代码示例 / 结构化数据 / 使用神经决策森林进行分类

使用神经决策森林进行分类

作者: Khalid Salama
创建时间 2021/01/15
最后修改时间 2021/01/15
描述:如何在深度神经网络中训练可微分的决策树,以实现端到端的学习。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


简介

此示例提供了 P. Kontschieder 等人针对结构化数据分类提出的深度神经决策森林模型的实现。它演示了如何构建随机可微分决策树模型,以端到端的方式对其进行训练,并将决策树与深度表示学习统一起来。


数据集

此示例使用 美国人口普查收入数据集,该数据集由 加州大学欧文分校机器学习资料库提供。任务是二元分类,以预测一个人是否可能每年赚取超过 50,000 美元。

数据集包括 48,842 个实例,具有 14 个输入特征(例如年龄、工作类别、教育程度、职业等):5 个数值特征和 9 个类别特征。


设置

import keras
from keras import layers
from keras.layers import StringLookup
from keras import ops


from tensorflow import data as tf_data
import numpy as np
import pandas as pd

import math

准备数据

CSV_HEADER = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education_num",
    "marital_status",
    "occupation",
    "relationship",
    "race",
    "gender",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
    "native_country",
    "income_bracket",
]

train_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
)
train_data = pd.read_csv(train_data_url, header=None, names=CSV_HEADER)

test_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
)
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)

print(f"Train dataset shape: {train_data.shape}")
print(f"Test dataset shape: {test_data.shape}")
Train dataset shape: (32561, 15)
Test dataset shape: (16282, 15)

删除第一条记录(因为它不是有效的示例数据)以及类标签中的尾随“点”。

test_data = test_data[1:]
test_data.income_bracket = test_data.income_bracket.apply(
    lambda value: value.replace(".", "")
)

我们将训练和测试数据拆分本地存储为 CSV 文件。

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)

定义数据集元数据

在这里,我们定义数据集的元数据,这些元数据将有助于读取、解析和编码输入特征。

# A list of the numerical feature names.
NUMERIC_FEATURE_NAMES = [
    "age",
    "education_num",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
]
# A dictionary of the categorical features and their vocabulary.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "workclass": sorted(list(train_data["workclass"].unique())),
    "education": sorted(list(train_data["education"].unique())),
    "marital_status": sorted(list(train_data["marital_status"].unique())),
    "occupation": sorted(list(train_data["occupation"].unique())),
    "relationship": sorted(list(train_data["relationship"].unique())),
    "race": sorted(list(train_data["race"].unique())),
    "gender": sorted(list(train_data["gender"].unique())),
    "native_country": sorted(list(train_data["native_country"].unique())),
}
# A list of the columns to ignore from the dataset.
IGNORE_COLUMN_NAMES = ["fnlwgt"]
# A list of the categorical feature names.
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
# A list of all the input features.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
# A list of column default values for each feature.
COLUMN_DEFAULTS = [
    [0.0] if feature_name in NUMERIC_FEATURE_NAMES + IGNORE_COLUMN_NAMES else ["NA"]
    for feature_name in CSV_HEADER
]
# The name of the target feature.
TARGET_FEATURE_NAME = "income_bracket"
# A list of the labels of the target features.
TARGET_LABELS = [" <=50K", " >50K"]

创建用于训练和验证的 tf_data.Dataset 对象

我们创建一个输入函数来读取和解析文件,并将特征和标签转换为 tf_data.Dataset,用于训练和验证。我们还通过将目标标签映射到索引来预处理输入。

target_label_lookup = StringLookup(
    vocabulary=TARGET_LABELS, mask_token=None, num_oov_indices=0
)


lookup_dict = {}
for feature_name in CATEGORICAL_FEATURE_NAMES:
    vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
    # Create a lookup to convert a string values to an integer indices.
    # Since we are not using a mask token, nor expecting any out of vocabulary
    # (oov) token, we set mask_token to None and num_oov_indices to 0.
    lookup = StringLookup(vocabulary=vocabulary, mask_token=None, num_oov_indices=0)
    lookup_dict[feature_name] = lookup


def encode_categorical(batch_x, batch_y):
    for feature_name in CATEGORICAL_FEATURE_NAMES:
        batch_x[feature_name] = lookup_dict[feature_name](batch_x[feature_name])

    return batch_x, batch_y


def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
    dataset = (
        tf_data.experimental.make_csv_dataset(
            csv_file_path,
            batch_size=batch_size,
            column_names=CSV_HEADER,
            column_defaults=COLUMN_DEFAULTS,
            label_name=TARGET_FEATURE_NAME,
            num_epochs=1,
            header=False,
            na_value="?",
            shuffle=shuffle,
        )
        .map(lambda features, target: (features, target_label_lookup(target)))
        .map(encode_categorical)
    )

    return dataset.cache()

