown 244s 453ms/step - loss: 1.1150 - sparse_categorical_accuracy: 0.5800
538/Unknown 245s 454ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5802
539/Unknown 245s 454ms/step - loss: 1.1140 - sparse_categorical_accuracy: 0.5803
540/Unknown 245s 454ms/step - loss: 1.1135 - sparse_categorical_accuracy: 0.5805
541/Unknown 246s 454ms/step - loss: 1.1129 - sparse_categorical_accuracy: 0.5807
542/Unknown 246s 454ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5808
543/Unknown 247s 454ms/step - loss: 1.1119 - sparse_categorical_accuracy: 0.5810
544/Unknown 247s 454ms/step - loss: 1.1114 - sparse_categorical_accuracy: 0.5811
545/Unknown 248s 454ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5813
546/Unknown 248s 454ms/step - loss: 1.1104 - sparse_categorical_accuracy: 0.5815
547/Unknown 249s 454ms/step - loss: 1.1099 - sparse_categorical_accuracy: 0.5816
548/Unknown 249s 454ms/step - loss: 1.1093 - sparse_categorical_accuracy: 0.5818
549/Unknown 250s 454ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5820
550/Unknown 250s 454ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5821
551/Unknown 251s 454ms/step - loss: 1.1078 - sparse_categorical_accuracy: 0.5823
552/Unknown 251s 454ms/step - loss: 1.1073 - sparse_categorical_accuracy: 0.5824
553/Unknown 252s 454ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5826
554/Unknown 252s 454ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5828
555/Unknown 253s 454ms/step - loss: 1.1058 - sparse_categorical_accuracy: 0.5829
556/Unknown 253s 454ms/step - loss: 1.1053 - sparse_categorical_accuracy: 0.5831
557/Unknown 254s 454ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5832
558/Unknown 254s 455ms/step - loss: 1.1043 - sparse_categorical_accuracy: 0.5834
559/Unknown 255s 455ms/step - loss: 1.1038 - sparse_categorical_accuracy: 0.5835
560/Unknown 255s 455ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5837
561/Unknown 256s 455ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5839
562/Unknown 256s 455ms/step - loss: 1.1024 - sparse_categorical_accuracy: 0.5840
563/Unknown 257s 455ms/step - loss: 1.1019 - sparse_categorical_accuracy: 0.5842
564/Unknown 257s 455ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5843
565/Unknown 257s 455ms/step - loss: 1.1009 - sparse_categorical_accuracy: 0.5845
566/Unknown 258s 455ms/step - loss: 1.1004 - sparse_categorical_accuracy: 0.5846
567/Unknown 258s 455ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5848
568/Unknown 259s 455ms/step - loss: 1.0994 - sparse_categorical_accuracy: 0.5849
569/Unknown 259s 455ms/step - loss: 1.0990 - sparse_categorical_accuracy: 0.5851
570/Unknown 260s 455ms/step - loss: 1.0985 - sparse_categorical_accuracy: 0.5852
571/Unknown 260s 455ms/step - loss: 1.0980 - sparse_categorical_accuracy: 0.5854
572/Unknown 261s 455ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5855
573/Unknown 261s 455ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5857
574/Unknown 262s 455ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5859
575/Unknown 262s 455ms/step - loss: 1.0961 - sparse_categorical_accuracy: 0.5860
576/Unknown 263s 455ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5862
577/Unknown 263s 455ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5863
578/Unknown 264s 455ms/step - loss: 1.0947 - sparse_categorical_accuracy: 0.5865
579/Unknown 264s 455ms/step - loss: 1.0942 - sparse_categorical_accuracy: 0.5866
580/Unknown 265s 456ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5868
581/Unknown 265s 456ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5869
582/Unknown 266s 456ms/step - loss: 1.0928 - sparse_categorical_accuracy: 0.5870
583/Unknown 266s 456ms/step - loss: 1.0923 - sparse_categorical_accuracy: 0.5872
584/Unknown 267s 456ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5873
585/Unknown 267s 456ms/step - loss: 1.0914 - sparse_categorical_accuracy: 0.5875
586/Unknown 268s 456ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5876
587/Unknown 268s 456ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5878
588/Unknown 269s 456ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5879
589/Unknown 269s 456ms/step - loss: 1.0896 - sparse_categorical_accuracy: 0.5881
590/Unknown 270s 456ms/step - loss: 1.0891 - sparse_categorical_accuracy: 0.5882
591/Unknown 270s 456ms/step - loss: 1.0886 - sparse_categorical_accuracy: 0.5884
592/Unknown 271s 456ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5885
593/Unknown 271s 456ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5887
594/Unknown 271s 456ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5888
595/Unknown 272s 456ms/step - loss: 1.0868 - sparse_categorical_accuracy: 0.5889
596/Unknown 272s 456ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5891
597/Unknown 273s 456ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5892
598/Unknown 273s 456ms/step - loss: 1.0855 - sparse_categorical_accuracy: 0.5894
599/Unknown 274s 456ms/step - loss: 1.0850 - sparse_categorical_accuracy: 0.5895
600/Unknown 274s 456ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5897
601/Unknown 275s 456ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5898
602/Unknown 275s 456ms/step - loss: 1.0837 - sparse_categorical_accuracy: 0.5899
603/Unknown 276s 456ms/step - loss: 1.0832 - sparse_categorical_accuracy: 0.5901
604/Unknown 276s 456ms/step - loss: 1.0828 - sparse_categorical_accuracy: 0.5902
605/Unknown 277s 456ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5904
606/Unknown 277s 457ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5905
607/Unknown 278s 457ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5906
608/Unknown 278s 457ms/step - loss: 1.0810 - sparse_categorical_accuracy: 0.5908
609/Unknown 279s 457ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5909
610/Unknown 279s 457ms/step - loss: 1.0802 - sparse_categorical_accuracy: 0.5911
611/Unknown 280s 457ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5912
612/Unknown 280s 457ms/step - loss: 1.0793 - sparse_categorical_accuracy: 0.5913
613/Unknown 280s 457ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5915
614/Unknown 282s 458ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5916
615/Unknown 282s 458ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5917
616/Unknown 283s 458ms/step - loss: 1.0776 - sparse_categorical_accuracy: 0.5919
617/Unknown 283s 458ms/step - loss: 1.0771 - sparse_categorical_accuracy: 0.5920
618/Unknown 284s 458ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5921
619/Unknown 284s 458ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5923
620/Unknown 285s 459ms/step - loss: 1.0759 - sparse_categorical_accuracy: 0.5924
621/Unknown 285s 459ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5926
622/Unknown 286s 459ms/step - loss: 1.0750 - sparse_categorical_accuracy: 0.5927
623/Unknown 286s 459ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5928
624/Unknown 287s 459ms/step - loss: 1.0742 - sparse_categorical_accuracy: 0.5930
625/Unknown 287s 459ms/step - loss: 1.0737 - sparse_categorical_accuracy: 0.5931
626/Unknown 288s 459ms/step - loss: 1.0733 - sparse_categorical_accuracy: 0.5932
627/Unknown 288s 459ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5934
628/Unknown 289s 459ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5935
629/Unknown 289s 459ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5936
630/Unknown 290s 459ms/step - loss: 1.0716 - sparse_categorical_accuracy: 0.5937
631/Unknown 290s 459ms/step - loss: 1.0712 - sparse_categorical_accuracy: 0.5939
632/Unknown 291s 459ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5940
633/Unknown 291s 459ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5941
634/Unknown 292s 459ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5943
635/Unknown 292s 459ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5944
636/Unknown 293s 459ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5945
637/Unknown 293s 459ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5947
638/Unknown 294s 459ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5948
639/Unknown 294s 459ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5949
640/Unknown 295s 459ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5950
641/Unknown 295s 459ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5952
642/Unknown 296s 460ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5953
643/Unknown 296s 460ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5954
644/Unknown 297s 460ms/step - loss: 1.0659 - sparse_categorical_accuracy: 0.5956
645/Unknown 297s 460ms/step - loss: 1.0655 - sparse_categorical_accuracy: 0.5957
646/Unknown 297s 460ms/step - loss: 1.0651 - sparse_categorical_accuracy: 0.5958
647/Unknown 298s 460ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5959
648/Unknown 299s 460ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5961
649/Unknown 299s 460ms/step - loss: 1.0639 - sparse_categorical_accuracy: 0.5962
650/Unknown 299s 460ms/step - loss: 1.0635 - sparse_categorical_accuracy: 0.5963
651/Unknown 300s 460ms/step - loss: 1.0631 - sparse_categorical_accuracy: 0.5964
652/Unknown 300s 460ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5966
653/Unknown 301s 460ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5967
654/Unknown 301s 460ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5968
655/Unknown 302s 460ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5969
656/Unknown 302s 460ms/step - loss: 1.0611 - sparse_categorical_accuracy: 0.5971
657/Unknown 303s 460ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5972
658/Unknown 303s 460ms/step - loss: 1.0604 - sparse_categorical_accuracy: 0.5973
659/Unknown 304s 460ms/step - loss: 1.0600 - sparse_categorical_accuracy: 0.5974
660/Unknown 304s 460ms/step - loss: 1.0596 - sparse_categorical_accuracy: 0.5976
661/Unknown 305s 460ms/step - loss: 1.0592 - sparse_categorical_accuracy: 0.5977
662/Unknown 305s 460ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5978
663/Unknown 306s 460ms/step - loss: 1.0584 - sparse_categorical_accuracy: 0.5979
664/Unknown 306s 460ms/step - loss: 1.0580 - sparse_categorical_accuracy: 0.5980
665/Unknown 306s 460ms/step - loss: 1.0577 - sparse_categorical_accuracy: 0.5982
666/Unknown 307s 460ms/step - loss: 1.0573 - sparse_categorical_accuracy: 0.5983
667/Unknown 307s 460ms/step - loss: 1.0569 - sparse_categorical_accuracy: 0.5984
668/Unknown 308s 460ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5985
669/Unknown 308s 460ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5986
670/Unknown 309s 460ms/step - loss: 1.0557 - sparse_categorical_accuracy: 0.5988
671/Unknown 309s 460ms/step - loss: 1.0554 - sparse_categorical_accuracy: 0.5989
672/Unknown 310s 460ms/step - loss: 1.0550 - sparse_categorical_accuracy: 0.5990
673/Unknown 310s 460ms/step - loss: 1.0546 - sparse_categorical_accuracy: 0.5991
674/Unknown 310s 460ms/step - loss: 1.0542 - sparse_categorical_accuracy: 0.5992
675/Unknown 311s 460ms/step - loss: 1.0539 - sparse_categorical_accuracy: 0.5994
676/Unknown 311s 460ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5995
677/Unknown 312s 460ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5996
678/Unknown 312s 460ms/step - loss: 1.0527 - sparse_categorical_accuracy: 0.5997
679/Unknown 313s 460ms/step - loss: 1.0524 - sparse_categorical_accuracy: 0.5998
680/Unknown 313s 460ms/step - loss: 1.0520 - sparse_categorical_accuracy: 0.6000
