代码示例 / 结构化数据 / 使用 TabTransformer 进行结构化数据学习

使用 TabTransformer 进行结构化数据学习

作者: Khalid Salama
创建日期 2022/01/18
最后修改日期 2022/01/18
描述: 使用上下文嵌入进行结构化数据分类。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


简介

本示例演示如何使用 TabTransformer 进行结构化数据分类,TabTransformer 是一种用于监督和半监督学习的深度表格数据建模架构。 TabTransformer 基于自注意力 Transformer 构建。 Transformer 层将分类特征的嵌入转换为强大的上下文嵌入,以实现更高的预测准确性。


设置

import keras
from keras import layers
from keras import ops

import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import matplotlib.pyplot as plt
from functools import partial

准备数据

本示例使用 美国人口普查收入数据集,该数据集由 加州大学欧文分校机器学习存储库提供。任务是二元分类,以预测一个人是否可能年收入超过 50,000 美元。

该数据集包含 48,842 个实例,具有 14 个输入特征:5 个数值特征和 9 个分类特征。

首先,让我们将 UCI 机器学习存储库中的数据集加载到 Pandas DataFrame 中

CSV_HEADER = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education_num",
    "marital_status",
    "occupation",
    "relationship",
    "race",
    "gender",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
    "native_country",
    "income_bracket",
]

train_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
)
train_data = pd.read_csv(train_data_url, header=None, names=CSV_HEADER)

test_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
)
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)

print(f"Train dataset shape: {train_data.shape}")
print(f"Test dataset shape: {test_data.shape}")
Train dataset shape: (32561, 15)
Test dataset shape: (16282, 15)

删除第一个记录(因为它不是有效的数据示例)和类标签中的尾随“点”。

test_data = test_data[1:]
test_data.income_bracket = test_data.income_bracket.apply(
    lambda value: value.replace(".", "")
)

现在我们将训练和测试数据存储在单独的 CSV 文件中。

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)

定义数据集元数据

在这里,我们定义数据集的元数据,这些元数据对于将数据读取和解析为输入特征,以及根据其类型对输入特征进行编码非常有用。

# A list of the numerical feature names.
NUMERIC_FEATURE_NAMES = [
    "age",
    "education_num",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
]
# A dictionary of the categorical features and their vocabulary.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "workclass": sorted(list(train_data["workclass"].unique())),
    "education": sorted(list(train_data["education"].unique())),
    "marital_status": sorted(list(train_data["marital_status"].unique())),
    "occupation": sorted(list(train_data["occupation"].unique())),
    "relationship": sorted(list(train_data["relationship"].unique())),
    "race": sorted(list(train_data["race"].unique())),
    "gender": sorted(list(train_data["gender"].unique())),
    "native_country": sorted(list(train_data["native_country"].unique())),
}
# Name of the column to be used as instances weight.
WEIGHT_COLUMN_NAME = "fnlwgt"
# A list of the categorical feature names.
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
# A list of all the input features.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
# A list of column default values for each feature.
COLUMN_DEFAULTS = [
    [0.0] if feature_name in NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME] else ["NA"]
    for feature_name in CSV_HEADER
]
# The name of the target feature.
TARGET_FEATURE_NAME = "income_bracket"
# A list of the labels of the target features.
TARGET_LABELS = [" <=50K", " >50K"]

配置超参数

超参数包括模型架构和训练配置。

LEARNING_RATE = 0.001
WEIGHT_DECAY = 0.0001
DROPOUT_RATE = 0.2
BATCH_SIZE = 265
NUM_EPOCHS = 15

NUM_TRANSFORMER_BLOCKS = 3  # Number of transformer blocks.
NUM_HEADS = 4  # Number of attention heads.
EMBEDDING_DIMS = 16  # Embedding dimensions of the categorical features.
MLP_HIDDEN_UNITS_FACTORS = [
    2,
    1,
]  # MLP hidden layer units, as factors of the number of inputs.
NUM_MLP_BLOCKS = 2  # Number of MLP blocks in the baseline model.

