代码示例 / 结构化数据 / 使用门控残差和变量选择网络进行分类

使用门控残差和变量选择网络进行分类

作者: Khalid Salama
创建日期 2021/02/10
最后修改日期 2025/01/08
描述: 使用门控残差和变量选择网络进行收入水平预测。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源码


简介

此示例演示了 Bryan Lim 等人在 用于可解释多水平时间序列预测的时间融合转换器 (TFT) 中提出的门控残差网络 (GRN) 和变量选择网络 (VSN) 在结构化数据分类中的应用。GRN 使模型可以灵活地仅在需要的地方应用非线性处理。VSN 允许模型软删除任何不必要的噪声输入,这些输入可能会对性能产生负面影响。这些技术共同帮助提高了深度神经网络模型的学习能力。

请注意,此示例仅实现了论文中描述的 GRN 和 VSN 组件,而不是整个 TFT 模型,因为 GRN 和 VSN 本身对于结构化数据学习任务也很有用。

要运行代码,您需要使用 TensorFlow 2.3 或更高版本。


数据集

此示例使用 美国人口普查收入数据集,该数据集由 加州大学欧文分校机器学习存储库 提供。该任务是二元分类,以确定一个人的年收入是否超过 5 万美元。

该数据集包含约 30 万个实例,具有 41 个输入特征:7 个数值特征和 34 个类别特征。


设置

import os
import subprocess
import tarfile

os.environ["KERAS_BACKEND"] = "torch"  # or jax, or tensorflow

import numpy as np
import pandas as pd
import keras
from keras import layers

准备数据

首先,我们将数据从 UCI 机器学习存储库加载到 Pandas DataFrame 中。

# Column names.
CSV_HEADER = [
    "age",
    "class_of_worker",
    "detailed_industry_recode",
    "detailed_occupation_recode",
    "education",
    "wage_per_hour",
    "enroll_in_edu_inst_last_wk",
    "marital_stat",
    "major_industry_code",
    "major_occupation_code",
    "race",
    "hispanic_origin",
    "sex",
    "member_of_a_labor_union",
    "reason_for_unemployment",
    "full_or_part_time_employment_stat",
    "capital_gains",
    "capital_losses",
    "dividends_from_stocks",
    "tax_filer_stat",
    "region_of_previous_residence",
    "state_of_previous_residence",
    "detailed_household_and_family_stat",
    "detailed_household_summary_in_household",
    "instance_weight",
    "migration_code-change_in_msa",
    "migration_code-change_in_reg",
    "migration_code-move_within_reg",
    "live_in_this_house_1_year_ago",
    "migration_prev_res_in_sunbelt",
    "num_persons_worked_for_employer",
    "family_members_under_18",
    "country_of_birth_father",
    "country_of_birth_mother",
    "country_of_birth_self",
    "citizenship",
    "own_business_or_self_employed",
    "fill_inc_questionnaire_for_veterans_admin",
    "veterans_benefits",
    "weeks_worked_in_year",
    "year",
    "income_level",
]

data_url = "https://archive.ics.uci.edu/static/public/117/census+income+kdd.zip"
keras.utils.get_file(origin=data_url, extract=True)
'/home/humbulani/.keras/datasets/census+income+kdd.zip'

确定下载的 .tar.gz 文件的路径,并从下载的 .tar.gz 文件中提取文件

extracted_path = os.path.join(
    os.path.expanduser("~"), ".keras", "datasets", "census+income+kdd.zip"
)
for root, dirs, files in os.walk(extracted_path):
    for file in files:
        if file.endswith(".tar.gz"):
            tar_gz_path = os.path.join(root, file)
            with tarfile.open(tar_gz_path, "r:gz") as tar:
                tar.extractall(path=root)

train_data_path = os.path.join(
    os.path.expanduser("~"),
    ".keras",
    "datasets",
    "census+income+kdd.zip",
    "census-income.data",
)
test_data_path = os.path.join(
    os.path.expanduser("~"),
    ".keras",
    "datasets",
    "census+income+kdd.zip",
    "census-income.test",
)

data = pd.read_csv(train_data_path, header=None, names=CSV_HEADER)
test_data = pd.read_csv(test_data_path, header=None, names=CSV_HEADER)

print(f"Data shape: {data.shape}")
print(f"Test data shape: {test_data.shape}")
Data shape: (199523, 42)
Test data shape: (99762, 42)

我们将目标列从字符串转换为整数。

data["income_level"] = data["income_level"].apply(
    lambda x: 0 if x == " - 50000." else 1
)
test_data["income_level"] = test_data["income_level"].apply(
    lambda x: 0 if x == " - 50000." else 1
)

然后,我们将数据集拆分为训练集和验证集。

random_selection = np.random.rand(len(data.index)) <= 0.85
train_data = data[random_selection]
valid_data = data[~random_selection]

最后,我们将训练和测试数据分割本地存储到 CSV 文件中。

train_data_file = "train_data.csv"
valid_data_file = "valid_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False, header=False)
valid_data.to_csv(valid_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)