681/Unknown 313s 459ms/step - loss: 1.0516 - sparse_categorical_accuracy: 0.6001
682/Unknown 314s 459ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.6002
683/Unknown 314s 459ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.6003
684/Unknown 315s 459ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.6004
685/Unknown 315s 459ms/step - loss: 1.0501 - sparse_categorical_accuracy: 0.6005
686/Unknown 315s 459ms/step - loss: 1.0498 - sparse_categorical_accuracy: 0.6006
687/Unknown 316s 459ms/step - loss: 1.0494 - sparse_categorical_accuracy: 0.6008
688/Unknown 316s 459ms/step - loss: 1.0490 - sparse_categorical_accuracy: 0.6009
689/Unknown 317s 459ms/step - loss: 1.0487 - sparse_categorical_accuracy: 0.6010
690/Unknown 317s 459ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.6011
691/Unknown 318s 459ms/step - loss: 1.0479 - sparse_categorical_accuracy: 0.6012
692/Unknown 318s 459ms/step - loss: 1.0476 - sparse_categorical_accuracy: 0.6013
693/Unknown 319s 459ms/step - loss: 1.0472 - sparse_categorical_accuracy: 0.6015
694/Unknown 319s 459ms/step - loss: 1.0468 - sparse_categorical_accuracy: 0.6016
695/Unknown 320s 459ms/step - loss: 1.0465 - sparse_categorical_accuracy: 0.6017
696/Unknown 320s 459ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.6018
697/Unknown 320s 459ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.6019
698/Unknown 321s 459ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.6020
699/Unknown 321s 459ms/step - loss: 1.0450 - sparse_categorical_accuracy: 0.6021
700/Unknown 322s 459ms/step - loss: 1.0447 - sparse_categorical_accuracy: 0.6022
701/Unknown 322s 459ms/step - loss: 1.0443 - sparse_categorical_accuracy: 0.6024
702/Unknown 323s 459ms/step - loss: 1.0440 - sparse_categorical_accuracy: 0.6025
703/Unknown 323s 459ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.6026
704/Unknown 324s 459ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.6027
705/Unknown 324s 459ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.6028
706/Unknown 325s 459ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.6029
707/Unknown 325s 459ms/step - loss: 1.0422 - sparse_categorical_accuracy: 0.6030
708/Unknown 326s 459ms/step - loss: 1.0419 - sparse_categorical_accuracy: 0.6031
709/Unknown 326s 459ms/step - loss: 1.0415 - sparse_categorical_accuracy: 0.6032
710/Unknown 327s 459ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.6034
711/Unknown 327s 459ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.6035
712/Unknown 328s 459ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.6036
713/Unknown 328s 459ms/step - loss: 1.0401 - sparse_categorical_accuracy: 0.6037
714/Unknown 329s 459ms/step - loss: 1.0398 - sparse_categorical_accuracy: 0.6038
715/Unknown 329s 460ms/step - loss: 1.0394 - sparse_categorical_accuracy: 0.6039
716/Unknown 330s 460ms/step - loss: 1.0391 - sparse_categorical_accuracy: 0.6040
717/Unknown 330s 460ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.6041
718/Unknown 330s 460ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.6042
719/Unknown 331s 460ms/step - loss: 1.0380 - sparse_categorical_accuracy: 0.6043
720/Unknown 331s 460ms/step - loss: 1.0377 - sparse_categorical_accuracy: 0.6044
721/Unknown 332s 460ms/step - loss: 1.0373 - sparse_categorical_accuracy: 0.6046
722/Unknown 332s 460ms/step - loss: 1.0370 - sparse_categorical_accuracy: 0.6047
723/Unknown 333s 459ms/step - loss: 1.0367 - sparse_categorical_accuracy: 0.6048
724/Unknown 333s 459ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.6049
725/Unknown 333s 459ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.6050
726/Unknown 334s 459ms/step - loss: 1.0356 - sparse_categorical_accuracy: 0.6051
727/Unknown 334s 459ms/step - loss: 1.0353 - sparse_categorical_accuracy: 0.6052
728/Unknown 335s 459ms/step - loss: 1.0350 - sparse_categorical_accuracy: 0.6053
729/Unknown 335s 459ms/step - loss: 1.0346 - sparse_categorical_accuracy: 0.6054
730/Unknown 336s 459ms/step - loss: 1.0343 - sparse_categorical_accuracy: 0.6055
731/Unknown 336s 459ms/step - loss: 1.0340 - sparse_categorical_accuracy: 0.6056
732/Unknown 336s 459ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.6057
733/Unknown 337s 459ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.6058
734/Unknown 337s 459ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.6059
735/Unknown 338s 459ms/step - loss: 1.0326 - sparse_categorical_accuracy: 0.6060
736/Unknown 338s 459ms/step - loss: 1.0323 - sparse_categorical_accuracy: 0.6061
737/Unknown 339s 459ms/step - loss: 1.0320 - sparse_categorical_accuracy: 0.6062
738/Unknown 339s 459ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.6064
739/Unknown 340s 459ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.6065
740/Unknown 340s 459ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.6066
741/Unknown 340s 459ms/step - loss: 1.0306 - sparse_categorical_accuracy: 0.6067
742/Unknown 341s 459ms/step - loss: 1.0303 - sparse_categorical_accuracy: 0.6068
743/Unknown 341s 459ms/step - loss: 1.0300 - sparse_categorical_accuracy: 0.6069
744/Unknown 342s 459ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.6070
745/Unknown 342s 459ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.6071
746/Unknown 343s 459ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.6072
747/Unknown 343s 459ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.6073
748/Unknown 344s 459ms/step - loss: 1.0283 - sparse_categorical_accuracy: 0.6074
749/Unknown 344s 459ms/step - loss: 1.0280 - sparse_categorical_accuracy: 0.6075
750/Unknown 345s 459ms/step - loss: 1.0277 - sparse_categorical_accuracy: 0.6076
751/Unknown 345s 459ms/step - loss: 1.0274 - sparse_categorical_accuracy: 0.6077
752/Unknown 346s 459ms/step - loss: 1.0271 - sparse_categorical_accuracy: 0.6078
753/Unknown 346s 459ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.6079
754/Unknown 347s 459ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.6080
755/Unknown 347s 459ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.6081
756/Unknown 348s 459ms/step - loss: 1.0258 - sparse_categorical_accuracy: 0.6082
757/Unknown 348s 459ms/step - loss: 1.0255 - sparse_categorical_accuracy: 0.6083
758/Unknown 349s 459ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.6084
759/Unknown 349s 459ms/step - loss: 1.0248 - sparse_categorical_accuracy: 0.6085
760/Unknown 350s 459ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.6086
761/Unknown 350s 459ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.6087
762/Unknown 351s 459ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.6088
763/Unknown 351s 459ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.6089
764/Unknown 352s 459ms/step - loss: 1.0232 - sparse_categorical_accuracy: 0.6090
765/Unknown 352s 460ms/step - loss: 1.0229 - sparse_categorical_accuracy: 0.6091
766/Unknown 353s 460ms/step - loss: 1.0226 - sparse_categorical_accuracy: 0.6092
767/Unknown 353s 460ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.6093
768/Unknown 354s 460ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.6094
769/Unknown 354s 460ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.6095
770/Unknown 354s 460ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.6096
771/Unknown 355s 459ms/step - loss: 1.0211 - sparse_categorical_accuracy: 0.6097
772/Unknown 355s 459ms/step - loss: 1.0207 - sparse_categorical_accuracy: 0.6098
773/Unknown 356s 459ms/step - loss: 1.0204 - sparse_categorical_accuracy: 0.6099
774/Unknown 356s 459ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.6100
775/Unknown 357s 459ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.6101
776/Unknown 357s 459ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.6102
777/Unknown 358s 460ms/step - loss: 1.0192 - sparse_categorical_accuracy: 0.6103
778/Unknown 358s 460ms/step - loss: 1.0189 - sparse_categorical_accuracy: 0.6103
779/Unknown 359s 460ms/step - loss: 1.0186 - sparse_categorical_accuracy: 0.6104
780/Unknown 359s 460ms/step - loss: 1.0183 - sparse_categorical_accuracy: 0.6105
781/Unknown 360s 460ms/step - loss: 1.0180 - sparse_categorical_accuracy: 0.6106
782/Unknown 360s 460ms/step - loss: 1.0177 - sparse_categorical_accuracy: 0.6107
783/Unknown 360s 460ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.6108
784/Unknown 361s 460ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.6109
785/Unknown 361s 460ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.6110
786/Unknown 362s 460ms/step - loss: 1.0165 - sparse_categorical_accuracy: 0.6111
787/Unknown 362s 460ms/step - loss: 1.0162 - sparse_categorical_accuracy: 0.6112
788/Unknown 363s 460ms/step - loss: 1.0159 - sparse_categorical_accuracy: 0.6113
789/Unknown 363s 460ms/step - loss: 1.0156 - sparse_categorical_accuracy: 0.6114
790/Unknown 364s 460ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.6115
791/Unknown 364s 460ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.6116
792/Unknown 365s 460ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6117
793/Unknown 365s 460ms/step - loss: 1.0144 - sparse_categorical_accuracy: 0.6118
794/Unknown 366s 460ms/step - loss: 1.0141 - sparse_categorical_accuracy: 0.6119
795/Unknown 366s 460ms/step - loss: 1.0138 - sparse_categorical_accuracy: 0.6120
796/Unknown 367s 460ms/step - loss: 1.0135 - sparse_categorical_accuracy: 0.6120
797/Unknown 367s 460ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6121
798/Unknown 367s 460ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6122
799/Unknown 368s 460ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6123
800/Unknown 368s 460ms/step - loss: 1.0123 - sparse_categorical_accuracy: 0.6124
801/Unknown 369s 460ms/step - loss: 1.0120 - sparse_categorical_accuracy: 0.6125
802/Unknown 369s 460ms/step - loss: 1.0117 - sparse_categorical_accuracy: 0.6126
803/Unknown 370s 460ms/step - loss: 1.0114 - sparse_categorical_accuracy: 0.6127
804/Unknown 370s 460ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6128
805/Unknown 371s 460ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6129
806/Unknown 371s 460ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6130
807/Unknown 372s 460ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6131
808/Unknown 372s 460ms/step - loss: 1.0100 - sparse_categorical_accuracy: 0.6131
809/Unknown 372s 459ms/step - loss: 1.0097 - sparse_categorical_accuracy: 0.6132
810/Unknown 373s 459ms/step - loss: 1.0094 - sparse_categorical_accuracy: 0.6133
811/Unknown 373s 459ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6134
812/Unknown 373s 459ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6135
813/Unknown 374s 459ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6136
814/Unknown 374s 459ms/step - loss: 1.0082 - sparse_categorical_accuracy: 0.6137
815/Unknown 375s 459ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6138
816/Unknown 375s 459ms/step - loss: 1.0077 - sparse_categorical_accuracy: 0.6139
817/Unknown 375s 459ms/step - loss: 1.0074 - sparse_categorical_accuracy: 0.6140
818/Unknown 376s 459ms/step - loss: 1.0071 - sparse_categorical_accuracy: 0.6140
819/Unknown 376s 459ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6141
820/Unknown 377s 459ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6142
821/Unknown 377s 459ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6143
822/Unknown 378s 459ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6144