实现数据读取管道

我们定义一个输入函数,该函数读取并解析文件,然后将特征和标签转换为 tf.data.Dataset 以进行训练或评估。

target_label_lookup = layers.StringLookup(
    vocabulary=TARGET_LABELS, mask_token=None, num_oov_indices=0
)


def prepare_example(features, target):
    target_index = target_label_lookup(target)
    weights = features.pop(WEIGHT_COLUMN_NAME)
    return features, target_index, weights


lookup_dict = {}
for feature_name in CATEGORICAL_FEATURE_NAMES:
    vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
    # Create a lookup to convert a string values to an integer indices.
    # Since we are not using a mask token, nor expecting any out of vocabulary
    # (oov) token, we set mask_token to None and num_oov_indices to 0.
    lookup = layers.StringLookup(
        vocabulary=vocabulary, mask_token=None, num_oov_indices=0
    )
    lookup_dict[feature_name] = lookup


def encode_categorical(batch_x, batch_y, weights):
    for feature_name in CATEGORICAL_FEATURE_NAMES:
        batch_x[feature_name] = lookup_dict[feature_name](batch_x[feature_name])

    return batch_x, batch_y, weights


def get_dataset_from_csv(csv_file_path, batch_size=128, shuffle=False):
    dataset = (
        tf_data.experimental.make_csv_dataset(
            csv_file_path,
            batch_size=batch_size,
            column_names=CSV_HEADER,
            column_defaults=COLUMN_DEFAULTS,
            label_name=TARGET_FEATURE_NAME,
            num_epochs=1,
            header=False,
            na_value="?",
            shuffle=shuffle,
        )
        .map(prepare_example, num_parallel_calls=tf_data.AUTOTUNE, deterministic=False)
        .map(encode_categorical)
    )
    return dataset.cache()

实现训练和评估过程

def run_experiment(
    model,
    train_data_file,
    test_data_file,
    num_epochs,
    learning_rate,
    weight_decay,
    batch_size,
):
    optimizer = keras.optimizers.AdamW(
        learning_rate=learning_rate, weight_decay=weight_decay
    )

    model.compile(
        optimizer=optimizer,
        loss=keras.losses.BinaryCrossentropy(),
        metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
    )

    train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)
    validation_dataset = get_dataset_from_csv(test_data_file, batch_size)

    print("Start training the model...")
    history = model.fit(
        train_dataset, epochs=num_epochs, validation_data=validation_dataset
    )
    print("Model training finished")

    _, accuracy = model.evaluate(validation_dataset, verbose=0)

    print(f"Validation accuracy: {round(accuracy * 100, 2)}%")

    return history

创建模型输入

现在,将模型的输入定义为一个字典,其中键是特征名称,值是具有相应特征形状和数据类型的 keras.layers.Input 张量。

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="int32"
            )
    return inputs

编码特征

encode_inputs 方法返回 encoded_categorical_feature_listnumerical_feature_list。 我们将分类特征编码为嵌入,对所有特征使用固定的 embedding_dims,而不管其词汇量大小。 这是 Transformer 模型所必需的。

def encode_inputs(inputs, embedding_dims):
    encoded_categorical_feature_list = []
    numerical_feature_list = []

    for feature_name in inputs:
        if feature_name in CATEGORICAL_FEATURE_NAMES:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert a string values to an integer indices.
            # Since we are not using a mask token, nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and num_oov_indices to 0.

            # Convert the string input values into integer indices.

            # Create an embedding layer with the specified dimensions.
            embedding = layers.Embedding(
                input_dim=len(vocabulary), output_dim=embedding_dims
            )

            # Convert the index values to embedding representations.
            encoded_categorical_feature = embedding(inputs[feature_name])
            encoded_categorical_feature_list.append(encoded_categorical_feature)

        else:
            # Use the numerical features as-is.
            numerical_feature = ops.expand_dims(inputs[feature_name], -1)
            numerical_feature_list.append(numerical_feature)

    return encoded_categorical_feature_list, numerical_feature_list

实现 MLP 块

def create_mlp(hidden_units, dropout_rate, activation, normalization_layer, name=None):
    mlp_layers = []
    for units in hidden_units:
        mlp_layers.append(normalization_layer())
        mlp_layers.append(layers.Dense(units, activation=activation))
        mlp_layers.append(layers.Dropout(dropout_rate))

    return keras.Sequential(mlp_layers, name=name)