定义数据集元数据

在这里,我们定义数据集的元数据,这些元数据对于将数据读取和解析为输入特征,以及根据输入特征的类型对其进行编码非常有用。

# Target feature name.
TARGET_FEATURE_NAME = "income_level"
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
    "age",
    "wage_per_hour",
    "capital_gains",
    "capital_losses",
    "dividends_from_stocks",
    "num_persons_worked_for_employer",
    "weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
# Note that we add 'v=' as a prefix to all categorical feature values to make
# sure that they are treated as strings.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    feature_name: sorted([str(value) for value in list(data[feature_name].unique())])
    for feature_name in CSV_HEADER
    if feature_name
    not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
}
# All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
    CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
)
# Feature default values.
COLUMN_DEFAULTS = [
    (
        [0.0]
        if feature_name
        in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
        else ["NA"]
    )
    for feature_name in CSV_HEADER
]

为训练和评估创建一个 tf.data.Dataset

我们创建一个输入函数来读取和解析文件,并将特征和标签转换为 [tf.data.Dataset](https://tensorflowcn.cn/api_docs/python/tf/data/Dataset) 以进行训练和评估。

# Tensorflow required for tf.data.Datasets
import tensorflow as tf


# We process our datasets elements here (categorical) and convert them to indices to avoid this step
# during model training since only tensorflow support strings.
def process(features, target):
    for feature_name in features:
        if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
            # Cast categorical feature values to string.
            features[feature_name] = tf.cast(features[feature_name], "string")
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert a string values to an integer indices.
            # Since we are not using a mask token nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and  num_oov_indices to 0.
            index = layers.StringLookup(
                vocabulary=vocabulary,
                mask_token=None,
                num_oov_indices=0,
                output_mode="int",
            )
            # Convert the string input values into integer indices.
            value_index = index(features[feature_name])
            features[feature_name] = value_index
        else:
            # Do nothing for numerical features
            pass

    # Get the instance weight.
    weight = features.pop(WEIGHT_COLUMN_NAME)
    # Change features from OrderedDict to Dict to match Inputs as they are Dict.
    return dict(features), target, weight


def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
    dataset = tf.data.experimental.make_csv_dataset(
        csv_file_path,
        batch_size=batch_size,
        column_names=CSV_HEADER,
        column_defaults=COLUMN_DEFAULTS,
        label_name=TARGET_FEATURE_NAME,
        num_epochs=1,
        header=False,
        shuffle=shuffle,
    ).map(process)

    return dataset

创建模型输入

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
            # Make them int64, they are Categorical (whole units)
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="int64"
            )
        else:
            # Make them float32, they are Real numbers
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
    return inputs

实现门控线性单元

门控线性单元 (GLU) 提供了抑制与给定任务无关的输入的灵活性。

class GatedLinearUnit(layers.Layer):
    def __init__(self, units):
        super().__init__()
        self.linear = layers.Dense(units)
        self.sigmoid = layers.Dense(units, activation="sigmoid")

    def call(self, inputs):
        return self.linear(inputs) * self.sigmoid(inputs)

    # Remove build warnings
    def build(self):
        self.built = True

实现门控残差网络

门控残差网络 (GRN) 的工作方式如下

  1. 对输入应用非线性 ELU 变换。
  2. 应用线性变换,然后应用 dropout。
  3. 应用 GLU 并将原始输入添加到 GLU 的输出中以执行跳过(残差)连接。
  4. 应用层归一化并生成输出。
class GatedResidualNetwork(layers.Layer):
    def __init__(self, units, dropout_rate):
        super().__init__()
        self.units = units
        self.elu_dense = layers.Dense(units, activation="elu")
        self.linear_dense = layers.Dense(units)
        self.dropout = layers.Dropout(dropout_rate)
        self.gated_linear_unit = GatedLinearUnit(units)
        self.layer_norm = layers.LayerNormalization()
        self.project = layers.Dense(units)

    def call(self, inputs):
        x = self.elu_dense(inputs)
        x = self.linear_dense(x)
        x = self.dropout(x)
        if inputs.shape[-1] != self.units:
            inputs = self.project(inputs)
        x = inputs + self.gated_linear_unit(x)
        x = self.layer_norm(x)
        return x

    # Remove build warnings
    def build(self):
        self.built = True

实现变量选择网络

变量选择网络 (VSN) 的工作方式如下

  1. 对每个特征单独应用 GRN。
  2. 在所有特征的串联上应用 GRN,然后应用 softmax 来生成特征权重。
  3. 生成单个 GRN 输出的加权和。

请注意,VSN 的输出是 [batch_size, encoding_size],与输入特征的数量无关。

对于类别特征,我们使用 layers.Embedding 对它们进行编码,使用 encoding_size 作为嵌入维度。对于数值特征,我们使用 layers.Dense 应用线性变换,将每个特征投影到 encoding_size 维向量中。因此,所有编码后的特征都将具有相同的维度。

class VariableSelection(layers.Layer):
    def __init__(self, num_features, units, dropout_rate):
        super().__init__()
        self.units = units
        # Create an embedding layers with the specified dimensions
        self.embeddings = dict()
        for input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[input_]
            embedding_encoder = layers.Embedding(
                input_dim=len(vocabulary), output_dim=self.units, name=input_
            )
            self.embeddings[input_] = embedding_encoder