823/Unknown 378s 459ms/step - loss: 1.0057 - sparse_categorical_accuracy: 0.6145
824/Unknown 379s 459ms/step - loss: 1.0054 - sparse_categorical_accuracy: 0.6146
825/Unknown 379s 459ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6147
826/Unknown 380s 459ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6148
827/Unknown 380s 459ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6148
828/Unknown 381s 459ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6149
829/Unknown 381s 459ms/step - loss: 1.0040 - sparse_categorical_accuracy: 0.6150
830/Unknown 382s 459ms/step - loss: 1.0037 - sparse_categorical_accuracy: 0.6151
831/Unknown 382s 459ms/step - loss: 1.0034 - sparse_categorical_accuracy: 0.6152
832/Unknown 383s 459ms/step - loss: 1.0032 - sparse_categorical_accuracy: 0.6153
833/Unknown 383s 459ms/step - loss: 1.0029 - sparse_categorical_accuracy: 0.6154
834/Unknown 384s 459ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6155
835/Unknown 384s 459ms/step - loss: 1.0023 - sparse_categorical_accuracy: 0.6155
836/Unknown 385s 459ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6156
837/Unknown 385s 459ms/step - loss: 1.0018 - sparse_categorical_accuracy: 0.6157
838/Unknown 385s 459ms/step - loss: 1.0015 - sparse_categorical_accuracy: 0.6158
839/Unknown 386s 459ms/step - loss: 1.0012 - sparse_categorical_accuracy: 0.6159
840/Unknown 386s 459ms/step - loss: 1.0010 - sparse_categorical_accuracy: 0.6160
841/Unknown 387s 459ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6161
842/Unknown 387s 459ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6162
843/Unknown 388s 459ms/step - loss: 1.0001 - sparse_categorical_accuracy: 0.6162
844/Unknown 388s 459ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6163
845/Unknown 389s 459ms/step - loss: 0.9996 - sparse_categorical_accuracy: 0.6164
846/Unknown 389s 459ms/step - loss: 0.9993 - sparse_categorical_accuracy: 0.6165
847/Unknown 390s 459ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6166
848/Unknown 390s 460ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6167
849/Unknown 391s 460ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6167
850/Unknown 391s 460ms/step - loss: 0.9982 - sparse_categorical_accuracy: 0.6168
851/Unknown 392s 460ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6169
852/Unknown 392s 460ms/step - loss: 0.9977 - sparse_categorical_accuracy: 0.6170
853/Unknown 393s 460ms/step - loss: 0.9974 - sparse_categorical_accuracy: 0.6171
854/Unknown 393s 460ms/step - loss: 0.9972 - sparse_categorical_accuracy: 0.6172
855/Unknown 394s 460ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6173
856/Unknown 394s 460ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6173
857/Unknown 394s 460ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6174
858/Unknown 395s 460ms/step - loss: 0.9961 - sparse_categorical_accuracy: 0.6175
859/Unknown 395s 460ms/step - loss: 0.9958 - sparse_categorical_accuracy: 0.6176
860/Unknown 396s 460ms/step - loss: 0.9956 - sparse_categorical_accuracy: 0.6177
861/Unknown 396s 460ms/step - loss: 0.9953 - sparse_categorical_accuracy: 0.6178
862/Unknown 397s 460ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6178
863/Unknown 397s 459ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6179
864/Unknown 397s 459ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6180
865/Unknown 398s 459ms/step - loss: 0.9942 - sparse_categorical_accuracy: 0.6181
866/Unknown 398s 459ms/step - loss: 0.9940 - sparse_categorical_accuracy: 0.6182
867/Unknown 399s 459ms/step - loss: 0.9937 - sparse_categorical_accuracy: 0.6182
868/Unknown 399s 459ms/step - loss: 0.9935 - sparse_categorical_accuracy: 0.6183
869/Unknown 399s 459ms/step - loss: 0.9932 - sparse_categorical_accuracy: 0.6184
870/Unknown 400s 459ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6185
871/Unknown 400s 459ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6186
872/Unknown 401s 459ms/step - loss: 0.9924 - sparse_categorical_accuracy: 0.6187
873/Unknown 401s 459ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6187
874/Unknown 402s 459ms/step - loss: 0.9919 - sparse_categorical_accuracy: 0.6188
875/Unknown 402s 459ms/step - loss: 0.9916 - sparse_categorical_accuracy: 0.6189
876/Unknown 403s 459ms/step - loss: 0.9914 - sparse_categorical_accuracy: 0.6190
877/Unknown 403s 459ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6191
878/Unknown 404s 459ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6191
879/Unknown 404s 459ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6192
880/Unknown 404s 459ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6193
881/Unknown 405s 459ms/step - loss: 0.9901 - sparse_categorical_accuracy: 0.6194
882/Unknown 405s 459ms/step - loss: 0.9898 - sparse_categorical_accuracy: 0.6195
883/Unknown 406s 459ms/step - loss: 0.9896 - sparse_categorical_accuracy: 0.6195
884/Unknown 406s 459ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6196
885/Unknown 406s 459ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6197
886/Unknown 407s 459ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6198
887/Unknown 407s 458ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6199
888/Unknown 408s 458ms/step - loss: 0.9883 - sparse_categorical_accuracy: 0.6199
889/Unknown 408s 458ms/step - loss: 0.9881 - sparse_categorical_accuracy: 0.6200
890/Unknown 408s 458ms/step - loss: 0.9878 - sparse_categorical_accuracy: 0.6201
891/Unknown 409s 458ms/step - loss: 0.9876 - sparse_categorical_accuracy: 0.6202
892/Unknown 409s 458ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6203
893/Unknown 410s 458ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6203
894/Unknown 410s 458ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6204
895/Unknown 411s 458ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6205
896/Unknown 411s 458ms/step - loss: 0.9863 - sparse_categorical_accuracy: 0.6206
897/Unknown 412s 458ms/step - loss: 0.9861 - sparse_categorical_accuracy: 0.6206
898/Unknown 412s 458ms/step - loss: 0.9858 - sparse_categorical_accuracy: 0.6207
899/Unknown 413s 458ms/step - loss: 0.9856 - sparse_categorical_accuracy: 0.6208
900/Unknown 413s 459ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6209
901/Unknown 414s 459ms/step - loss: 0.9851 - sparse_categorical_accuracy: 0.6210
902/Unknown 414s 458ms/step - loss: 0.9848 - sparse_categorical_accuracy: 0.6210
903/Unknown 414s 458ms/step - loss: 0.9846 - sparse_categorical_accuracy: 0.6211
904/Unknown 415s 458ms/step - loss: 0.9843 - sparse_categorical_accuracy: 0.6212
905/Unknown 415s 458ms/step - loss: 0.9841 - sparse_categorical_accuracy: 0.6213
906/Unknown 416s 458ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6213
907/Unknown 416s 458ms/step - loss: 0.9836 - sparse_categorical_accuracy: 0.6214
908/Unknown 416s 458ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6215
909/Unknown 417s 458ms/step - loss: 0.9831 - sparse_categorical_accuracy: 0.6216
910/Unknown 417s 458ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6216
911/Unknown 418s 458ms/step - loss: 0.9826 - sparse_categorical_accuracy: 0.6217
912/Unknown 418s 458ms/step - loss: 0.9824 - sparse_categorical_accuracy: 0.6218
913/Unknown 418s 458ms/step - loss: 0.9821 - sparse_categorical_accuracy: 0.6219
914/Unknown 419s 458ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6219
915/Unknown 419s 457ms/step - loss: 0.9817 - sparse_categorical_accuracy: 0.6220
916/Unknown 420s 457ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6221
917/Unknown 420s 458ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6222
918/Unknown 421s 458ms/step - loss: 0.9809 - sparse_categorical_accuracy: 0.6222
919/Unknown 421s 458ms/step - loss: 0.9807 - sparse_categorical_accuracy: 0.6223
920/Unknown 421s 457ms/step - loss: 0.9805 - sparse_categorical_accuracy: 0.6224
921/Unknown 422s 458ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6225
922/Unknown 422s 458ms/step - loss: 0.9800 - sparse_categorical_accuracy: 0.6225
923/Unknown 423s 458ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6226
924/Unknown 423s 458ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6227
925/Unknown 424s 458ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6228
926/Unknown 424s 458ms/step - loss: 0.9790 - sparse_categorical_accuracy: 0.6228
927/Unknown 425s 458ms/step - loss: 0.9788 - sparse_categorical_accuracy: 0.6229
928/Unknown 425s 458ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6230
929/Unknown 426s 458ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6231
930/Unknown 426s 458ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6231
931/Unknown 427s 458ms/step - loss: 0.9778 - sparse_categorical_accuracy: 0.6232
932/Unknown 427s 458ms/step - loss: 0.9776 - sparse_categorical_accuracy: 0.6233
933/Unknown 428s 458ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6234
934/Unknown 428s 458ms/step - loss: 0.9771 - sparse_categorical_accuracy: 0.6234
935/Unknown 429s 458ms/step - loss: 0.9769 - sparse_categorical_accuracy: 0.6235
936/Unknown 429s 458ms/step - loss: 0.9767 - sparse_categorical_accuracy: 0.6236
937/Unknown 429s 458ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6236
938/Unknown 430s 458ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6237
939/Unknown 430s 458ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6238
940/Unknown 431s 458ms/step - loss: 0.9757 - sparse_categorical_accuracy: 0.6239
941/Unknown 431s 458ms/step - loss: 0.9755 - sparse_categorical_accuracy: 0.6239
942/Unknown 432s 458ms/step - loss: 0.9753 - sparse_categorical_accuracy: 0.6240
943/Unknown 432s 458ms/step - loss: 0.9750 - sparse_categorical_accuracy: 0.6241
944/Unknown 433s 458ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6242
945/Unknown 433s 458ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6242
946/Unknown 434s 458ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6243
947/Unknown 434s 458ms/step - loss: 0.9741 - sparse_categorical_accuracy: 0.6244
948/Unknown 435s 458ms/step - loss: 0.9739 - sparse_categorical_accuracy: 0.6244
949/Unknown 435s 458ms/step - loss: 0.9737 - sparse_categorical_accuracy: 0.6245
950/Unknown 436s 458ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6246
951/Unknown 436s 458ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6247
952/Unknown 437s 458ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6247
953/Unknown 437s 458ms/step - loss: 0.9727 - sparse_categorical_accuracy: 0.6248
954/Unknown 438s 458ms/step - loss: 0.9725 - sparse_categorical_accuracy: 0.6249
955/Unknown 438s 458ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6249
956/Unknown 439s 458ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6250
957/Unknown 439s 458ms/step - loss: 0.9718 - sparse_categorical_accuracy: 0.6251
958/Unknown 439s 458ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6252
959/Unknown 440s 458ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6252
960/Unknown 440s 458ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6253
961/Unknown 441s 458ms/step - loss: 0.9709 - sparse_categorical_accuracy: 0.6254
962/Unknown 441s 458ms/step - loss: 0.9707 - sparse_categorical_accuracy: 0.6254
963/Unknown 442s 458ms/step - loss: 0.9705 - sparse_categorical_accuracy: 0.6255
964/Unknown 442s 458ms/step - loss: 0.9703 - sparse_categorical_accuracy: 0.6256
965/Unknown 443s 458ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6256
966/Unknown 443s 458ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6257