实验 1:基线模型

在第一个实验中,我们创建一个简单的多层前馈网络。

def create_baseline_model(
    embedding_dims, num_mlp_blocks, mlp_hidden_units_factors, dropout_rate
):
    # Create model inputs.
    inputs = create_model_inputs()
    # encode features.
    encoded_categorical_feature_list, numerical_feature_list = encode_inputs(
        inputs, embedding_dims
    )
    # Concatenate all features.
    features = layers.concatenate(
        encoded_categorical_feature_list + numerical_feature_list
    )
    # Compute Feedforward layer units.
    feedforward_units = [features.shape[-1]]

    # Create several feedforwad layers with skip connections.
    for layer_idx in range(num_mlp_blocks):
        features = create_mlp(
            hidden_units=feedforward_units,
            dropout_rate=dropout_rate,
            activation=keras.activations.gelu,
            normalization_layer=layers.LayerNormalization,
            name=f"feedforward_{layer_idx}",
        )(features)

    # Compute MLP hidden_units.
    mlp_hidden_units = [
        factor * features.shape[-1] for factor in mlp_hidden_units_factors
    ]
    # Create final MLP.
    features = create_mlp(
        hidden_units=mlp_hidden_units,
        dropout_rate=dropout_rate,
        activation=keras.activations.selu,
        normalization_layer=layers.BatchNormalization,
        name="MLP",
    )(features)

    # Add a sigmoid as a binary classifer.
    outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


baseline_model = create_baseline_model(
    embedding_dims=EMBEDDING_DIMS,
    num_mlp_blocks=NUM_MLP_BLOCKS,
    mlp_hidden_units_factors=MLP_HIDDEN_UNITS_FACTORS,
    dropout_rate=DROPOUT_RATE,
)

print("Total model weights:", baseline_model.count_params())
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")
An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.

Total model weights: 110693

png

让我们训练并评估基线模型

history = run_experiment(
    model=baseline_model,
    train_data_file=train_data_file,
    test_data_file=test_data_file,
    num_epochs=NUM_EPOCHS,
    learning_rate=LEARNING_RATE,
    weight_decay=WEIGHT_DECAY,
    batch_size=BATCH_SIZE,
)
Start training the model...
Epoch 1/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 13s 70ms/step - accuracy: 0.6912 - loss: 127137.3984 - val_accuracy: 0.7623 - val_loss: 96156.1875
Epoch 2/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.7626 - loss: 102946.6797 - val_accuracy: 0.7699 - val_loss: 77236.8828
Epoch 3/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.7738 - loss: 82999.3281 - val_accuracy: 0.8154 - val_loss: 70085.9609
Epoch 4/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.7981 - loss: 75569.4375 - val_accuracy: 0.8111 - val_loss: 69759.5547
Epoch 5/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8006 - loss: 74234.1641 - val_accuracy: 0.7968 - val_loss: 71532.2422
Epoch 6/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8074 - loss: 71770.2891 - val_accuracy: 0.8082 - val_loss: 69105.5078
Epoch 7/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8118 - loss: 70526.6797 - val_accuracy: 0.8094 - val_loss: 68746.7891
Epoch 8/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8110 - loss: 70309.3750 - val_accuracy: 0.8132 - val_loss: 68305.1328
Epoch 9/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8143 - loss: 69896.9141 - val_accuracy: 0.8046 - val_loss: 70013.1016
Epoch 10/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8124 - loss: 69885.8281 - val_accuracy: 0.8037 - val_loss: 70305.7969
Epoch 11/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8131 - loss: 69193.8203 - val_accuracy: 0.8075 - val_loss: 69615.5547
Epoch 12/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8148 - loss: 68933.5703 - val_accuracy: 0.7997 - val_loss: 70789.2422
Epoch 13/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8146 - loss: 68929.5078 - val_accuracy: 0.8104 - val_loss: 68525.1016
Epoch 14/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 3s 26ms/step - accuracy: 0.8174 - loss: 68447.2500 - val_accuracy: 0.8119 - val_loss: 68787.0078
Epoch 15/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 2s 13ms/step - accuracy: 0.8184 - loss: 68346.5391 - val_accuracy: 0.8143 - val_loss: 68101.9531
Model training finished
Validation accuracy: 81.43%