创建模型输入

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="int32"
            )
    return inputs

编码输入特征

def encode_inputs(inputs):
    encoded_features = []
    for feature_name in inputs:
        if feature_name in CATEGORICAL_FEATURE_NAMES:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert a string values to an integer indices.
            # Since we are not using a mask token, nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and num_oov_indices to 0.
            value_index = inputs[feature_name]
            embedding_dims = int(math.sqrt(lookup.vocabulary_size()))
            # Create an embedding layer with the specified dimensions.
            embedding = layers.Embedding(
                input_dim=lookup.vocabulary_size(), output_dim=embedding_dims
            )
            # Convert the index values to embedding representations.
            encoded_feature = embedding(value_index)
        else:
            # Use the numerical features as-is.
            encoded_feature = inputs[feature_name]
            if inputs[feature_name].shape[-1] is None:
                encoded_feature = keras.ops.expand_dims(encoded_feature, -1)

        encoded_features.append(encoded_feature)

    encoded_features = layers.concatenate(encoded_features)
    return encoded_features

深度神经决策树

神经决策树模型有两组权重需要学习。第一组是 pi,它表示树叶中类的概率分布。第二组是路由层 decision_fn 的权重,它表示进入每个叶子节点的概率。模型的前向传递工作方式如下:

  1. 该模型期望输入 features 作为单个向量,该向量编码批次中每个实例的所有特征。此向量可以从应用于图像的卷积神经网络 (CNN) 或应用于结构化数据特征的密集变换中生成。
  2. 该模型首先应用 used_features_mask 来随机选择要使用的输入特征子集。
  3. 然后,该模型通过在整个树层级上迭代地执行随机路由来计算输入实例到达树叶节点的概率 (mu)。
  4. 最后,通过叶节点处的类概率来组合到达叶节点的概率,以生成最终的 outputs
class NeuralDecisionTree(keras.Model):
    def __init__(self, depth, num_features, used_features_rate, num_classes):
        super().__init__()
        self.depth = depth
        self.num_leaves = 2**depth
        self.num_classes = num_classes

        # Create a mask for the randomly selected features.
        num_used_features = int(num_features * used_features_rate)
        one_hot = np.eye(num_features)
        sampled_feature_indices = np.random.choice(
            np.arange(num_features), num_used_features, replace=False
        )
        self.used_features_mask = ops.convert_to_tensor(
            one_hot[sampled_feature_indices], dtype="float32"
        )

        # Initialize the weights of the classes in leaves.
        self.pi = self.add_weight(
            initializer="random_normal",
            shape=[self.num_leaves, self.num_classes],
            dtype="float32",
            trainable=True,
        )

        # Initialize the stochastic routing layer.
        self.decision_fn = layers.Dense(
            units=self.num_leaves, activation="sigmoid", name="decision"
        )

    def call(self, features):
        batch_size = ops.shape(features)[0]

        # Apply the feature mask to the input features.
        features = ops.matmul(
            features, ops.transpose(self.used_features_mask)
        )  # [batch_size, num_used_features]
        # Compute the routing probabilities.
        decisions = ops.expand_dims(
            self.decision_fn(features), axis=2
        )  # [batch_size, num_leaves, 1]
        # Concatenate the routing probabilities with their complements.
        decisions = layers.concatenate(
            [decisions, 1 - decisions], axis=2
        )  # [batch_size, num_leaves, 2]

        mu = ops.ones([batch_size, 1, 1])

        begin_idx = 1
        end_idx = 2
        # Traverse the tree in breadth-first order.
        for level in range(self.depth):
            mu = ops.reshape(mu, [batch_size, -1, 1])  # [batch_size, 2 ** level, 1]
            mu = ops.tile(mu, (1, 1, 2))  # [batch_size, 2 ** level, 2]
            level_decisions = decisions[
                :, begin_idx:end_idx, :
            ]  # [batch_size, 2 ** level, 2]
            mu = mu * level_decisions  # [batch_size, 2**level, 2]
            begin_idx = end_idx
            end_idx = begin_idx + 2 ** (level + 1)

        mu = ops.reshape(mu, [batch_size, self.num_leaves])  # [batch_size, num_leaves]
        probabilities = keras.activations.softmax(self.pi)  # [num_leaves, num_classes]
        outputs = ops.matmul(mu, probabilities)  # [batch_size, num_classes]
        return outputs

深度神经决策森林

神经决策森林模型由一组同时训练的神经决策树组成。森林模型的输出是其树的平均输出。

class NeuralDecisionForest(keras.Model):
    def __init__(self, num_trees, depth, num_features, used_features_rate, num_classes):
        super().__init__()
        self.ensemble = []
        # Initialize the ensemble by adding NeuralDecisionTree instances.
        # Each tree will have its own randomly selected input features to use.
        for _ in range(num_trees):
            self.ensemble.append(
                NeuralDecisionTree(depth, num_features, used_features_rate, num_classes)
            )

    def call(self, inputs):
        # Initialize the outputs: a [batch_size, num_classes] matrix of zeros.
        batch_size = ops.shape(inputs)[0]
        outputs = ops.zeros([batch_size, num_classes])