967/Unknown 444s 458ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6258
968/Unknown 444s 458ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6259
969/Unknown 445s 458ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6259
970/Unknown 445s 458ms/step - loss: 0.9689 - sparse_categorical_accuracy: 0.6260
971/Unknown 446s 458ms/step - loss: 0.9687 - sparse_categorical_accuracy: 0.6261
972/Unknown 446s 459ms/step - loss: 0.9685 - sparse_categorical_accuracy: 0.6261
973/Unknown 447s 458ms/step - loss: 0.9683 - sparse_categorical_accuracy: 0.6262
974/Unknown 447s 458ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6263
975/Unknown 447s 458ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6263
976/Unknown 448s 458ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6264
977/Unknown 448s 458ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6265
978/Unknown 449s 458ms/step - loss: 0.9672 - sparse_categorical_accuracy: 0.6265
979/Unknown 449s 458ms/step - loss: 0.9669 - sparse_categorical_accuracy: 0.6266
980/Unknown 449s 458ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6267
981/Unknown 450s 458ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6268
982/Unknown 450s 458ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6268
983/Unknown 451s 458ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6269
984/Unknown 451s 458ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6270
985/Unknown 451s 458ms/step - loss: 0.9656 - sparse_categorical_accuracy: 0.6270
986/Unknown 452s 458ms/step - loss: 0.9654 - sparse_categorical_accuracy: 0.6271
987/Unknown 452s 458ms/step - loss: 0.9652 - sparse_categorical_accuracy: 0.6272
988/Unknown 453s 458ms/step - loss: 0.9650 - sparse_categorical_accuracy: 0.6272
989/Unknown 453s 458ms/step - loss: 0.9648 - sparse_categorical_accuracy: 0.6273
990/Unknown 454s 458ms/step - loss: 0.9646 - sparse_categorical_accuracy: 0.6274
991/Unknown 454s 458ms/step - loss: 0.9643 - sparse_categorical_accuracy: 0.6274
992/Unknown 455s 458ms/step - loss: 0.9641 - sparse_categorical_accuracy: 0.6275
993/Unknown 455s 458ms/step - loss: 0.9639 - sparse_categorical_accuracy: 0.6276
994/Unknown 456s 458ms/step - loss: 0.9637 - sparse_categorical_accuracy: 0.6276
995/Unknown 456s 458ms/step - loss: 0.9635 - sparse_categorical_accuracy: 0.6277
996/Unknown 457s 458ms/step - loss: 0.9633 - sparse_categorical_accuracy: 0.6278
997/Unknown 457s 458ms/step - loss: 0.9631 - sparse_categorical_accuracy: 0.6278
998/Unknown 458s 458ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6279
999/Unknown 458s 458ms/step - loss: 0.9626 - sparse_categorical_accuracy: 0.6280
1000/未知 459秒 458毫秒/步 - 损失: 0.9624 - 稀疏分类准确率: 0.6280
1001/未知 459秒 458毫秒/步 - 损失: 0.9622 - 稀疏分类准确率: 0.6281
1002/未知 460秒 458毫秒/步 - 损失: 0.9620 - 稀疏分类准确率: 0.6282
1003/未知 460秒 458毫秒/步 - 损失: 0.9618 - 稀疏分类准确率: 0.6282
1004/未知 461秒 458毫秒/步 - 损失: 0.9616 - 稀疏分类准确率: 0.6283
1005/未知 461秒 458毫秒/步 - 损失: 0.9614 - 稀疏分类准确率: 0.6284
1006/未知 462秒 458毫秒/步 - 损失: 0.9612 - 稀疏分类准确率: 0.6284
1007/未知 462秒 458毫秒/步 - 损失: 0.9609 - 稀疏分类准确率: 0.6285
1008/未知 462秒 458毫秒/步 - 损失: 0.9607 - 稀疏分类准确率: 0.6286
1009/未知 463秒 458毫秒/步 - 损失: 0.9605 - 稀疏分类准确率: 0.6286
1010/未知 463秒 458毫秒/步 - 损失: 0.9603 - 稀疏分类准确率: 0.6287
1011/未知 464秒 458毫秒/步 - 损失: 0.9601 - 稀疏分类准确率: 0.6287
1012/未知 465秒 458毫秒/步 - 损失: 0.9599 - 稀疏分类准确率: 0.6288
1013/未知 465秒 458毫秒/步 - 损失: 0.9597 - 稀疏分类准确率: 0.6289
1014/未知 465秒 459毫秒/步 - 损失: 0.9595 - 稀疏分类准确率: 0.6289
1015/未知 466秒 459毫秒/步 - 损失: 0.9593 - 稀疏分类准确率: 0.6290
1016/未知 466秒 459毫秒/步 - 损失: 0.9591 - 稀疏分类准确率: 0.6291
1017/未知 467秒 459毫秒/步 - 损失: 0.9589 - 稀疏分类准确率: 0.6291
1018/未知 467秒 459毫秒/步 - 损失: 0.9587 - 稀疏分类准确率: 0.6292
1019/未知 468秒 459毫秒/步 - 损失: 0.9584 - 稀疏分类准确率: 0.6293
1020/未知 468秒 459毫秒/步 - 损失: 0.9582 - 稀疏分类准确率: 0.6293
1021/未知 469秒 459毫秒/步 - 损失: 0.9580 - 稀疏分类准确率: 0.6294
1022/未知 469秒 459毫秒/步 - 损失: 0.9578 - 稀疏分类准确率: 0.6295
1023/未知 470秒 459毫秒/步 - 损失: 0.9576 - 稀疏分类准确率: 0.6295
1024/未知 470秒 459毫秒/步 - 损失: 0.9574 - 稀疏分类准确率: 0.6296
1025/未知 471秒 459毫秒/步 - 损失: 0.9572 - 稀疏分类准确率: 0.6297
1026/未知 471秒 459毫秒/步 - 损失: 0.9570 - 稀疏分类准确率: 0.6297
1027/未知 472秒 459毫秒/步 - 损失: 0.9568 - 稀疏分类准确率: 0.6298
1028/未知 472秒 459毫秒/步 - 损失: 0.9566 - 稀疏分类准确率: 0.6298
1029/未知 473秒 459毫秒/步 - 损失: 0.9564 - 稀疏分类准确率: 0.6299
1030/未知 473秒 459毫秒/步 - 损失: 0.9562 - 稀疏分类准确率: 0.6300
1031/未知 474秒 459毫秒/步 - 损失: 0.9560 - 稀疏分类准确率: 0.6300
1032/未知 474秒 459毫秒/步 - 损失: 0.9558 - 稀疏分类准确率: 0.6301
1033/未知 475秒 459毫秒/步 - 损失: 0.9556 - 稀疏分类准确率: 0.6302
1034/未知 475秒 459毫秒/步 - 损失: 0.9554 - 稀疏分类准确率: 0.6302
1035/未知 476秒 459毫秒/步 - 损失: 0.9552 - 稀疏分类准确率: 0.6303
1036/未知 476秒 459毫秒/步 - 损失: 0.9550 - 稀疏分类准确率: 0.6304
1037/未知 477秒 459毫秒/步 - 损失: 0.9548 - 稀疏分类准确率: 0.6304
1038/未知 477秒 459毫秒/步 - 损失: 0.9546 - 稀疏分类准确率: 0.6305
1039/未知 478秒 459毫秒/步 - 损失: 0.9544 - 稀疏分类准确率: 0.6305
1040/未知 478秒 459毫秒/步 - 损失: 0.9542 - 稀疏分类准确率: 0.6306
1041/未知 479秒 459毫秒/步 - 损失: 0.9540 - 稀疏分类准确率: 0.6307
1042/未知 479秒 459毫秒/步 - 损失: 0.9538 - 稀疏分类准确率: 0.6307
1043/未知 480秒 459毫秒/步 - 损失: 0.9536 - 稀疏分类准确率: 0.6308
1044/未知 480秒 459毫秒/步 - 损失: 0.9534 - 稀疏分类准确率: 0.6309
1045/未知 481秒 459毫秒/步 - 损失: 0.9532 - 稀疏分类准确率: 0.6309
1046/未知 481秒 459毫秒/步 - 损失: 0.9530 - 稀疏分类准确率: 0.6310
1047/未知 482秒 459毫秒/步 - 损失: 0.9528 - 稀疏分类准确率: 0.6310
1048/未知 482秒 459毫秒/步 - 损失: 0.9526 - 稀疏分类准确率: 0.6311
1049/未知 483秒 459毫秒/步 - 损失: 0.9524 - 稀疏分类准确率: 0.6312
1050/未知 483秒 460毫秒/步 - 损失: 0.9522 - 稀疏分类准确率: 0.6312
1051/未知 484秒 460毫秒/步 - 损失: 0.9520 - 稀疏分类准确率: 0.6313
1052/未知 484秒 460毫秒/步 - 损失: 0.9518 - 稀疏分类准确率: 0.6314
1053/未知 484秒 460毫秒/步 - 损失: 0.9516 - 稀疏分类准确率: 0.6314
1054/未知 485秒 460毫秒/步 - 损失: 0.9514 - 稀疏分类准确率: 0.6315
1055/未知 485秒 460毫秒/步 - 损失: 0.9512 - 稀疏分类准确率: 0.6315
1056/未知 486秒 460毫秒/步 - 损失: 0.9510 - 稀疏分类准确率: 0.6316
1057/未知 486秒 460毫秒/步 - 损失: 0.9508 - 稀疏分类准确率: 0.6317
1058/未知 487秒 460毫秒/步 - 损失: 0.9506 - 稀疏分类准确率: 0.6317
1059/未知 487秒 460毫秒/步 - 损失: 0.9504 - 稀疏分类准确率: 0.6318
1060/未知 488秒 460毫秒/步 - 损失: 0.9502 - 稀疏分类准确率: 0.6318
1061/未知 488秒 460毫秒/步 - 损失: 0.9500 - 稀疏分类准确率: 0.6319
1062/未知 489秒 460毫秒/步 - 损失: 0.9498 - 稀疏分类准确率: 0.6320
1063/未知 489秒 460毫秒/步 - 损失: 0.9496 - 稀疏分类准确率: 0.6320
1064/未知 490秒 460毫秒/步 - 损失: 0.9495 - 稀疏分类准确率: 0.6321
1065/未知 490秒 460毫秒/步 - 损失: 0.9493 - 稀疏分类准确率: 0.6321
1066/未知 491秒 460毫秒/步 - 损失: 0.9491 - 稀疏分类准确率: 0.6322
1067/未知 491秒 460毫秒/步 - 损失: 0.9489 - 稀疏分类准确率: 0.6323
1068/未知 492秒 460毫秒/步 - 损失: 0.9487 - 稀疏分类准确率: 0.6323
1069/未知 492秒 460毫秒/步 - 损失: 0.9485 - 稀疏分类准确率: 0.6324
1070/未知 493秒 460毫秒/步 - 损失: 0.9483 - 稀疏分类准确率: 0.6324
1071/未知 493秒 460毫秒/步 - 损失: 0.9481 - 稀疏分类准确率: 0.6325
1072/未知 494秒 460毫秒/步 - 损失: 0.9479 - 稀疏分类准确率: 0.6326
1073/未知 494秒 460毫秒/步 - 损失: 0.9477 - 稀疏分类准确率: 0.6326
1074/未知 495秒 460毫秒/步 - 损失: 0.9475 - 稀疏分类准确率: 0.6327
1075/未知 495秒 460毫秒/步 - 损失: 0.9473 - 稀疏分类准确率: 0.6327
1076/未知 496秒 460毫秒/步 - 损失: 0.9471 - 稀疏分类准确率: 0.6328
1077/未知 496秒 460毫秒/步 - 损失: 0.9470 - 稀疏分类准确率: 0.6329
1078/未知 496秒 460毫秒/步 - 损失: 0.9468 - 稀疏分类准确率: 0.6329
1079/未知 497秒 460毫秒/步 - 损失: 0.9466 - 稀疏分类准确率: 0.6330
1080/未知 497秒 460毫秒/步 - 损失: 0.9464 - 稀疏分类准确率: 0.6330
1081/未知 498秒 460毫秒/步 - 损失: 0.9462 - 稀疏分类准确率: 0.6331
1082/未知 498秒 460毫秒/步 - 损失: 0.9460 - 稀疏分类准确率: 0.6332
1083/未知 499秒 460毫秒/步 - 损失: 0.9458 - 稀疏分类准确率: 0.6332
1084/未知 499秒 460毫秒/步 - 损失: 0.9456 - 稀疏分类准确率: 0.6333
1085/未知 500秒 460毫秒/步 - 损失: 0.9454 - 稀疏分类准确率: 0.6333
1086/未知 500秒 460毫秒/步 - 损失: 0.9453 - 稀疏分类准确率: 0.6334
1087/未知 501秒 460毫秒/步 - 损失: 0.9451 - 稀疏分类准确率: 0.6335
1088/未知 501秒 460毫秒/步 - 损失: 0.9449 - 稀疏分类准确率: 0.6335
1089/未知 502秒 460毫秒/步 - 损失: 0.9447 - 稀疏分类准确率: 0.6336
1090/未知 502秒 460毫秒/步 - 损失: 0.9445 - 稀疏分类准确率: 0.6336
1091/未知 503秒 460毫秒/步 - 损失: 0.9443 - 稀疏分类准确率: 0.6337
1092/未知 503秒 460毫秒/步 - 损失: 0.9441 - 稀疏分类准确率: 0.6337
1093/未知 503秒 460毫秒/步 - 损失: 0.9439 - 稀疏分类准确率: 0.6338
1094/未知 504秒 460毫秒/步 - 损失: 0.9438 - 稀疏分类准确率: 0.6339
1095/未知 504秒 460毫秒/步 - 损失: 0.9436 - 稀疏分类准确率: 0.6339
1096/未知 505秒 460毫秒/步 - 损失: 0.9434 - 稀疏分类准确率: 0.6340
1097/未知 505秒 460毫秒/步 - 损失: 0.9432 - 稀疏分类准确率: 0.6340
1098/未知 506秒 460毫秒/步 - 损失: 0.9430 - 稀疏分类准确率: 0.6341
1099/未知 506秒 460毫秒/步 - 损失: 0.9428 - 稀疏分类准确率: 0.6342
1100/未知 507秒 460毫秒/步 - 损失: 0.9427 - 稀疏分类准确率: 0.6342
1101/未知 507秒 460毫秒/步 - 损失: 0.9425 - 稀疏分类准确率: 0.6343
1102/未知 508秒 460毫秒/步 - 损失: 0.9423 - 稀疏分类准确率: 0.6343
1103/未知 508秒 460毫秒/步 - 损失: 0.9421 - 稀疏分类准确率: 0.6344
1104/未知 508秒 460毫秒/步 - 损失: 0.9419 - 稀疏分类准确率: 0.6344
1105/未知 509秒 460毫秒/步 - 损失: 0.9417 - 稀疏分类准确率: 0.6345
1106/未知 509秒 460毫秒/步 - 损失: 0.9416 - 稀疏分类准确率: 0.6346
1107/未知 510秒 460毫秒/步 - 损失: 0.9414 - 稀疏分类准确率: 0.6346
1108/未知 510秒 460毫秒/步 - 损失: 0.9412 - 稀疏分类准确率: 0.6347
1109/未知 510秒 460毫秒/步 - 损失: 0.9410 - 稀疏分类准确率: 0.6347
1110/未知 511秒 459毫秒/步 - 损失: 0.9408 - 稀疏分类准确率: 0.6348
1111/未知 511秒 459毫秒/步 - 损失: 0.9406 - 稀疏分类准确率: 0.6348
1112/未知 511秒 459毫秒/步 - 损失: 0.9405 - 稀疏分类准确率: 0.6349
1113/未知 512秒 459毫秒/步 - 损失: 0.9403 - 稀疏分类准确率: 0.6349
1114/未知 512秒 459毫秒/步 - 损失: 0.9401 - 稀疏分类准确率: 0.6350
1115/未知 512秒 459毫秒/步 - 损失: 0.9399 - 稀疏分类准确率: 0.6351
1116/未知 513秒 459毫秒/步 - 损失: 0.9397 - 稀疏分类准确率: 0.6351
1117/未知 513秒 459毫秒/步 - 损失: 0.9396 - 稀疏分类准确率: 0.6352
1118/未知 513秒 459毫秒/步 - 损失: 0.9394 - 稀疏分类准确率: 0.6352
1119/未知 514秒 459毫秒/步 - 损失: 0.9392 - 稀疏分类准确率: 0.6353
1120/未知 514秒 458毫秒/步 - 损失: 0.9390 - 稀疏分类准确率: 0.6353
1121/未知 515秒 458毫秒/步 - 损失: 0.9388 - 稀疏分类准确率: 0.6354
1122/未知 515秒 459毫秒/步 - 损失: 0.9387 - 稀疏分类准确率: 0.6355
1123/未知 515秒 459毫秒/步 - 损失: 0.9385 - 稀疏分类准确率: 0.6355
1124/未知 516秒 459毫秒/步 - 损失: 0.9383 - 稀疏分类准确率: 0.6356
1125/未知 516秒 459毫秒/步 - 损失: 0.9381 - 稀疏分类准确率: 0.6356
1126/未知 517秒 458毫秒/步 - 损失: 0.9379 - 稀疏分类准确率: 0.6357
1127/未知 517秒 458毫秒/步 - 损失: 0.9378 - 稀疏分类准确率: 0.6357
1128/未知 518秒 458毫秒/步 - 损失: 0.9376 - 稀疏分类准确率: 0.6358
1129/未知 518秒 458毫秒/步 - 损失: 0.9374 - 稀疏分类准确率: 0.6358
1130/未知 519秒 458毫秒/步 - 损失: 0.9372 - 稀疏分类准确率: 0.6359
1131/未知 519秒 458毫秒/步 - 损失: 0.9371 - 稀疏分类准确率: 0.6360
1132/未知 519秒 458毫秒/步 - 损失: 0.9369 - 稀疏分类准确率: 0.6360
1133/未知 520秒 458毫秒/步 - 损失: 0.9367 - 稀疏分类准确率: 0.6361
1134/未知 520秒 458毫秒/步 - 损失: 0.9365 - 稀疏分类准确率: 0.6361
1135/未知 521秒 458毫秒/步 - loss: 0.9364 - sparse_categorical_accuracy: 0.6362
1136/未知 521秒 458毫秒/步 - loss: 0.9362 - sparse_categorical_accuracy: 0.6362
1137/未知 522秒 458毫秒/步 - loss: 0.9360 - sparse_categorical_accuracy: 0.6363
1138/未知 522秒 458毫秒/步 - loss: 0.9358 - sparse_categorical_accuracy: 0.6363
1139/未知 523秒 458毫秒/步 - loss: 0.9356 - sparse_categorical_accuracy: 0.6364
1140/未知 523秒 458毫秒/步 - loss: 0.9355 - sparse_categorical_accuracy: 0.6364
1141/未知 524秒 458毫秒/步 - loss: 0.9353 - sparse_categorical_accuracy: 0.6365
1142/未知 524秒 458毫秒/步 - loss: 0.9351 - sparse_categorical_accuracy: 0.6366
1143/未知 525秒 458毫秒/步 - loss: 0.9350 - sparse_categorical_accuracy: 0.6366
1144/未知 525秒 458毫秒/步 - loss: 0.9348 - sparse_categorical_accuracy: 0.6367
1145/未知 525秒 458毫秒/步 - loss: 0.9346 - sparse_categorical_accuracy: 0.6367
1146/未知 526秒 458毫秒/步 - loss: 0.9344 - sparse_categorical_accuracy: 0.6368
1147/未知 526秒 458毫秒/步 - loss: 0.9343 - sparse_categorical_accuracy: 0.6368
1148/未知 527秒 458毫秒/步 - loss: 0.9341 - sparse_categorical_accuracy: 0.6369
1149/未知 527秒 458毫秒/步 - loss: 0.9339 - sparse_categorical_accuracy: 0.6369
1150/未知 528秒 458毫秒/步 - loss: 0.9337 - sparse_categorical_accuracy: 0.6370
1151/未知 528秒 458毫秒/步 - loss: 0.9336 - sparse_categorical_accuracy: 0.6370
1152/未知 528秒 458毫秒/步 - loss: 0.9334 - sparse_categorical_accuracy: 0.6371
1153/未知 529秒 458毫秒/步 - loss: 0.9332 - sparse_categorical_accuracy: 0.6372
1154/未知 529秒 458毫秒/步 - loss: 0.9330 - sparse_categorical_accuracy: 0.6372
1155/未知 530秒 458毫秒/步 - loss: 0.9329 - sparse_categorical_accuracy: 0.6373
1156/未知 530秒 458毫秒/步 - loss: 0.9327 - sparse_categorical_accuracy: 0.6373
1157/未知 530秒 458毫秒/步 - loss: 0.9325 - sparse_categorical_accuracy: 0.6374
1158/未知 531秒 458毫秒/步 - loss: 0.9324 - sparse_categorical_accuracy: 0.6374