基线线性模型达到约 81% 的验证准确率。


实验 2:TabTransformer

TabTransformer 架构的工作方式如下

  1. 所有分类特征都使用相同的 embedding_dims 编码为嵌入。 这意味着每个分类特征中的每个值都将有其自己的嵌入向量。
  2. 为每个分类特征添加一个列嵌入(一个嵌入向量),(逐点)添加到分类特征嵌入中。
  3. 嵌入的分类特征被馈送到一堆 Transformer 块中。 每个 Transformer 块由一个多头自注意力层和一个前馈层组成。
  4. 最后一个 Transformer 层的输出,即分类特征的上下文嵌入,与输入的数值特征连接起来,并馈送到最终的 MLP 块中。
  5. 在模型的末尾应用 softmax 分类器。

论文附录:实验和模型细节部分中讨论了列嵌入的加法和连接。 TabTransformer 的架构如下所示,如论文中所述。

def create_tabtransformer_classifier(
    num_transformer_blocks,
    num_heads,
    embedding_dims,
    mlp_hidden_units_factors,
    dropout_rate,
    use_column_embedding=False,
):
    # Create model inputs.
    inputs = create_model_inputs()
    # encode features.
    encoded_categorical_feature_list, numerical_feature_list = encode_inputs(
        inputs, embedding_dims
    )
    # Stack categorical feature embeddings for the Tansformer.
    encoded_categorical_features = ops.stack(encoded_categorical_feature_list, axis=1)
    # Concatenate numerical features.
    numerical_features = layers.concatenate(numerical_feature_list)

    # Add column embedding to categorical feature embeddings.
    if use_column_embedding:
        num_columns = encoded_categorical_features.shape[1]
        column_embedding = layers.Embedding(
            input_dim=num_columns, output_dim=embedding_dims
        )
        column_indices = ops.arange(start=0, stop=num_columns, step=1)
        encoded_categorical_features = encoded_categorical_features + column_embedding(
            column_indices
        )

    # Create multiple layers of the Transformer block.
    for block_idx in range(num_transformer_blocks):
        # Create a multi-head attention layer.
        attention_output = layers.MultiHeadAttention(
            num_heads=num_heads,
            key_dim=embedding_dims,
            dropout=dropout_rate,
            name=f"multihead_attention_{block_idx}",
        )(encoded_categorical_features, encoded_categorical_features)
        # Skip connection 1.
        x = layers.Add(name=f"skip_connection1_{block_idx}")(
            [attention_output, encoded_categorical_features]
        )
        # Layer normalization 1.
        x = layers.LayerNormalization(name=f"layer_norm1_{block_idx}", epsilon=1e-6)(x)
        # Feedforward.
        feedforward_output = create_mlp(
            hidden_units=[embedding_dims],
            dropout_rate=dropout_rate,
            activation=keras.activations.gelu,
            normalization_layer=partial(
                layers.LayerNormalization, epsilon=1e-6
            ),  # using partial to provide keyword arguments before initialization
            name=f"feedforward_{block_idx}",
        )(x)
        # Skip connection 2.
        x = layers.Add(name=f"skip_connection2_{block_idx}")([feedforward_output, x])
        # Layer normalization 2.
        encoded_categorical_features = layers.LayerNormalization(
            name=f"layer_norm2_{block_idx}", epsilon=1e-6
        )(x)

    # Flatten the "contextualized" embeddings of the categorical features.
    categorical_features = layers.Flatten()(encoded_categorical_features)
    # Apply layer normalization to the numerical features.
    numerical_features = layers.LayerNormalization(epsilon=1e-6)(numerical_features)
    # Prepare the input for the final MLP block.
    features = layers.concatenate([categorical_features, numerical_features])

    # Compute MLP hidden_units.
    mlp_hidden_units = [
        factor * features.shape[-1] for factor in mlp_hidden_units_factors
    ]
    # Create final MLP.
    features = create_mlp(
        hidden_units=mlp_hidden_units,
        dropout_rate=dropout_rate,
        activation=keras.activations.selu,
        normalization_layer=layers.BatchNormalization,
        name="MLP",
    )(features)