        # Aggregate the outputs of trees in the ensemble.
        for tree in self.ensemble:
            outputs += tree(inputs)
        # Divide the outputs by the ensemble size to get the average.
        outputs /= len(self.ensemble)
        return outputs

最后,让我们设置将训练和评估模型的代码。

learning_rate = 0.01
batch_size = 265
num_epochs = 10


def run_experiment(model):
    model.compile(
        optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
        loss=keras.losses.SparseCategoricalCrossentropy(),
        metrics=[keras.metrics.SparseCategoricalAccuracy()],
    )

    print("Start training the model...")
    train_dataset = get_dataset_from_csv(
        train_data_file, shuffle=True, batch_size=batch_size
    )

    model.fit(train_dataset, epochs=num_epochs)
    print("Model training finished")

    print("Evaluating the model on the test data...")
    test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)

    _, accuracy = model.evaluate(test_dataset)
    print(f"Test accuracy: {round(accuracy * 100, 2)}%")

实验 1:训练决策树模型

在这个实验中,我们训练一个单一的神经决策树模型,其中我们使用所有输入特征。

num_trees = 10
depth = 10
used_features_rate = 1.0
num_classes = len(TARGET_LABELS)


def create_tree_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)
    features = layers.BatchNormalization()(features)
    num_features = features.shape[1]

    tree = NeuralDecisionTree(depth, num_features, used_features_rate, num_classes)

    outputs = tree(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


tree_model = create_tree_model()
run_experiment(tree_model)
Start training the model...
Epoch 1/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 5s 26ms/step - loss: 0.5308 - sparse_categorical_accuracy: 0.8150
Epoch 2/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3476 - sparse_categorical_accuracy: 0.8429
Epoch 3/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3312 - sparse_categorical_accuracy: 0.8478
Epoch 4/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3247 - sparse_categorical_accuracy: 0.8495
Epoch 5/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3202 - sparse_categorical_accuracy: 0.8512
Epoch 6/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3158 - sparse_categorical_accuracy: 0.8536
Epoch 7/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3116 - sparse_categorical_accuracy: 0.8572
Epoch 8/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3071 - sparse_categorical_accuracy: 0.8608
Epoch 9/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 11ms/step - loss: 0.3026 - sparse_categorical_accuracy: 0.8630
Epoch 10/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.2975 - sparse_categorical_accuracy: 0.8653
Model training finished
Evaluating the model on the test data...
 62/62 ━━━━━━━━━━━━━━━━━━━━ 1s 13ms/step - loss: 0.3279 - sparse_categorical_accuracy: 0.8463
Test accuracy: 85.08%

实验 2:训练森林模型

在这个实验中,我们训练一个具有 num_trees 棵树的神经决策森林,其中每棵树使用随机选择的 50% 输入特征。您可以通过设置 used_features_rate 变量来控制每棵树中要使用的特征数量。此外,与之前的实验相比,我们将深度设置为 5 而不是 10。

num_trees = 25
depth = 5
used_features_rate = 0.5


def create_forest_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)
    features = layers.BatchNormalization()(features)
    num_features = features.shape[1]

    forest_model = NeuralDecisionForest(
        num_trees, depth, num_features, used_features_rate, num_classes
    )

    outputs = forest_model(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


forest_model = create_forest_model()

run_experiment(forest_model)
Start training the model...
Epoch 1/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 47s 202ms/step - loss: 0.5469 - sparse_categorical_accuracy: 0.7915
Epoch 2/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3459 - sparse_categorical_accuracy: 0.8494
Epoch 3/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3268 - sparse_categorical_accuracy: 0.8523
Epoch 4/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3195 - sparse_categorical_accuracy: 0.8524
Epoch 5/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3149 - sparse_categorical_accuracy: 0.8539
Epoch 6/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3112 - sparse_categorical_accuracy: 0.8556
Epoch 7/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.3079 - sparse_categorical_accuracy: 0.8566
Epoch 8/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - loss: 0.3050 - sparse_categorical_accuracy: 0.8582
Epoch 9/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - loss: 0.3021 - sparse_categorical_accuracy: 0.8595
Epoch 10/10
 123/123 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - loss: 0.2992 - sparse_categorical_accuracy: 0.8617
Model training finished
Evaluating the model on the test data...
 62/62 ━━━━━━━━━━━━━━━━━━━━ 5s 39ms/step - loss: 0.3145 - sparse_categorical_accuracy: 0.8503
Test accuracy: 85.55%