1159/未知 531秒 458毫秒/步 - loss: 0.9322 - sparse_categorical_accuracy: 0.6375
1160/未知 532秒 458毫秒/步 - loss: 0.9320 - sparse_categorical_accuracy: 0.6375
1161/未知 532秒 458毫秒/步 - loss: 0.9318 - sparse_categorical_accuracy: 0.6376
1162/未知 532秒 458毫秒/步 - loss: 0.9317 - sparse_categorical_accuracy: 0.6376
1163/未知 533秒 458毫秒/步 - loss: 0.9315 - sparse_categorical_accuracy: 0.6377
1164/未知 533秒 458毫秒/步 - loss: 0.9313 - sparse_categorical_accuracy: 0.6377
1165/未知 534秒 458毫秒/步 - loss: 0.9312 - sparse_categorical_accuracy: 0.6378
1166/未知 534秒 458毫秒/步 - loss: 0.9310 - sparse_categorical_accuracy: 0.6378
1167/未知 535秒 458毫秒/步 - loss: 0.9308 - sparse_categorical_accuracy: 0.6379
1168/未知 535秒 458毫秒/步 - loss: 0.9307 - sparse_categorical_accuracy: 0.6380
1169/未知 536秒 458毫秒/步 - loss: 0.9305 - sparse_categorical_accuracy: 0.6380
1170/未知 536秒 458毫秒/步 - loss: 0.9303 - sparse_categorical_accuracy: 0.6381
1171/未知 537秒 458毫秒/步 - loss: 0.9302 - sparse_categorical_accuracy: 0.6381
1172/未知 537秒 458毫秒/步 - loss: 0.9300 - sparse_categorical_accuracy: 0.6382
1173/未知 538秒 458毫秒/步 - loss: 0.9298 - sparse_categorical_accuracy: 0.6382
1174/未知 538秒 458毫秒/步 - loss: 0.9297 - sparse_categorical_accuracy: 0.6383
1175/未知 538秒 458毫秒/步 - loss: 0.9295 - sparse_categorical_accuracy: 0.6383
1176/未知 539秒 458毫秒/步 - loss: 0.9293 - sparse_categorical_accuracy: 0.6384
1177/未知 539秒 458毫秒/步 - loss: 0.9292 - sparse_categorical_accuracy: 0.6384
1178/未知 540秒 458毫秒/步 - loss: 0.9290 - sparse_categorical_accuracy: 0.6385
1179/未知 540秒 458毫秒/步 - loss: 0.9288 - sparse_categorical_accuracy: 0.6385
1180/未知 541秒 458毫秒/步 - loss: 0.9287 - sparse_categorical_accuracy: 0.6386
1181/未知 541秒 458毫秒/步 - loss: 0.9285 - sparse_categorical_accuracy: 0.6386
1182/未知 542秒 458毫秒/步 - loss: 0.9283 - sparse_categorical_accuracy: 0.6387
1183/未知 542秒 458毫秒/步 - loss: 0.9282 - sparse_categorical_accuracy: 0.6387
1184/未知 543秒 458毫秒/步 - loss: 0.9280 - sparse_categorical_accuracy: 0.6388
1185/未知 543秒 458毫秒/步 - loss: 0.9278 - sparse_categorical_accuracy: 0.6388
1186/未知 543秒 458毫秒/步 - loss: 0.9277 - sparse_categorical_accuracy: 0.6389
1187/未知 544秒 458毫秒/步 - loss: 0.9275 - sparse_categorical_accuracy: 0.6389
1188/未知 544秒 458毫秒/步 - loss: 0.9273 - sparse_categorical_accuracy: 0.6390
1189/未知 545秒 458毫秒/步 - loss: 0.9272 - sparse_categorical_accuracy: 0.6390
1190/未知 545秒 458毫秒/步 - loss: 0.9270 - sparse_categorical_accuracy: 0.6391
1191/未知 546秒 458毫秒/步 - loss: 0.9268 - sparse_categorical_accuracy: 0.6391
1192/未知 546秒 458毫秒/步 - loss: 0.9267 - sparse_categorical_accuracy: 0.6392
1193/未知 547秒 458毫秒/步 - loss: 0.9265 - sparse_categorical_accuracy: 0.6392
1194/未知 547秒 458毫秒/步 - loss: 0.9263 - sparse_categorical_accuracy: 0.6393
1195/未知 548秒 458毫秒/步 - loss: 0.9262 - sparse_categorical_accuracy: 0.6394
1196/未知 548秒 458毫秒/步 - loss: 0.9260 - sparse_categorical_accuracy: 0.6394
1197/未知 548秒 458毫秒/步 - loss: 0.9259 - sparse_categorical_accuracy: 0.6395
1198/未知 549秒 458毫秒/步 - loss: 0.9257 - sparse_categorical_accuracy: 0.6395
1199/未知 549秒 458毫秒/步 - loss: 0.9255 - sparse_categorical_accuracy: 0.6396
1200/未知 550秒 458毫秒/步 - loss: 0.9254 - sparse_categorical_accuracy: 0.6396
1201/未知 550秒 458毫秒/步 - loss: 0.9252 - sparse_categorical_accuracy: 0.6397
1202/未知 551秒 458毫秒/步 - loss: 0.9250 - sparse_categorical_accuracy: 0.6397
1203/未知 551秒 458毫秒/步 - loss: 0.9249 - sparse_categorical_accuracy: 0.6398
1204/未知 552秒 458毫秒/步 - loss: 0.9247 - sparse_categorical_accuracy: 0.6398
1205/未知 552秒 458毫秒/步 - loss: 0.9246 - sparse_categorical_accuracy: 0.6399
1206/未知 553秒 458毫秒/步 - loss: 0.9244 - sparse_categorical_accuracy: 0.6399
1207/未知 553秒 458毫秒/步 - loss: 0.9242 - sparse_categorical_accuracy: 0.6400
1208/未知 554秒 458毫秒/步 - loss: 0.9241 - sparse_categorical_accuracy: 0.6400
1209/未知 554秒 458毫秒/步 - loss: 0.9239 - sparse_categorical_accuracy: 0.6401
1210/未知 555秒 458毫秒/步 - loss: 0.9238 - sparse_categorical_accuracy: 0.6401
1211/未知 555秒 458毫秒/步 - loss: 0.9236 - sparse_categorical_accuracy: 0.6402
1212/未知 556秒 458毫秒/步 - loss: 0.9234 - sparse_categorical_accuracy: 0.6402
1213/未知 556秒 458毫秒/步 - loss: 0.9233 - sparse_categorical_accuracy: 0.6403
1214/未知 557秒 458毫秒/步 - loss: 0.9231 - sparse_categorical_accuracy: 0.6403
1215/未知 557秒 458毫秒/步 - loss: 0.9230 - sparse_categorical_accuracy: 0.6404
1216/未知 558秒 458毫秒/步 - loss: 0.9228 - sparse_categorical_accuracy: 0.6404
1217/未知 558秒 458毫秒/步 - loss: 0.9226 - sparse_categorical_accuracy: 0.6405
1218/未知 559秒 458毫秒/步 - loss: 0.9225 - sparse_categorical_accuracy: 0.6405
1219/未知 559秒 458毫秒/步 - loss: 0.9223 - sparse_categorical_accuracy: 0.6406
1220/未知 560秒 458毫秒/步 - loss: 0.9222 - sparse_categorical_accuracy: 0.6406
1221/未知 560秒 458毫秒/步 - loss: 0.9220 - sparse_categorical_accuracy: 0.6407
1222/未知 560秒 458毫秒/步 - loss: 0.9218 - sparse_categorical_accuracy: 0.6407
1223/未知 561秒 458毫秒/步 - loss: 0.9217 - sparse_categorical_accuracy: 0.6408
1224/未知 561秒 458毫秒/步 - loss: 0.9215 - sparse_categorical_accuracy: 0.6408
1225/未知 562秒 458毫秒/步 - loss: 0.9214 - sparse_categorical_accuracy: 0.6409
1226/未知 562秒 458毫秒/步 - loss: 0.9212 - sparse_categorical_accuracy: 0.6409
1227/未知 563秒 458毫秒/步 - loss: 0.9211 - sparse_categorical_accuracy: 0.6410
1228/未知 563秒 458毫秒/步 - loss: 0.9209 - sparse_categorical_accuracy: 0.6410
1229/未知 564秒 458毫秒/步 - loss: 0.9207 - sparse_categorical_accuracy: 0.6410
1230/未知 564秒 458毫秒/步 - loss: 0.9206 - sparse_categorical_accuracy: 0.6411
1231/未知 565秒 458毫秒/步 - loss: 0.9204 - sparse_categorical_accuracy: 0.6411
1232/未知 565秒 458毫秒/步 - loss: 0.9203 - sparse_categorical_accuracy: 0.6412
1233/未知 566秒 458毫秒/步 - loss: 0.9201 - sparse_categorical_accuracy: 0.6412
1234/未知 566秒 458毫秒/步 - loss: 0.9200 - sparse_categorical_accuracy: 0.6413
1235/未知 567秒 458毫秒/步 - loss: 0.9198 - sparse_categorical_accuracy: 0.6413
1236/未知 567秒 458毫秒/步 - loss: 0.9197 - sparse_categorical_accuracy: 0.6414
1237/未知 568秒 458毫秒/步 - loss: 0.9195 - sparse_categorical_accuracy: 0.6414
1238/未知 568秒 458毫秒/步 - loss: 0.9193 - sparse_categorical_accuracy: 0.6415
1239/未知 569秒 458毫秒/步 - loss: 0.9192 - sparse_categorical_accuracy: 0.6415
1240/未知 569秒 458毫秒/步 - loss: 0.9190 - sparse_categorical_accuracy: 0.6416
1241/未知 569秒 458毫秒/步 - loss: 0.9189 - sparse_categorical_accuracy: 0.6416
1242/未知 570秒 458毫秒/步 - loss: 0.9187 - sparse_categorical_accuracy: 0.6417
1243/未知 570秒 458毫秒/步 - loss: 0.9186 - sparse_categorical_accuracy: 0.6417
1244/未知 571秒 458毫秒/步 - loss: 0.9184 - sparse_categorical_accuracy: 0.6418
1245/未知 571秒 458毫秒/步 - loss: 0.9183 - sparse_categorical_accuracy: 0.6418
1246/未知 572秒 458毫秒/步 - loss: 0.9181 - sparse_categorical_accuracy: 0.6419
1247/未知 572秒 458毫秒/步 - loss: 0.9180 - sparse_categorical_accuracy: 0.6419
1248/未知 573秒 458毫秒/步 - loss: 0.9178 - sparse_categorical_accuracy: 0.6420
1249/未知 573秒 458毫秒/步 - loss: 0.9177 - sparse_categorical_accuracy: 0.6420
1250/未知 574秒 458毫秒/步 - loss: 0.9175 - sparse_categorical_accuracy: 0.6421
1251/未知 574秒 458毫秒/步 - loss: 0.9173 - sparse_categorical_accuracy: 0.6421
1252/未知 574秒 458毫秒/步 - loss: 0.9172 - sparse_categorical_accuracy: 0.6422
1253/未知 575秒 458毫秒/步 - loss: 0.9170 - sparse_categorical_accuracy: 0.6422
1254/未知 575秒 458毫秒/步 - loss: 0.9169 - sparse_categorical_accuracy: 0.6423
1255/未知 576秒 458毫秒/步 - loss: 0.9167 - sparse_categorical_accuracy: 0.6423
1256/未知 576秒 458毫秒/步 - loss: 0.9166 - sparse_categorical_accuracy: 0.6424
1257/未知 577秒 458毫秒/步 - loss: 0.9164 - sparse_categorical_accuracy: 0.6424
1258/未知 577秒 458毫秒/步 - loss: 0.9163 - sparse_categorical_accuracy: 0.6424
1259/未知 578秒 458毫秒/步 - loss: 0.9161 - sparse_categorical_accuracy: 0.6425
1260/未知 578秒 459毫秒/步 - loss: 0.9160 - sparse_categorical_accuracy: 0.6425
1261/未知 579秒 459毫秒/步 - loss: 0.9158 - sparse_categorical_accuracy: 0.6426
1262/未知 579秒 458毫秒/步 - loss: 0.9157 - sparse_categorical_accuracy: 0.6426
1263/未知 580秒 459毫秒/步 - loss: 0.9155 - sparse_categorical_accuracy: 0.6427
1264/未知 580秒 459毫秒/步 - loss: 0.9154 - sparse_categorical_accuracy: 0.6427
1265/未知 581秒 459毫秒/步 - loss: 0.9152 - sparse_categorical_accuracy: 0.6428
1266/未知 581秒 459毫秒/步 - loss: 0.9151 - sparse_categorical_accuracy: 0.6428
1267/未知 582秒 459毫秒/步 - loss: 0.9149 - sparse_categorical_accuracy: 0.6429
1268/未知 582秒 459毫秒/步 - loss: 0.9148 - sparse_categorical_accuracy: 0.6429
1269/未知 583秒 459毫秒/步 - loss: 0.9146 - sparse_categorical_accuracy: 0.6430
1270/未知 583秒 459毫秒/步 - loss: 0.9145 - sparse_categorical_accuracy: 0.6430
1271/未知 584秒 459毫秒/步 - loss: 0.9143 - sparse_categorical_accuracy: 0.6431
1272/未知 584秒 459毫秒/步 - loss: 0.9142 - sparse_categorical_accuracy: 0.6431
1273/未知 584秒 459毫秒/步 - loss: 0.9140 - sparse_categorical_accuracy: 0.6432
1274/未知 585秒 459毫秒/步 - loss: 0.9139 - sparse_categorical_accuracy: 0.6432
1275/未知 585秒 459毫秒/步 - loss: 0.9137 - sparse_categorical_accuracy: 0.6432
1276/未知 586秒 459毫秒/步 - loss: 0.9136 - sparse_categorical_accuracy: 0.6433
1277/未知 586秒 459毫秒/步 - loss: 0.9134 - sparse_categorical_accuracy: 0.6433
1278/未知 587秒 459毫秒/步 - loss: 0.9133 - sparse_categorical_accuracy: 0.6434
1279/未知 587秒 459毫秒/步 - loss: 0.9131 - sparse_categorical_accuracy: 0.6434
1280/未知 588秒 459毫秒/步 - loss: 0.9130 - sparse_categorical_accuracy: 0.6435
1281/未知 588秒 459毫秒/步 - loss: 0.9128 - sparse_categorical_accuracy: 0.6435
1282/未知 589秒 459毫秒/步 - loss: 0.9127 - sparse_categorical_accuracy: 0.6436
1283/未知 589秒 459毫秒/步 - loss: 0.9126 - sparse_categorical_accuracy: 0.6436
1284/未知 589秒 459毫秒/步 - loss: 0.9124 - sparse_categorical_accuracy: 0.6437
1285/未知 590秒 458毫秒/步 - loss: 0.9123 - sparse_categorical_accuracy: 0.6437
1286/未知 590秒 458毫秒/步 - loss: 0.9121 - sparse_categorical_accuracy: 0.6438
1287/未知 591秒 458毫秒/步 - loss: 0.9120 - sparse_categorical_accuracy: 0.6438
1288/未知 591秒 458毫秒/步 - loss: 0.9118 - sparse_categorical_accuracy: 0.6438
1289/未知 591秒 458毫秒/步 - loss: 0.9117 - sparse_categorical_accuracy: 0.6439
1290/未知 592秒 458毫秒/步 - loss: 0.9115 - sparse_categorical_accuracy: 0.6439
1291/未知 592秒 458毫秒/步 - loss: 0.9114 - sparse_categorical_accuracy: 0.6440
1292/未知 593秒 458毫秒/步 - loss: 0.9112 - sparse_categorical_accuracy: 0.6440
1293/未知 593秒 458毫秒/步 - loss: 0.9111 - sparse_categorical_accuracy: 0.6441
1294/未知 594秒 458毫秒/步 - loss: 0.9109 - sparse_categorical_accuracy: 0.6441
1295/未知 594秒 458毫秒/步 - loss: 0.9108 - sparse_categorical_accuracy: 0.6442
1296/未知 595秒 458毫秒/步 - loss: 0.9107 - sparse_categorical_accuracy: 0.6442
1297/未知 595秒 458毫秒/步 - loss: 0.9105 - sparse_categorical_accuracy: 0.6443
1298/未知 596秒 458毫秒/步 - loss: 0.9104 - sparse_categorical_accuracy: 0.6443
1299/未知 596秒 458毫秒/步 - loss: 0.9102 - sparse_categorical_accuracy: 0.6443
1300/未知 596秒 458毫秒/步 - loss: 0.9101 - sparse_categorical_accuracy: 0.6444
1301/未知 597秒 458毫秒/步 - loss: 0.9099 - sparse_categorical_accuracy: 0.6444
1302/未知 597秒 458毫秒/步 - loss: 0.9098 - sparse_categorical_accuracy: 0.6445
1303/未知 598秒 458毫秒/步 - loss: 0.9096 - sparse_categorical_accuracy: 0.6445
1304/未知 598秒 458毫秒/步 - loss: 0.9095 - sparse_categorical_accuracy: 0.6446
1305/未知 599秒 458毫秒/步 - loss: 0.9094 - sparse_categorical_accuracy: 0.6446
1306/未知 599秒 458毫秒/步 - loss: 0.9092 - sparse_categorical_accuracy: 0.6447
1307/未知 600秒 458毫秒/步 - loss: 0.9091 - sparse_categorical_accuracy: 0.6447
1308/未知 600秒 458毫秒/步 - loss: 0.9089 - sparse_categorical_accuracy: 0.6448
1309/未知 601秒 458毫秒/步 - loss: 0.9088 - sparse_categorical_accuracy: 0.6448
1310/未知 601秒 458毫秒/步 - loss: 0.9086 - sparse_categorical_accuracy: 0.6448
1311/未知 602秒 458毫秒/步 - loss: 0.9085 - sparse_categorical_accuracy: 0.6449
1312/未知 602秒 458毫秒/步 - loss: 0.9084 - sparse_categorical_accuracy: 0.6449