    # Add a sigmoid as a binary classifer.
    outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


tabtransformer_model = create_tabtransformer_classifier(
    num_transformer_blocks=NUM_TRANSFORMER_BLOCKS,
    num_heads=NUM_HEADS,
    embedding_dims=EMBEDDING_DIMS,
    mlp_hidden_units_factors=MLP_HIDDEN_UNITS_FACTORS,
    dropout_rate=DROPOUT_RATE,
)

print("Total model weights:", tabtransformer_model.count_params())
keras.utils.plot_model(tabtransformer_model, show_shapes=True, rankdir="LR")
Total model weights: 88543

png

让我们训练并评估 TabTransformer 模型

history = run_experiment(
    model=tabtransformer_model,
    train_data_file=train_data_file,
    test_data_file=test_data_file,
    num_epochs=NUM_EPOCHS,
    learning_rate=LEARNING_RATE,
    weight_decay=WEIGHT_DECAY,
    batch_size=BATCH_SIZE,
)
Start training the model...
Epoch 1/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 46s 272ms/step - accuracy: 0.7504 - loss: 103329.7578 - val_accuracy: 0.7637 - val_loss: 122401.2188
Epoch 2/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 8s 62ms/step - accuracy: 0.8033 - loss: 79797.0469 - val_accuracy: 0.7712 - val_loss: 97510.0000
Epoch 3/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8202 - loss: 73736.2500 - val_accuracy: 0.8037 - val_loss: 79687.8906
Epoch 4/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8247 - loss: 70282.2031 - val_accuracy: 0.8355 - val_loss: 64703.9453
Epoch 5/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8317 - loss: 67661.8906 - val_accuracy: 0.8427 - val_loss: 64015.5156
Epoch 6/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8333 - loss: 67486.6562 - val_accuracy: 0.8402 - val_loss: 65543.7188
Epoch 7/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8359 - loss: 66328.3516 - val_accuracy: 0.8360 - val_loss: 68744.6484
Epoch 8/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8354 - loss: 66040.3906 - val_accuracy: 0.8209 - val_loss: 72937.5703
Epoch 9/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8376 - loss: 65606.2344 - val_accuracy: 0.8298 - val_loss: 72673.2031
Epoch 10/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8395 - loss: 65170.4375 - val_accuracy: 0.8259 - val_loss: 70717.4922
Epoch 11/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 8s 62ms/step - accuracy: 0.8395 - loss: 65003.5820 - val_accuracy: 0.8481 - val_loss: 62421.4102
Epoch 12/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 12s 94ms/step - accuracy: 0.8396 - loss: 64860.1797 - val_accuracy: 0.8482 - val_loss: 63217.3516
Epoch 13/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 6s 52ms/step - accuracy: 0.8412 - loss: 64597.3945 - val_accuracy: 0.8256 - val_loss: 71274.4609
Epoch 14/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 11s 94ms/step - accuracy: 0.8419 - loss: 63789.4688 - val_accuracy: 0.8473 - val_loss: 63099.7422
Epoch 15/15
 123/123 ━━━━━━━━━━━━━━━━━━━━ 11s 94ms/step - accuracy: 0.8427 - loss: 63856.9531 - val_accuracy: 0.8459 - val_loss: 64541.9688
Model training finished
Validation accuracy: 84.59%

TabTransformer 模型达到约 85% 的验证准确率。 请注意,使用默认参数配置,基线和 TabTransformer 的可训练权重数量相似:分别为 109,629 和 92,151,并且两者都使用相同的训练超参数。


结论

TabTransformer 在表格数据方面显着优于 MLP 和最近的深度网络,同时与基于树的集成模型的性能相匹配。 可以使用标记的示例在端到端的监督训练中学习 TabTransformer。 对于标记示例较少而未标记示例较多的场景,可以使用预训练程序来使用未标记数据训练 Transformer 层。 接下来,使用标记的数据微调预训练的 Transformer 层以及顶部的 MLP 层。