1313/未知 602秒 458毫秒/步 - loss: 0.9082 - sparse_categorical_accuracy: 0.6450
1314/未知 603秒 458毫秒/步 - loss: 0.9081 - sparse_categorical_accuracy: 0.6450
1315/未知 603秒 458毫秒/步 - loss: 0.9079 - sparse_categorical_accuracy: 0.6451
1316/未知 604秒 458毫秒/步 - loss: 0.9078 - sparse_categorical_accuracy: 0.6451
1317/未知 604秒 458毫秒/步 - loss: 0.9076 - sparse_categorical_accuracy: 0.6452
1318/未知 604秒 458毫秒/步 - loss: 0.9075 - sparse_categorical_accuracy: 0.6452
1319/未知 605秒 458毫秒/步 - loss: 0.9074 - sparse_categorical_accuracy: 0.6452
1320/未知 605秒 458毫秒/步 - loss: 0.9072 - sparse_categorical_accuracy: 0.6453
1321/未知 605秒 458毫秒/步 - loss: 0.9071 - sparse_categorical_accuracy: 0.6453
1322/未知 606秒 458毫秒/步 - loss: 0.9069 - sparse_categorical_accuracy: 0.6454
1323/未知 606秒 458毫秒/步 - loss: 0.9068 - sparse_categorical_accuracy: 0.6454
1324/未知 607秒 458毫秒/步 - loss: 0.9067 - sparse_categorical_accuracy: 0.6455
1325/未知 607秒 458毫秒/步 - loss: 0.9065 - sparse_categorical_accuracy: 0.6455
1326/未知 608秒 458毫秒/步 - loss: 0.9064 - sparse_categorical_accuracy: 0.6455
1327/未知 608秒 458毫秒/步 - loss: 0.9062 - sparse_categorical_accuracy: 0.6456
1328/未知 609秒 458毫秒/步 - loss: 0.9061 - sparse_categorical_accuracy: 0.6456
1329/未知 609秒 458毫秒/步 - loss: 0.9060 - sparse_categorical_accuracy: 0.6457
1330/未知 609秒 458毫秒/步 - loss: 0.9058 - sparse_categorical_accuracy: 0.6457
1331/未知 610秒 458毫秒/步 - loss: 0.9057 - sparse_categorical_accuracy: 0.6458
1332/未知 610秒 458毫秒/步 - loss: 0.9055 - sparse_categorical_accuracy: 0.6458
1333/未知 611秒 458毫秒/步 - loss: 0.9054 - sparse_categorical_accuracy: 0.6459
1334/未知 611秒 458毫秒/步 - loss: 0.9053 - sparse_categorical_accuracy: 0.6459
1335/未知 612秒 458毫秒/步 - loss: 0.9051 - sparse_categorical_accuracy: 0.6459
1336/未知 612秒 458毫秒/步 - loss: 0.9050 - sparse_categorical_accuracy: 0.6460
1337/未知 613秒 458毫秒/步 - loss: 0.9048 - sparse_categorical_accuracy: 0.6460
1338/未知 613秒 458毫秒/步 - loss: 0.9047 - sparse_categorical_accuracy: 0.6461
1339/未知 614秒 458毫秒/步 - loss: 0.9046 - sparse_categorical_accuracy: 0.6461
1340/未知 614秒 458毫秒/步 - loss: 0.9044 - sparse_categorical_accuracy: 0.6462
1341/未知 614秒 458毫秒/步 - loss: 0.9043 - sparse_categorical_accuracy: 0.6462
1342/未知 615秒 458毫秒/步 - loss: 0.9042 - sparse_categorical_accuracy: 0.6462
1343/未知 615秒 458毫秒/步 - loss: 0.9040 - sparse_categorical_accuracy: 0.6463
1344/未知 615秒 458毫秒/步 - loss: 0.9039 - sparse_categorical_accuracy: 0.6463
1345/未知 616秒 458毫秒/步 - loss: 0.9037 - sparse_categorical_accuracy: 0.6464
1346/未知 616秒 458毫秒/步 - loss: 0.9036 - sparse_categorical_accuracy: 0.6464
1347/未知 617秒 457毫秒/步 - loss: 0.9035 - sparse_categorical_accuracy: 0.6465
1348/未知 617秒 457毫秒/步 - loss: 0.9033 - sparse_categorical_accuracy: 0.6465
1349/未知 618秒 457毫秒/步 - loss: 0.9032 - sparse_categorical_accuracy: 0.6465
1350/未知 618秒 457毫秒/步 - loss: 0.9031 - sparse_categorical_accuracy: 0.6466
1351/未知 618秒 457毫秒/步 - loss: 0.9029 - sparse_categorical_accuracy: 0.6466
1352/未知 619秒 457毫秒/步 - loss: 0.9028 - sparse_categorical_accuracy: 0.6467
1353/未知 619秒 457毫秒/步 - loss: 0.9026 - sparse_categorical_accuracy: 0.6467
1354/未知 620秒 457毫秒/步 - loss: 0.9025 - sparse_categorical_accuracy: 0.6468
1355/未知 620秒 457毫秒/步 - loss: 0.9024 - sparse_categorical_accuracy: 0.6468
1356/未知 621秒 457毫秒/步 - loss: 0.9022 - sparse_categorical_accuracy: 0.6468
1357/未知 621秒 457毫秒/步 - loss: 0.9021 - sparse_categorical_accuracy: 0.6469
1358/未知 622秒 457毫秒/步 - loss: 0.9020 - sparse_categorical_accuracy: 0.6469
1359/未知 622秒 457毫秒/步 - loss: 0.9018 - sparse_categorical_accuracy: 0.6470
1360/未知 623秒 457毫秒/步 - loss: 0.9017 - sparse_categorical_accuracy: 0.6470
1361/未知 623秒 457毫秒/步 - loss: 0.9016 - sparse_categorical_accuracy: 0.6471
1362/未知 624秒 457毫秒/步 - loss: 0.9014 - sparse_categorical_accuracy: 0.6471
1363/未知 624秒 457毫秒/步 - loss: 0.9013 - sparse_categorical_accuracy: 0.6471
1364/未知 624秒 457毫秒/步 - loss: 0.9012 - sparse_categorical_accuracy: 0.6472
1365/未知 625秒 457毫秒/步 - loss: 0.9010 - sparse_categorical_accuracy: 0.6472
1366/未知 625秒 457毫秒/步 - loss: 0.9009 - sparse_categorical_accuracy: 0.6473
1367/未知 625秒 457毫秒/步 - loss: 0.9008 - sparse_categorical_accuracy: 0.6473
1368/未知 626秒 457毫秒/步 - loss: 0.9006 - sparse_categorical_accuracy: 0.6474
1369/未知 626秒 457毫秒/步 - loss: 0.9005 - sparse_categorical_accuracy: 0.6474
1370/未知 627秒 457毫秒/步 - loss: 0.9004 - sparse_categorical_accuracy: 0.6474
1371/未知 627秒 457毫秒/步 - loss: 0.9002 - sparse_categorical_accuracy: 0.6475
1372/未知 627秒 457毫秒/步 - loss: 0.9001 - sparse_categorical_accuracy: 0.6475
1373/未知 628秒 457毫秒/步 - loss: 0.9000 - sparse_categorical_accuracy: 0.6476
1374/未知 628秒 457毫秒/步 - loss: 0.8998 - sparse_categorical_accuracy: 0.6476
1375/未知 629秒 457毫秒/步 - loss: 0.8997 - sparse_categorical_accuracy: 0.6476
1376/未知 629秒 457毫秒/步 - loss: 0.8996 - sparse_categorical_accuracy: 0.6477
1377/未知 630秒 457毫秒/步 - loss: 0.8994 - sparse_categorical_accuracy: 0.6477
1378/未知 630秒 457毫秒/步 - loss: 0.8993 - sparse_categorical_accuracy: 0.6478
1379/未知 631秒 457毫秒/步 - loss: 0.8992 - sparse_categorical_accuracy: 0.6478
1380/未知 631秒 457毫秒/步 - loss: 0.8990 - sparse_categorical_accuracy: 0.6479
1381/未知 632秒 457毫秒/步 - loss: 0.8989 - sparse_categorical_accuracy: 0.6479
1382/未知 632秒 457毫秒/步 - loss: 0.8988 - sparse_categorical_accuracy: 0.6479
1383/未知 633秒 457毫秒/步 - loss: 0.8986 - sparse_categorical_accuracy: 0.6480
1384/未知 633秒 457毫秒/步 - loss: 0.8985 - sparse_categorical_accuracy: 0.6480
1385/未知 633秒 457毫秒/步 - loss: 0.8984 - sparse_categorical_accuracy: 0.6481
1386/未知 634秒 457毫秒/步 - loss: 0.8982 - sparse_categorical_accuracy: 0.6481
1387/未知 634秒 457毫秒/步 - loss: 0.8981 - sparse_categorical_accuracy: 0.6481
1388/未知 634秒 457毫秒/步 - loss: 0.8980 - sparse_categorical_accuracy: 0.6482
1389/未知 635秒 457毫秒/步 - loss: 0.8978 - sparse_categorical_accuracy: 0.6482
1390/未知 635秒 457毫秒/步 - loss: 0.8977 - sparse_categorical_accuracy: 0.6483
1391/未知 636秒 457毫秒/步 - loss: 0.8976 - sparse_categorical_accuracy: 0.6483
1392/未知 636秒 457毫秒/步 - loss: 0.8974 - sparse_categorical_accuracy: 0.6483
1393/未知 636秒 456毫秒/步 - loss: 0.8973 - sparse_categorical_accuracy: 0.6484
1394/未知 637秒 456毫秒/步 - loss: 0.8972 - sparse_categorical_accuracy: 0.6484
1395/未知 637秒 456毫秒/步 - loss: 0.8971 - sparse_categorical_accuracy: 0.6485
1396/未知 638秒 456毫秒/步 - loss: 0.8969 - sparse_categorical_accuracy: 0.6485
1397/未知 638秒 456毫秒/步 - loss: 0.8968 - sparse_categorical_accuracy: 0.6485
1398/未知 639秒 456毫秒/步 - loss: 0.8967 - sparse_categorical_accuracy: 0.6486
1399/未知 639秒 456毫秒/步 - loss: 0.8965 - sparse_categorical_accuracy: 0.6486
1400/未知 640秒 456毫秒/步 - loss: 0.8964 - sparse_categorical_accuracy: 0.6487
1401/未知 640秒 456毫秒/步 - loss: 0.8963 - sparse_categorical_accuracy: 0.6487
1402/未知 640秒 456毫秒/步 - loss: 0.8962 - sparse_categorical_accuracy: 0.6488
1403/未知 641秒 456毫秒/步 - loss: 0.8960 - sparse_categorical_accuracy: 0.6488
1404/未知 641秒 456毫秒/步 - loss: 0.8959 - sparse_categorical_accuracy: 0.6488
1405/未知 642秒 456毫秒/步 - loss: 0.8958 - sparse_categorical_accuracy: 0.6489
1406/未知 642秒 456毫秒/步 - loss: 0.8956 - sparse_categorical_accuracy: 0.6489
1407/未知 643秒 456毫秒/步 - loss: 0.8955 - sparse_categorical_accuracy: 0.6490
1408/未知 643秒 456毫秒/步 - loss: 0.8954 - sparse_categorical_accuracy: 0.6490
1409/未知 644秒 457毫秒/步 - loss: 0.8953 - sparse_categorical_accuracy: 0.6490
1410/未知 644秒 457毫秒/步 - loss: 0.8951 - sparse_categorical_accuracy: 0.6491
1411/未知 645秒 457毫秒/步 - loss: 0.8950 - sparse_categorical_accuracy: 0.6491
1412/未知 645秒 457毫秒/步 - loss: 0.8949 - sparse_categorical_accuracy: 0.6492
1413/未知 646秒 457毫秒/步 - loss: 0.8947 - sparse_categorical_accuracy: 0.6492
1414/未知 646秒 457毫秒/步 - loss: 0.8946 - sparse_categorical_accuracy: 0.6492
1415/未知 647秒 457毫秒/步 - loss: 0.8945 - sparse_categorical_accuracy: 0.6493
1416/未知 647秒 457毫秒/步 - loss: 0.8944 - sparse_categorical_accuracy: 0.6493
1417/未知 647秒 457毫秒/步 - loss: 0.8942 - sparse_categorical_accuracy: 0.6494
1418/未知 648秒 457毫秒/步 - loss: 0.8941 - sparse_categorical_accuracy: 0.6494
1419/未知 648秒 457毫秒/步 - loss: 0.8940 - sparse_categorical_accuracy: 0.6494
1420/未知 649秒 456毫秒/步 - loss: 0.8939 - sparse_categorical_accuracy: 0.6495
1421/未知 649秒 456毫秒/步 - loss: 0.8937 - sparse_categorical_accuracy: 0.6495
1422/未知 650秒 456毫秒/步 - loss: 0.8936 - sparse_categorical_accuracy: 0.6495
1423/未知 650秒 456毫秒/步 - loss: 0.8935 - sparse_categorical_accuracy: 0.6496
1424/未知 651秒 456毫秒/步 - loss: 0.8933 - sparse_categorical_accuracy: 0.6496
1425/未知 651秒 456毫秒/步 - loss: 0.8932 - sparse_categorical_accuracy: 0.6497
1426/未知 651秒 456毫秒/步 - loss: 0.8931 - sparse_categorical_accuracy: 0.6497
1427/未知 652秒 456毫秒/步 - loss: 0.8930 - sparse_categorical_accuracy: 0.6497
1428/未知 652秒 456毫秒/步 - loss: 0.8928 - sparse_categorical_accuracy: 0.6498
1429/未知 653秒 456毫秒/步 - loss: 0.8927 - sparse_categorical_accuracy: 0.6498
1430/未知 653秒 456毫秒/步 - loss: 0.8926 - sparse_categorical_accuracy: 0.6499
1431/未知 653秒 456毫秒/步 - loss: 0.8925 - sparse_categorical_accuracy: 0.6499
1432/未知 654秒 456毫秒/步 - loss: 0.8923 - sparse_categorical_accuracy: 0.6499
1433/未知 654秒 456毫秒/步 - loss: 0.8922 - sparse_categorical_accuracy: 0.6500
1434/未知 655秒 456毫秒/步 - loss: 0.8921 - sparse_categorical_accuracy: 0.6500
1435/未知 655秒 456毫秒/步 - loss: 0.8920 - sparse_categorical_accuracy: 0.6501
1436/未知 655秒 456毫秒/步 - loss: 0.8918 - sparse_categorical_accuracy: 0.6501
1437/未知 656秒 456毫秒/步 - loss: 0.8917 - sparse_categorical_accuracy: 0.6501
1438/未知 656秒 456毫秒/步 - loss: 0.8916 - sparse_categorical_accuracy: 0.6502
1439/未知 657秒 456毫秒/步 - loss: 0.8915 - sparse_categorical_accuracy: 0.6502
1440/未知 657秒 456毫秒/步 - loss: 0.8913 - sparse_categorical_accuracy: 0.6503
1441/未知 657秒 456毫秒/步 - loss: 0.8912 - sparse_categorical_accuracy: 0.6503
1442/未知 658秒 456毫秒/步 - loss: 0.8911 - sparse_categorical_accuracy: 0.6503
1443/未知 658秒 456毫秒/步 - loss: 0.8910 - sparse_categorical_accuracy: 0.6504
1444/未知 659秒 456毫秒/步 - loss: 0.8909 - sparse_categorical_accuracy: 0.6504
1445/未知 659秒 456毫秒/步 - loss: 0.8907 - sparse_categorical_accuracy: 0.6504
1446/未知 660秒 456毫秒/步 - loss: 0.8906 - sparse_categorical_accuracy: 0.6505
1447/未知 660秒 456毫秒/步 - loss: 0.8905 - sparse_categorical_accuracy: 0.6505
1448/未知 661秒 456毫秒/步 - loss: 0.8904 - sparse_categorical_accuracy: 0.6506
1449/未知 661秒 456毫秒/步 - loss: 0.8902 - sparse_categorical_accuracy: 0.6506
1450/未知 662秒 456毫秒/步 - loss: 0.8901 - sparse_categorical_accuracy: 0.6506
1451/未知 662秒 456毫秒/步 - loss: 0.8900 - sparse_categorical_accuracy: 0.6507
1452/未知 662秒 456毫秒/步 - loss: 0.8899 - sparse_categorical_accuracy: 0.6507
1453/未知 663秒 456毫秒/步 - loss: 0.8897 - sparse_categorical_accuracy: 0.6508
1454/未知 663秒 456毫秒/步 - loss: 0.8896 - sparse_categorical_accuracy: 0.6508
1455/未知 664秒 456毫秒/步 - loss: 0.8895 - sparse_categorical_accuracy: 0.6508
1456/未知 664秒 456毫秒/步 - loss: 0.8894 - sparse_categorical_accuracy: 0.6509
1457/未知 665秒 456毫秒/步 - loss: 0.8893 - sparse_categorical_accuracy: 0.6509
1458/未知 665秒 456毫秒/步 - loss: 0.8891 - sparse_categorical_accuracy: 0.6509
1459/未知 665秒 456毫秒/步 - loss: 0.8890 - sparse_categorical_accuracy: 0.6510
1460/未知 666秒 456毫秒/步 - loss: 0.8889 - sparse_categorical_accuracy: 0.6510
1461/未知 666秒 456毫秒/步 - loss: 0.8888 - sparse_categorical_accuracy: 0.6511
1462/未知 667秒 456毫秒/步 - loss: 0.8887 - sparse_categorical_accuracy: 0.6511
1463/未知 667秒 455毫秒/步 - loss: 0.8885 - sparse_categorical_accuracy: 0.6511
1464/未知 667秒 455毫秒/步 - loss: 0.8884 - sparse_categorical_accuracy: 0.6512
1465/未知 668秒 455毫秒/步 - loss: 0.8883 - sparse_categorical_accuracy: 0.6512
1466/未知 668秒 455毫秒/步 - loss: 0.8882 - sparse_categorical_accuracy: 0.6512
1467/未知 669秒 455毫秒/步 - loss: 0.8880 - sparse_categorical_accuracy: 0.6513
1468/未知 669秒 455毫秒/步 - loss: 0.8879 - sparse_categorical_accuracy: 0.6513
1469/未知 669秒 455毫秒/步 - loss: 0.8878 - sparse_categorical_accuracy: 0.6514
1470/未知 670秒 455毫秒/步 - loss: 0.8877 - sparse_categorical_accuracy: 0.6514
1471/未知 670秒 455毫秒/步 - loss: 0.8876 - sparse_categorical_accuracy: 0.6514
1472/未知 671秒 455毫秒/步 - loss: 0.8874 - sparse_categorical_accuracy: 0.6515
1473/未知 671秒 455毫秒/步 - loss: 0.8873 - sparse_categorical_accuracy: 0.6515
1474/未知 672秒 455毫秒/步 - loss: 0.8872 - sparse_categorical_accuracy: 0.6515
1475/未知 672秒 455毫秒/步 - loss: 0.8871 - sparse_categorical_accuracy: 0.6516
1476/未知 673秒 455毫秒/步 - loss: 0.8870 - sparse_categorical_accuracy: 0.6516
1477/未知 673秒 455毫秒/步 - loss: 0.8868 - sparse_categorical_accuracy: 0.6517
1478/未知 673秒 455毫秒/步 - loss: 0.8867 - sparse_categorical_accuracy: 0.6517
1479/未知 674秒 455毫秒/步 - loss: 0.8866 - sparse_categorical_accuracy: 0.6517
1480/未知 674秒 455毫秒/步 - loss: 0.8865 - sparse_categorical_accuracy: 0.6518
1481/未知 674秒 455毫秒/步 - loss: 0.8864 - sparse_categorical_accuracy: 0.6518
1482/未知 675秒 455毫秒/步 - loss: 0.8863 - sparse_categorical_accuracy: 0.6518
1483/未知 675秒 455毫秒/步 - loss: 0.8861 - sparse_categorical_accuracy: 0.6519
1484/未知 676秒 455毫秒/步 - loss: 0.8860 - sparse_categorical_accuracy: 0.6519
1485/未知 676秒 455毫秒/步 - loss: 0.8859 - sparse_categorical_accuracy: 0.6520
1486/未知 677秒 455毫秒/步 - loss: 0.8858 - sparse_categorical_accuracy: 0.6520
1487/未知 677秒 455毫秒/步 - loss: 0.8857 - sparse_categorical_accuracy: 0.6520
1488/未知 677秒 455毫秒/步 - loss: 0.8855 - sparse_categorical_accuracy: 0.6521
1489/未知 678秒 455毫秒/步 - loss: 0.8854 - sparse_categorical_accuracy: 0.6521
1490/未知 678秒 455毫秒/步 - loss: 0.8853 - sparse_categorical_accuracy: 0.6521
1491/未知 679秒 455毫秒/步 - loss: 0.8852 - sparse_categorical_accuracy: 0.6522
1492/未知 679秒 455毫秒/步 - loss: 0.8851 - sparse_categorical_accuracy: 0.6522
1493/未知 679秒 455毫秒/步 - loss: 0.8850 - sparse_categorical_accuracy: 0.6523
1494/未知 680秒 455毫秒/步 - loss: 0.8848 - sparse_categorical_accuracy: 0.6523
1495/未知 680秒 455毫秒/步 - loss: 0.8847 - sparse_categorical_accuracy: 0.6523
1496/未知 681秒 455毫秒/步 - loss: 0.8846 - sparse_categorical_accuracy: 0.6524
1497/未知 681秒 455毫秒/步 - loss: 0.8845 - sparse_categorical_accuracy: 0.6524
1498/未知 682秒 455毫秒/步 - loss: 0.8844 - sparse_categorical_accuracy: 0.6524
1499/未知 682秒 455毫秒/步 - loss: 0.8843 - sparse_categorical_accuracy: 0.6525
1500/未知 683秒 455毫秒/步 - loss: 0.8841 - sparse_categorical_accuracy: 0.6525
1501/未知 683秒 455毫秒/步 - loss: 0.8840 - sparse_categorical_accuracy: 0.6525
1502/未知 684秒 455毫秒/步 - loss: 0.8839 - sparse_categorical_accuracy: 0.6526
1503/未知 684秒 455毫秒/步 - loss: 0.8838 - sparse_categorical_accuracy: 0.6526
1504/未知 685秒 455毫秒/步 - loss: 0.8837 - sparse_categorical_accuracy: 0.6527
1505/未知 685秒 455毫秒/步 - loss: 0.8836 - sparse_categorical_accuracy: 0.6527
1506/未知 685秒 455毫秒/步 - loss: 0.8834 - sparse_categorical_accuracy: 0.6527
1507/未知 686秒 455毫秒/步 - loss: 0.8833 - sparse_categorical_accuracy: 0.6528
1508/未知 686秒 455毫秒/步 - loss: 0.8832 - sparse_categorical_accuracy: 0.6528
1509/未知 687秒 455毫秒/步 - loss: 0.8831 - sparse_categorical_accuracy: 0.6528
1510/未知 687秒 455毫秒/步 - loss: 0.8830 - sparse_categorical_accuracy: 0.6529
1511/未知 687秒 455毫秒/步 - loss: 0.8829 - sparse_categorical_accuracy: 0.6529
1512/未知 688秒 454毫秒/步 - loss: 0.8827 - sparse_categorical_accuracy: 0.6529
1513/未知 688秒 454毫秒/步 - loss: 0.8826 - sparse_categorical_accuracy: 0.6530
1514/未知 688秒 454毫秒/步 - loss: 0.8825 - sparse_categorical_accuracy: 0.6530
1515/未知 689秒 454毫秒/步 - loss: 0.8824 - sparse_categorical_accuracy: 0.6531
1516/未知 689秒 454毫秒/步 - loss: 0.8823 - sparse_categorical_accuracy: 0.6531
1517/未知 690秒 454毫秒/步 - loss: 0.8822 - sparse_categorical_accuracy: 0.6531
1518/未知 690秒 454毫秒/步 - loss: 0.8821 - sparse_categorical_accuracy: 0.6532
1519/未知 690秒 454毫秒/步 - loss: 0.8819 - sparse_categorical_accuracy: 0.6532
1520/未知 691秒 454毫秒/步 - loss: 0.8818 - sparse_categorical_accuracy: 0.6532
1521/未知 691秒 454毫秒/步 - loss: 0.8817 - sparse_categorical_accuracy: 0.6533
1522/未知 692秒 454毫秒/步 - loss: 0.8816 - sparse_categorical_accuracy: 0.6533
1523/未知 692秒 454毫秒/步 - loss: 0.8815 - sparse_categorical_accuracy: 0.6533
1524/未知 693秒 454毫秒/步 - loss: 0.8814 - sparse_categorical_accuracy: 0.6534
1525/未知 693秒 454毫秒/步 - loss: 0.8813 - sparse_categorical_accuracy: 0.6534
1526/未知 694秒 454毫秒/步 - loss: 0.8811 - sparse_categorical_accuracy: 0.6534
1527/未知 694秒 454毫秒/步 - loss: 0.8810 - sparse_categorical_accuracy: 0.6535
1528/未知 695秒 454毫秒/步 - loss: 0.8809 - sparse_categorical_accuracy: 0.6535
1529/未知 695秒 454毫秒/步 - loss: 0.8808 - sparse_categorical_accuracy: 0.6536
1530/未知 695秒 454毫秒/步 - loss: 0.8807 - sparse_categorical_accuracy: 0.6536
1531/未知 696秒 454毫秒/步 - loss: 0.8806 - sparse_categorical_accuracy: 0.6536
1532/未知 696秒 454毫秒/步 - loss: 0.8805 - sparse_categorical_accuracy: 0.6537
1533/未知 697秒 454毫秒/步 - loss: 0.8803 - sparse_categorical_accuracy: 0.6537
1534/未知 697秒 454毫秒/步 - loss: 0.8802 - sparse_categorical_accuracy: 0.6537
1535/未知 697秒 454毫秒/步 - loss: 0.8801 - sparse_categorical_accuracy: 0.6538
1536/未知 698秒 454毫秒/步 - loss: 0.8800 - sparse_categorical_accuracy: 0.6538
1537/未知 698秒 454毫秒/步 - loss: 0.8799 - sparse_categorical_accuracy: 0.6538
1538/未知 699秒 454毫秒/步 - loss: 0.8798 - sparse_categorical_accuracy: 0.6539
1539/未知 699秒 454毫秒/步 - loss: 0.8797 - sparse_categorical_accuracy: 0.6539
1540/未知 699秒 454毫秒/步 - loss: 0.8796 - sparse_categorical_accuracy: 0.6539
1541/未知 700秒 454毫秒/步 - loss: 0.8794 - sparse_categorical_accuracy: 0.6540
1542/未知 700秒 454毫秒/步 - loss: 0.8793 - sparse_categorical_accuracy: 0.6540
1543/未知 701秒 454毫秒/步 - loss: 0.8792 - sparse_categorical_accuracy: 0.6540
1544/未知 701秒 454毫秒/步 - loss: 0.8791 - sparse_categorical_accuracy: 0.6541
1545/未知 702秒 454毫秒/步 - loss: 0.8790 - sparse_categorical_accuracy: 0.6541
1546/未知 702秒 454毫秒/步 - loss: 0.8789 - sparse_categorical_accuracy: 0.6542
1547/未知 702秒 454毫秒/步 - loss: 0.8788 - sparse_categorical_accuracy: 0.6542
1548/未知 703秒 454毫秒/步 - 损失: 0.8787 - 稀疏分类准确率: 0.6542
1549/未知 703秒 454毫秒/步 - 损失: 0.8786 - 稀疏分类准确率: 0.6543
1550/未知 704秒 454毫秒/步 - 损失: 0.8784 - 稀疏分类准确率: 0.6543
1551/未知 704秒 454毫秒/步 - 损失: 0.8783 - 稀疏分类准确率: 0.6543
1552/未知 705秒 454毫秒/步 - 损失: 0.8782 - 稀疏分类准确率: 0.6544
1553/未知 705秒 454毫秒/步 - 损失: 0.8781 - 稀疏分类准确率: 0.6544
1554/未知 705秒 454毫秒/步 - 损失: 0.8780 - 稀疏分类准确率: 0.6544
1555/未知 706秒 453毫秒/步 - 损失: 0.8779 - 稀疏分类准确率: 0.6545
1556/未知 706秒 453毫秒/步 - 损失: 0.8778 - 稀疏分类准确率: 0.6545
1557/未知 706秒 453毫秒/步 - 损失: 0.8777 - 稀疏分类准确率: 0.6545
1558/未知 707秒 453毫秒/步 - 损失: 0.8776 - 稀疏分类准确率: 0.6546
1559/未知 707秒 453毫秒/步 - 损失: 0.8774 - 稀疏分类准确率: 0.6546
1560/未知 708秒 453毫秒/步 - 损失: 0.8773 - 稀疏分类准确率: 0.6546
1561/未知 708秒 453毫秒/步 - 损失: 0.8772 - 稀疏分类准确率: 0.6547
1562/未知 708秒 453毫秒/步 - 损失: 0.8771 - 稀疏分类准确率: 0.6547
1563/未知 709秒 453毫秒/步 - 损失: 0.8770 - 稀疏分类准确率: 0.6547
1564/未知 709秒 453毫秒/步 - 损失: 0.8769 - 稀疏分类准确率: 0.6548
1565/未知 710秒 453毫秒/步 - 损失: 0.8768 - 稀疏分类准确率: 0.6548
1566/未知 710秒 453毫秒/步 - 损失: 0.8767 - 稀疏分类准确率: 0.6548
1567/未知 711秒 453毫秒/步 - 损失: 0.8766 - 稀疏分类准确率: 0.6549
1568/未知 711秒 453毫秒/步 - 损失: 0.8765 - 稀疏分类准确率: 0.6549
1569/未知 711秒 453毫秒/步 - 损失: 0.8763 - 稀疏分类准确率: 0.6549
1570/未知 712秒 453毫秒/步 - 损失: 0.8762 - 稀疏分类准确率: 0.6550
1571/未知 712秒 453毫秒/步 - 损失: 0.8761 - 稀疏分类准确率: 0.6550
1572/未知 713秒 453毫秒/步 - 损失: 0.8760 - 稀疏分类准确率: 0.6550
1573/未知 713秒 453毫秒/步 - 损失: 0.8759 - 稀疏分类准确率: 0.6551
1574/未知 714秒 453毫秒/步 - 损失: 0.8758 - 稀疏分类准确率: 0.6551
1575/未知 714秒 453毫秒/步 - 损失: 0.8757 - 稀疏分类准确率: 0.6552
1576/未知 715秒 453毫秒/步 - 损失: 0.8756 - 稀疏分类准确率: 0.6552
1577/未知 715秒 453毫秒/步 - 损失: 0.8755 - 稀疏分类准确率: 0.6552
1578/未知 715秒 453毫秒/步 - 损失: 0.8754 - 稀疏分类准确率: 0.6553
1579/未知 716秒 453毫秒/步 - 损失: 0.8753 - 稀疏分类准确率: 0.6553
1580/未知 716秒 453毫秒/步 - 损失: 0.8752 - 稀疏分类准确率: 0.6553
1581/未知 716秒 453毫秒/步 - 损失: 0.8750 - 稀疏分类准确率: 0.6554
1582/未知 717秒 453毫秒/步 - 损失: 0.8749 - 稀疏分类准确率: 0.6554
1583/未知 717秒 453毫秒/步 - 损失: 0.8748 - 稀疏分类准确率: 0.6554
1584/未知 718秒 453毫秒/步 - 损失: 0.8747 - 稀疏分类准确率: 0.6555
1585/未知 718秒 453毫秒/步 - 损失: 0.8746 - 稀疏分类准确率: 0.6555
1586/未知 718秒 453毫秒/步 - 损失: 0.8745 - 稀疏分类准确率: 0.6555
1587/未知 719秒 453毫秒/步 - 损失: 0.8744 - 稀疏分类准确率: 0.6556
1588/未知 719秒 453毫秒/步 - 损失: 0.8743 - 稀疏分类准确率: 0.6556
1589/未知 720秒 453毫秒/步 - 损失: 0.8742 - 稀疏分类准确率: 0.6556
1590/未知 720秒 453毫秒/步 - 损失: 0.8741 - 稀疏分类准确率: 0.6557
1591/未知 721秒 453毫秒/步 - 损失: 0.8740 - 稀疏分类准确率: 0.6557
1592/未知 721秒 452毫秒/步 - 损失: 0.8739 - 稀疏分类准确率: 0.6557
1593/未知 721秒 452毫秒/步 - 损失: 0.8738 - 稀疏分类准确率: 0.6558
1594/未知 722秒 452毫秒/步 - 损失: 0.8737 - 稀疏分类准确率: 0.6558
1595/未知 722秒 452毫秒/步 - 损失: 0.8735 - 稀疏分类准确率: 0.6558
1596/未知 723秒 452毫秒/步 - 损失: 0.8734 - 稀疏分类准确率: 0.6559
1597/未知 723秒 453毫秒/步 - 损失: 0.8733 - 稀疏分类准确率: 0.6559
1598/未知 724秒 453毫秒/步 - 损失: 0.8732 - 稀疏分类准确率: 0.6559
1599/未知 724秒 453毫秒/步 - 损失: 0.8731 - 稀疏分类准确率: 0.6560
1600/未知 725秒 453毫秒/步 - 损失: 0.8730 - 稀疏分类准确率: 0.6560
1601/未知 725秒 452毫秒/步 - 损失: 0.8729 - 稀疏分类准确率: 0.6560
1602/未知 725秒 452毫秒/步 - 损失: 0.8728 - 稀疏分类准确率: 0.6561
1603/未知 726秒 452毫秒/步 - 损失: 0.8727 - 稀疏分类准确率: 0.6561
1604/未知 726秒 452毫秒/步 - 损失: 0.8726 - 稀疏分类准确率: 0.6561
1605/未知 726秒 452毫秒/步 - 损失: 0.8725 - 稀疏分类准确率: 0.6562
1606/未知 727秒 452毫秒/步 - 损失: 0.8724 - 稀疏分类准确率: 0.6562
1607/未知 727秒 452毫秒/步 - 损失: 0.8723 - 稀疏分类准确率: 0.6562
1608/未知 728秒 452毫秒/步 - 损失: 0.8722 - 稀疏分类准确率: 0.6563
1609/未知 728秒 452毫秒/步 - 损失: 0.8721 - 稀疏分类准确率: 0.6563
1610/未知 728秒 452毫秒/步 - 损失: 0.8720 - 稀疏分类准确率: 0.6563
1611/未知 729秒 452毫秒/步 - 损失: 0.8719 - 稀疏分类准确率: 0.6564
1612/未知 729秒 452毫秒/步 - 损失: 0.8717 - 稀疏分类准确率: 0.6564
1613/未知 730秒 452毫秒/步 - 损失: 0.8716 - 稀疏分类准确率: 0.6564
1614/未知 730秒 452毫秒/步 - 损失: 0.8715 - 稀疏分类准确率: 0.6565
1615/未知 730秒 452毫秒/步 - 损失: 0.8714 - 稀疏分类准确率: 0.6565
1616/未知 731秒 452毫秒/步 - 损失: 0.8713 - 稀疏分类准确率: 0.6565
1617/未知 731秒 452毫秒/步 - 损失: 0.8712 - 稀疏分类准确率: 0.6566
1618/未知 732秒 452毫秒/步 - 损失: 0.8711 - 稀疏分类准确率: 0.6566
1619/未知 732秒 452毫秒/步 - 损失: 0.8710 - 稀疏分类准确率: 0.6566
1620/未知 733秒 452毫秒/步 - 损失: 0.8709 - 稀疏分类准确率: 0.6567
1621/未知 733秒 452毫秒/步 - 损失: 0.8708 - 稀疏分类准确率: 0.6567
1622/未知 734秒 452毫秒/步 - 损失: 0.8707 - 稀疏分类准确率: 0.6567
1623/未知 734秒 452毫秒/步 - 损失: 0.8706 - 稀疏分类准确率: 0.6567
1624/未知 734秒 452毫秒/步 - 损失: 0.8705 - 稀疏分类准确率: 0.6568
1625/未知 735秒 452毫秒/步 - 损失: 0.8704 - 稀疏分类准确率: 0.6568
1626/未知 735秒 452毫秒/步 - 损失: 0.8703 - 稀疏分类准确率: 0.6568
1627/未知 736秒 452毫秒/步 - 损失: 0.8702 - 稀疏分类准确率: 0.6569
1628/未知 736秒 452毫秒/步 - 损失: 0.8701 - 稀疏分类准确率: 0.6569
1629/未知 736秒 452毫秒/步 - 损失: 0.8700 - 稀疏分类准确率: 0.6569
1630/未知 737秒 452毫秒/步 - 损失: 0.8699 - 稀疏分类准确率: 0.6570
1631/未知 737秒 452毫秒/步 - 损失: 0.8698 - 稀疏分类准确率: 0.6570
1632/未知 738秒 452毫秒/步 - 损失: 0.8697 - 稀疏分类准确率: 0.6570
1633/未知 738秒 452毫秒/步 - 损失: 0.8696 - 稀疏分类准确率: 0.6571
1634/未知 738秒 451毫秒/步 - 损失: 0.8695 - 稀疏分类准确率: 0.6571
1635/未知 739秒 451毫秒/步 - 损失: 0.8694 - 稀疏分类准确率: 0.6571
1636/未知 739秒 451毫秒/步 - 损失: 0.8693 - 稀疏分类准确率: 0.6572
1637/未知 739秒 451毫秒/步 - 损失: 0.8692 - 稀疏分类准确率: 0.6572
1638/未知 740秒 451毫秒/步 - 损失: 0.8690 - 稀疏分类准确率: 0.6572
1639/未知 740秒 451毫秒/步 - 损失: 0.8689 - 稀疏分类准确率: 0.6573
1640/未知 741秒 451毫秒/步 - 损失: 0.8688 - 稀疏分类准确率: 0.6573
1641/未知 741秒 451毫秒/步 - 损失: 0.8687 - 稀疏分类准确率: 0.6573
1642/未知 742秒 451毫秒/步 - 损失: 0.8686 - 稀疏分类准确率: 0.6574
1643/未知 742秒 451毫秒/步 - 损失: 0.8685 - 稀疏分类准确率: 0.6574
1644/未知 743秒 451毫秒/步 - 损失: 0.8684 - 稀疏分类准确率: 0.6574
1645/未知 743秒 451毫秒/步 - 损失: 0.8683 - 稀疏分类准确率: 0.6575
1646/未知 743秒 451毫秒/步 - 损失: 0.8682 - 稀疏分类准确率: 0.6575
1647/未知 744秒 451毫秒/步 - 损失: 0.8681 - 稀疏分类准确率: 0.6575
1648/未知 744秒 451毫秒/步 - 损失: 0.8680 - 稀疏分类准确率: 0.6576
1649/未知 744秒 451毫秒/步 - 损失: 0.8679 - 稀疏分类准确率: 0.6576
1650/未知 745秒 451毫秒/步 - 损失: 0.8678 - 稀疏分类准确率: 0.6576
1651/未知 745秒 451毫秒/步 - 损失: 0.8677 - 稀疏分类准确率: 0.6577
1652/未知 746秒 451毫秒/步 - 损失: 0.8676 - 稀疏分类准确率: 0.6577
1653/未知 746秒 451毫秒/步 - 损失: 0.8675 - 稀疏分类准确率: 0.6577
1654/未知 746秒 451毫秒/步 - 损失: 0.8674 - 稀疏分类准确率: 0.6577
1655/未知 747秒 451毫秒/步 - 损失: 0.8673 - 稀疏分类准确率: 0.6578
1656/未知 747秒 451毫秒/步 - 损失: 0.8672 - 稀疏分类准确率: 0.6578
1657/未知 748秒 451毫秒/步 - 损失: 0.8671 - 稀疏分类准确率: 0.6578
1658/未知 748秒 451毫秒/步 - 损失: 0.8670 - 稀疏分类准确率: 0.6579
1659/未知 749秒 451毫秒/步 - 损失: 0.8669 - 稀疏分类准确率: 0.6579
1660/未知 749秒 451毫秒/步 - 损失: 0.8668 - 稀疏分类准确率: 0.6579
1661/未知 749秒 451毫秒/步 - 损失: 0.8667 - 稀疏分类准确率: 0.6580
1662/未知 750秒 451毫秒/步 - 损失: 0.8666 - 稀疏分类准确率: 0.6580
1663/未知 750秒 451毫秒/步 - 损失: 0.8665 - 稀疏分类准确率: 0.6580
1664/未知 750秒 451毫秒/步 - 损失: 0.8664 - 稀疏分类准确率: 0.6581
1665/未知 751秒 451毫秒/步 - 损失: 0.8663 - 稀疏分类准确率: 0.6581
1666/未知 751秒 451毫秒/步 - 损失: 0.8662 - 稀疏分类准确率: 0.6581
1667/未知 752秒 451毫秒/步 - 损失: 0.8661 - 稀疏分类准确率: 0.6582
1668/未知 752秒 451毫秒/步 - 损失: 0.8660 - 稀疏分类准确率: 0.6582
1669/未知 753秒 451毫秒/步 - 损失: 0.8659 - 稀疏分类准确率: 0.6582
1670/未知 753秒 451毫秒/步 - 损失: 0.8658 - 稀疏分类准确率: 0.6583
1671/未知 754秒 451毫秒/步 - 损失: 0.8657 - 稀疏分类准确率: 0.6583
1672/未知 754秒 451毫秒/步 - 损失: 0.8656 - 稀疏分类准确率: 0.6583
1673/未知 755秒 451毫秒/步 - 损失: 0.8655 - 稀疏分类准确率: 0.6583
1674/未知 755秒 451毫秒/步 - 损失: 0.8654 - 稀疏分类准确率: 0.6584
1675/未知 755秒 451毫秒/步 - 损失: 0.8653 - 稀疏分类准确率: 0.6584
1676/未知 756秒 451毫秒/步 - 损失: 0.8652 - 稀疏分类准确率: 0.6584
1677/未知 756秒 451毫秒/步 - 损失: 0.8651 - 稀疏分类准确率: 0.6585
1678/未知 757秒 451毫秒/步 - 损失: 0.8650 - 稀疏分类准确率: 0.6585
1679/未知 757秒 450毫秒/步 - 损失: 0.8649 - 稀疏分类准确率: 0.6585
1680/未知 757秒 450毫秒/步 - 损失: 0.8648 - 稀疏分类准确率: 0.6586
1681/未知 758秒 450毫秒/步 - 损失: 0.8647 - 稀疏分类准确率: 0.6586
1682/未知 758秒 450毫秒/步 - 损失: 0.8646 - 稀疏分类准确率: 0.6586
1683/未知 758秒 450毫秒/步 - 损失: 0.8645 - 稀疏分类准确率: 0.6587
1684/未知 759秒 450毫秒/步 - 损失: 0.8644 - 稀疏分类准确率: 0.6587
1685/未知 759秒 450毫秒/步 - 损失: 0.8643 - 稀疏分类准确率: 0.6587
1686/未知 760秒 450毫秒/步 - 损失: 0.8642 - 稀疏分类准确率: 0.6587
1687/未知 760秒 450毫秒/步 - 损失: 0.8641 - 稀疏分类准确率: 0.6588
1688/未知 760秒 450毫秒/步 - 损失: 0.8640 - 稀疏分类准确率: 0.6588
1689/未知 761秒 450毫秒/步 - 损失: 0.8639 - 稀疏分类准确率: 0.6588
1690/未知 761秒 450毫秒/步 - 损失: 0.8638 - 稀疏分类准确率: 0.6589
1691/未知 762秒 450毫秒/步 - 损失: 0.8637 - 稀疏分类准确率: 0.6589
1692/未知 762秒 450毫秒/步 - 损失: 0.8636 - 稀疏分类准确率: 0.6589
1693/未知 762秒 450毫秒/步 - 损失: 0.8635 - 稀疏分类准确率: 0.6590
1694/未知 763秒 450毫秒/步 - 损失: 0.8634 - 稀疏分类准确率: 0.6590
1695/未知 763秒 450毫秒/步 - 损失: 0.8633 - 稀疏分类准确率: 0.6590
1696/未知 764秒 450毫秒/步 - 损失: 0.8632 - 稀疏分类准确率: 0.6591
1697/未知 764秒 450毫秒/步 - 损失: 0.8632 - 稀疏分类准确率: 0.6591
1698/未知 765秒 450毫秒/步 - 损失: 0.8631 - 稀疏分类准确率: 0.6591
1699/未知 765秒 450毫秒/步 - 损失: 0.8630 - 稀疏分类准确率: 0.6591
1700/未知 766秒 450毫秒/步 - 损失: 0.8629 - 稀疏分类准确率: 0.6592
1701/未知 766秒 450毫秒/步 - 损失: 0.8628 - 稀疏分类准确率: 0.6592
1702/未知 766秒 450毫秒/步 - 损失: 0.8627 - 稀疏分类准确率: 0.6592
1703/未知 767秒 450毫秒/步 - 损失: 0.8626 - 稀疏分类准确率: 0.6593
1704/未知 767秒 450毫秒/步 - 损失: 0.8625 - 稀疏分类准确率: 0.6593
1705/未知 768秒 450毫秒/步 - 损失: 0.8624 - 稀疏分类准确率: 0.6593
1706/未知 768秒 450毫秒/步 - 损失: 0.8623 - 稀疏分类准确率: 0.6594
1707/未知 768秒 450毫秒/步 - 损失: 0.8622 - 稀疏分类准确率: 0.6594
1708/未知 769秒 450毫秒/步 - 损失: 0.8621 - 稀疏分类准确率: 0.6594
1709/未知 769秒 450毫秒/步 - 损失: 0.8620 - 稀疏分类准确率: 0.6595
1710/未知 770秒 450毫秒/步 - 损失: 0.8619 - 稀疏分类准确率: 0.6595
1711/未知 770秒 450毫秒/步 - 损失: 0.8618 - 稀疏分类准确率: 0.6595
1712/未知 770秒 450毫秒/步 - 损失: 0.8617 - 稀疏分类准确率: 0.6595
1713/未知 771秒 450毫秒/步 - 损失: 0.8616 - 稀疏分类准确率: 0.6596
1714/未知 771秒 450毫秒/步 - 损失: 0.8615 - 稀疏分类准确率: 0.6596
1715/未知 772秒 450毫秒/步 - 损失: 0.8614 - 稀疏分类准确率: 0.6596
1716/未知 772秒 450毫秒/步 - 损失: 0.8613 - 稀疏分类准确率: 0.6597
1717/未知 773秒 450毫秒/步 - 损失: 0.8612 - 稀疏分类准确率: 0.6597
1718/未知 773秒 450毫秒/步 - 损失: 0.8611 - 稀疏分类准确率: 0.6597
1719/未知 774秒 450毫秒/步 - 损失: 0.8610 - 稀疏分类准确率: 0.6598
1720/未知 774秒 450毫秒/步 - 损失: 0.8609 - 稀疏分类准确率: 0.6598
1721/未知 774秒 450毫秒/步 - 损失: 0.8608 - 稀疏分类准确率: 0.6598
1722/未知 775秒 450毫秒/步 - 损失: 0.8607 - 稀疏分类准确率: 0.6598
1723/未知 775秒 450毫秒/步 - 损失: 0.8606 - 稀疏分类准确率: 0.6599
1724/未知 776秒 450毫秒/步 - 损失: 0.8606 - 稀疏分类准确率: 0.6599
1725/未知 776秒 450毫秒/步 - 损失: 0.8605 - 稀疏分类准确率: 0.6599
1726/未知 777秒 450毫秒/步 - 损失: 0.8604 - 稀疏分类准确率: 0.6600
1727/未知 777秒 450毫秒/步 - 损失: 0.8603 - 稀疏分类准确率: 0.6600
1728/未知 777秒 450毫秒/步 - 损失: 0.8602 - 稀疏分类准确率: 0.6600
1729/未知 778秒 450毫秒/步 - 损失: 0.8601 - 稀疏分类准确率: 0.6601
1730/未知 778秒 449毫秒/步 - 损失: 0.8600 - 稀疏分类准确率: 0.6601
1731/未知 779秒 449毫秒/步 - 损失: 0.8599 - 稀疏分类准确率: 0.6601
1732/未知 779秒 449毫秒/步 - 损失: 0.8598 - 稀疏分类准确率: 0.6601
1733/未知 779秒 449毫秒/步 - 损失: 0.8597 - 稀疏分类准确率: 0.6602
1734/未知 780秒 449毫秒/步 - 损失: 0.8596 - 稀疏分类准确率: 0.6602
1735/未知 780秒 449毫秒/步 - 损失: 0.8595 - 稀疏分类准确率: 0.6602
1736/未知 780秒 449毫秒/步 - 损失: 0.8594 - 稀疏分类准确率: 0.6603
1737/未知 781秒 449毫秒/步 - 损失: 0.8593 - 稀疏分类准确率: 0.6603
1738/未知 781秒 449毫秒/步 - 损失: 0.8592 - 稀疏分类准确率: 0.6603
1739/未知 782秒 449毫秒/步 - 损失: 0.8591 - 稀疏分类准确率: 0.6603
1740/未知 782秒 449毫秒/步 - 损失: 0.8590 - 稀疏分类准确率: 0.6604
1741/未知 782秒 449毫秒/步 - 损失: 0.8589 - 稀疏分类准确率: 0.6604
1742/未知 783秒 449毫秒/步 - 损失: 0.8589 - 稀疏分类准确率: 0.6604
1743/未知 783秒 449毫秒/步 - 损失: 0.8588 - 稀疏分类准确率: 0.6605
1744/未知 784秒 449毫秒/步 - 损失: 0.8587 - 稀疏分类准确率: 0.6605
1745/未知 784秒 449毫秒/步 - 损失: 0.8586 - 稀疏分类准确率: 0.6605
1746/未知 785秒 449毫秒/步 - 损失: 0.8585 - 稀疏分类准确率: 0.6606
1747/未知 785秒 449毫秒/步 - 损失: 0.8584 - 稀疏分类准确率: 0.6606
1748/未知 786秒 449毫秒/步 - 损失: 0.8583 - 稀疏分类准确率: 0.6606
1749/未知 786秒 449毫秒/步 - 损失: 0.8582 - 稀疏分类准确率: 0.6606
1750/未知 787秒 449毫秒/步 - 损失: 0.8581 - 稀疏分类准确率: 0.6607
1751/未知 787秒 449毫秒/步 - 损失: 0.8580 - 稀疏分类准确率: 0.6607
1752/未知 787秒 449毫秒/步 - 损失: 0.8579 - 稀疏分类准确率: 0.6607
1753/未知 788秒 449毫秒/步 - 损失: 0.8578 - 稀疏分类准确率: 0.6608
1754/未知 788秒 449毫秒/步 - 损失: 0.8577 - 稀疏分类准确率: 0.6608
1755/未知 789秒 449毫秒/步 - 损失: 0.8576 - 稀疏分类准确率: 0.6608
1756/未知 789秒 449毫秒/步 - 损失: 0.8576 - 稀疏分类准确率: 0.6608
1757/未知 789秒 449毫秒/步 - 损失: 0.8575 - 稀疏分类准确率: 0.6609
1758/未知 790秒 449毫秒/步 - 损失: 0.8574 - 稀疏分类准确率: 0.6609
1759/未知 790秒 449毫秒/步 - 损失: 0.8573 - 稀疏分类准确率: 0.6609
1760/未知 791秒 449毫秒/步 - 损失: 0.8572 - 稀疏分类准确率: 0.6610
1761/未知 791秒 449毫秒/步 - 损失: 0.8571 - 稀疏分类准确率: 0.6610
1762/未知 792秒 449毫秒/步 - 损失: 0.8570 - 稀疏分类准确率: 0.6610
1763/未知 792秒 449毫秒/步 - 损失: 0.8569 - 稀疏分类准确率: 0.6610
1764/未知 792秒 449毫秒/步 - 损失: 0.8568 - 稀疏分类准确率: 0.6611
1765/未知 793秒 449毫秒/步 - 损失: 0.8567 - 稀疏分类准确率: 0.6611
1766/未知 793秒 449毫秒/步 - 损失: 0.8566 - 稀疏分类准确率: 0.6611
1767/未知 794秒 449毫秒/步 - 损失: 0.8565 - 稀疏分类准确率: 0.6612
1768/未知 794秒 449毫秒/步 - 损失: 0.8564 - 稀疏分类准确率: 0.6612
1769/未知 795秒 449毫秒/步 - 损失: 0.8564 - 稀疏分类准确率: 0.6612
1770/未知 795秒 449毫秒/步 - 损失: 0.8563 - 稀疏分类准确率: 0.6612
1771/未知 796秒 449毫秒/步 - 损失: 0.8562 - 稀疏分类准确率: 0.6613
1772/未知 796秒 449毫秒/步 - 损失: 0.8561 - 稀疏分类准确率: 0.6613
1773/未知 796秒 449毫秒/步 - 损失: 0.8560 - 稀疏分类准确率: 0.6613
1774/未知 797秒 449毫秒/步 - 损失: 0.8559 - 稀疏分类准确率: 0.6614
1775/未知 797秒 449毫秒/步 - 损失: 0.8558 - 稀疏分类准确率: 0.6614
1776/未知 797秒 449毫秒/步 - 损失: 0.8557 - 稀疏分类准确率: 0.6614
1777/未知 798秒 449毫秒/步 - 损失: 0.8556 - 稀疏分类准确率: 0.6614
1778/未知 798秒 449毫秒/步 - 损失: 0.8555 - 稀疏分类准确率: 0.6615
1779/未知 799秒 449毫秒/步 - 损失: 0.8554 - 稀疏分类准确率: 0.6615
1780/未知 799秒 449毫秒/步 - 损失: 0.8554 - 稀疏分类准确率: 0.6615
1781/未知 799秒 449毫秒/步 - 损失: 0.8553 - 稀疏分类准确率: 0.6616
1782/未知 800秒 449毫秒/步 - 损失: 0.8552 - 稀疏分类准确率: 0.6616
1783/未知 800秒 448毫秒/步 - 损失: 0.8551 - 稀疏分类准确率: 0.6616
1784/未知 801秒 448毫秒/步 - 损失: 0.8550 - 稀疏分类准确率: 0.6616
1785/未知 801秒 448毫秒/步 - 损失: 0.8549 - 稀疏分类准确率: 0.6617
1786/未知 801秒 448毫秒/步 - 损失: 0.8548 - 稀疏分类准确率: 0.6617
1787/未知 802秒 448毫秒/步 - 损失: 0.8547 - 稀疏分类准确率: 0.6617
1788/未知 802秒 448毫秒/步 - 损失: 0.8546 - 稀疏分类准确率: 0.6618
1789/未知 803秒 448毫秒/步 - 损失: 0.8545 - 稀疏分类准确率: 0.6618
1790/未知 803秒 448毫秒/步 - 损失: 0.8545 - 稀疏分类准确率: 0.6618
1791/未知 803秒 448毫秒/步 - 损失: 0.8544 - 稀疏分类准确率: 0.6618
1792/未知 804秒 448毫秒/步 - 损失: 0.8543 - 稀疏分类准确率: 0.6619
1793/未知 804秒 448毫秒/步 - 损失: 0.8542 - 稀疏分类准确率: 0.6619
1794/未知 805秒 448毫秒/步 - 损失: 0.8541 - 稀疏分类准确率: 0.6619
1795/未知 805秒 448毫秒/步 - 损失: 0.8540 - 稀疏分类准确率: 0.6620
1796/未知 805秒 448毫秒/步 - 损失: 0.8539 - 稀疏分类准确率: 0.6620
1797/未知 806秒 448毫秒/步 - 损失: 0.8538 - 稀疏分类准确率: 0.6620
1798/未知 806秒 448毫秒/步 - 损失: 0.8537 - 稀疏分类准确率: 0.6620
1799/未知 807秒 448毫秒/步 - 损失: 0.8536 - 稀疏分类准确率: 0.6621
1800/未知 807秒 448毫秒/步 - 损失: 0.8536 - 稀疏分类准确率: 0.6621
1801/未知 808秒 448毫秒/步 - 损失: 0.8535 - 稀疏分类准确率: 0.6621
1802/未知 808秒 448毫秒/步 - 损失: 0.8534 - 稀疏分类准确率: 0.6622
1803/未知 808秒 448毫秒/步 - 损失: 0.8533 - 稀疏分类准确率: 0.6622
1804/未知 809秒 448毫秒/步 - 损失: 0.8532 - 稀疏分类准确率: 0.6622
1805/未知 809秒 448毫秒/步 - 损失: 0.8531 - 稀疏分类准确率: 0.6622
1806/未知 810秒 448毫秒/步 - 损失: 0.8530 - 稀疏分类准确率: 0.6623
1807/未知 810秒 448毫秒/步 - 损失: 0.8529 - 稀疏分类准确率: 0.6623
1808/未知 811秒 448毫秒/步 - 损失: 0.8528 - 稀疏分类准确率: 0.6623
1809/未知 811秒 448毫秒/步 - 损失: 0.8528 - 稀疏分类准确率: 0.6623
1810/未知 811秒 448毫秒/步 - 损失: 0.8527 - 稀疏分类准确率: 0.6624
1811/未知 812秒 448毫秒/步 - 损失: 0.8526 - 稀疏分类准确率: 0.6624
1812/未知 812秒 448毫秒/步 - 损失: 0.8525 - 稀疏分类准确率: 0.6624
1813/未知 812秒 448毫秒/步 - 损失: 0.8524 - 稀疏分类准确率: 0.6625
1814/未知 813秒 448毫秒/步 - 损失: 0.8523 - 稀疏分类准确率: 0.6625
1815/未知 813秒 448毫秒/步 - 损失: 0.8522 - 稀疏分类准确率: 0.6625
1816/未知 814秒 448毫秒/步 - 损失: 0.8521 - 稀疏分类准确率: 0.6625
1817/未知 814秒 448毫秒/步 - 损失: 0.8520 - 稀疏分类准确率: 0.6626
1818/未知 814秒 448毫秒/步 - 损失: 0.8520 - 稀疏分类准确率: 0.6626
1819/未知 815秒 448毫秒/步 - 损失: 0.8519 - 稀疏分类准确率: 0.6626
1820/未知 815秒 448毫秒/步 - 损失: 0.8518 - 稀疏分类准确率: 0.6627
1821/未知 816秒 448毫秒/步 - 损失: 0.8517 - 稀疏分类准确率: 0.6627
1822/未知 816秒 448毫秒/步 - 损失: 0.8516 - 稀疏分类准确率: 0.6627
1823/未知 817秒 448毫秒/步 - 损失: 0.8515 - 稀疏分类准确率: 0.6627
1824/未知 817秒 448毫秒/步 - 损失: 0.8514 - 稀疏分类准确率: 0.6628
1825/未知 818秒 448毫秒/步 - 损失: 0.8513 - 稀疏分类准确率: 0.6628
1826/未知 818秒 448毫秒/步 - 损失: 0.8513 - 稀疏分类准确率: 0.6628
1827/未知 819秒 448毫秒/步 - 损失: 0.8512 - 稀疏分类准确率: 0.6628
1828/未知 819秒 448毫秒/步 - 损失: 0.8511 - 稀疏分类准确率: 0.6629
1829/未知 819秒 448毫秒/步 - 损失: 0.8510 - 稀疏分类准确率: 0.6629
1830/未知 820秒 448毫秒/步 - 损失: 0.8509 - 稀疏分类准确率: 0.6629
1831/未知 820秒 448毫秒/步 - 损失: 0.8508 - 稀疏分类准确率: 0.6630
1832/未知 821秒 448毫秒/步 - 损失: 0.8507 - 稀疏分类准确率: 0.6630
1833/未知 821秒 448毫秒/步 - 损失: 0.8507 - 稀疏分类准确率: 0.6630
1834/未知 821秒 448毫秒/步 - 损失: 0.8506 - 稀疏分类准确率: 0.6630
1835/未知 822秒 447毫秒/步 - 损失: 0.8505 - 稀疏分类准确率: 0.6631
1836/未知 822秒 447毫秒/步 - 损失: 0.8504 - 稀疏分类准确率: 0.6631
1837/未知 822秒 447毫秒/步 - 损失: 0.8503 - 稀疏分类准确率: 0.6631
1838/未知 823秒 447毫秒/步 - 损失: 0.8502 - 稀疏分类准确率: 0.6631
1839/未知 823秒 447毫秒/步 - 损失: 0.8501 - 稀疏分类准确率: 0.6632
1840/未知 823秒 447毫秒/步 - 损失: 0.8500 - 稀疏分类准确率: 0.6632
1841/未知 824秒 447毫秒/步 - 损失: 0.8500 - 稀疏分类准确率: 0.6632
1842/未知 824秒 447毫秒/步 - 损失: 0.8499 - 稀疏分类准确率: 0.6633
1843/未知 825秒 447毫秒/步 - 损失: 0.8498 - 稀疏分类准确率: 0.6633
1844/未知 825秒 447毫秒/步 - 损失: 0.8497 - 稀疏分类准确率: 0.6633
1845/未知 825秒 447毫秒/步 - 损失: 0.8496 - 稀疏分类准确率: 0.6633
1846/未知 826秒 447毫秒/步 - 损失: 0.8495 - 稀疏分类准确率: 0.6634
1847/未知 826秒 447毫秒/步 - 损失: 0.8494 - 稀疏分类准确率: 0.6634
1848/未知 827秒 447毫秒/步 - 损失: 0.8494 - 稀疏分类准确率: 0.6634
1849/未知 827秒 447毫秒/步 - 损失: 0.8493 - 稀疏分类准确率: 0.6634
1850/未知 828秒 447毫秒/步 - 损失: 0.8492 - 稀疏分类准确率: 0.6635
1851/未知 828秒 447毫秒/步 - 损失: 0.8491 - 稀疏分类准确率: 0.6635
1852/未知 828秒 447毫秒/步 - 损失: 0.8490 - 稀疏分类准确率: 0.6635
1853/未知 829秒 447毫秒/步 - 损失: 0.8489 - 稀疏分类准确率: 0.6636
1854/未知 829秒 447毫秒/步 - 损失: 0.8488 - 稀疏分类准确率: 0.6636
1855/未知 830秒 447毫秒/步 - 损失: 0.8488 - 稀疏分类准确率: 0.6636
1856/未知 830秒 447毫秒/步 - 损失: 0.8487 - 稀疏分类准确率: 0.6636
1857/未知 830秒 447毫秒/步 - 损失: 0.8486 - 稀疏分类准确率: 0.6637
1858/未知 831秒 447毫秒/步 - 损失: 0.8485 - 稀疏分类准确率: 0.6637
1859/未知 831秒 447毫秒/步 - 损失: 0.8484 - 稀疏分类准确率: 0.6637
1860/未知 832秒 447毫秒/步 - 损失: 0.8483 - 稀疏分类准确率: 0.6637
1861/未知 832秒 447毫秒/步 - 损失: 0.8482 - 稀疏分类准确率: 0.6638
1862/未知 832秒 447毫秒/步 - 损失: 0.8482 - 稀疏分类准确率: 0.6638
1863/未知 833秒 447毫秒/步 - 损失: 0.8481 - 稀疏分类准确率: 0.6638
1864/未知 833秒 447毫秒/步 - 损失: 0.8480 - 稀疏分类准确率: 0.6638
1865/未知 834秒 447毫秒/步 - 损失: 0.8479 - 稀疏分类准确率: 0.6639
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 834秒 447毫秒/步 - 损失: 0.8478 - 稀疏分类准确率: 0.6639
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 75.0%
Deep & Cross 模型达到了约 81% 的测试准确率。
你可以使用 Keras 预处理层轻松处理具有不同编码机制的类别特征,包括 one-hot 编码和特征嵌入。此外,不同的模型架构(如 Wide、Deep 和 Cross 网络)在不同的数据集属性方面具有不同的优势。你可以探索独立使用或组合使用它们,以便为你的数据集获得最佳结果。