        # Projection layers for numeric features
        self.proj_layer = dict()
        for input_ in NUMERIC_FEATURE_NAMES:
            proj_layer = layers.Dense(units=self.units)
            self.proj_layer[input_] = proj_layer

        self.grns = list()
        # Create a GRN for each feature independently
        for idx in range(num_features):
            grn = GatedResidualNetwork(units, dropout_rate)
            self.grns.append(grn)
        # Create a GRN for the concatenation of all the features
        self.grn_concat = GatedResidualNetwork(units, dropout_rate)
        self.softmax = layers.Dense(units=num_features, activation="softmax")

    def call(self, inputs):
        concat_inputs = []
        for input_ in inputs:
            if input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
                max_index = self.embeddings[input_].input_dim - 1  # Clamp the indices
                # torch had some index errors during embedding hence the clip function
                embedded_feature = self.embeddings[input_](
                    keras.ops.clip(inputs[input_], 0, max_index)
                )
                concat_inputs.append(embedded_feature)
            else:
                # Project the numeric feature to encoding_size using linear transformation.
                proj_feature = keras.ops.expand_dims(inputs[input_], -1)
                proj_feature = self.proj_layer[input_](proj_feature)
                concat_inputs.append(proj_feature)

        v = layers.concatenate(concat_inputs)
        v = self.grn_concat(v)
        v = keras.ops.expand_dims(self.softmax(v), axis=-1)
        x = []
        for idx, input in enumerate(concat_inputs):
            x.append(self.grns[idx](input))
        x = keras.ops.stack(x, axis=1)
        return keras.ops.squeeze(
            keras.ops.matmul(keras.ops.transpose(v, axes=[0, 2, 1]), x), axis=1
        )

    # to remove the build warnings
    def build(self):
        self.built = True

创建门控残差和变量选择网络模型

def create_model(encoding_size):
    inputs = create_model_inputs()
    num_features = len(inputs)
    features = VariableSelection(num_features, encoding_size, dropout_rate)(inputs)
    outputs = layers.Dense(units=1, activation="sigmoid")(features)
    # Functional model
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model

编译、训练和评估模型

learning_rate = 0.001
dropout_rate = 0.15
batch_size = 265
num_epochs = 20  # may be adjusted to a desired value
encoding_size = 16

model = create_model(encoding_size)
model.compile(
    optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
    loss=keras.losses.BinaryCrossentropy(),
    metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)

让我们可视化连接图

# `rankdir='LR'` is to make the graph horizontal.
keras.utils.plot_model(model, show_shapes=True, show_layer_names=True, rankdir="LR")


# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
    monitor="val_loss", patience=5, restore_best_weights=True
)

print("Start training the model...")
train_dataset = get_dataset_from_csv(
    train_data_file, shuffle=True, batch_size=batch_size
)
valid_dataset = get_dataset_from_csv(valid_data_file, batch_size=batch_size)
model.fit(
    train_dataset,
    epochs=num_epochs,
    validation_data=valid_dataset,
    callbacks=[early_stopping],
)
print("Model training finished.")

print("Evaluating model performance...")
test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Start training the model...
  1/Unknown  1s 698ms/step - accuracy: 0.4717 - loss: 1212.3043


  2/Unknown  1s 200ms/step - accuracy: 0.5745 - loss: 1141.6052


  3/Unknown  1s 195ms/step - accuracy: 0.6388 - loss: 1084.4358


  4/Unknown  1s 199ms/step - accuracy: 0.6822 - loss: 1031.0354


  5/Unknown  2s 201ms/step - accuracy: 0.7131 - loss: 986.4984 


  6/Unknown  2s 197ms/step - accuracy: 0.7363 - loss: 947.2644


  7/Unknown  2s 190ms/step - accuracy: 0.7546 - loss: 912.4213


  8/Unknown  2s 188ms/step - accuracy: 0.7698 - loss: 881.4526


  9/Unknown  2s 186ms/step - accuracy: 0.7824 - loss: 853.8523


 10/Unknown  2s 184ms/step - accuracy: 0.7932 - loss: 829.0496


 11/Unknown  3s 183ms/step - accuracy: 0.8022 - loss: 807.4752


 12/Unknown  3s 184ms/step - accuracy: 0.8100 - loss: 788.1222


 13/Unknown  3s 187ms/step - accuracy: 0.8170 - loss: 770.3723


 14/Unknown  3s 187ms/step - accuracy: 0.8233 - loss: 753.6734


 15/Unknown  3s 186ms/step - accuracy: 0.8289 - loss: 737.9523


 16/Unknown  3s 186ms/step - accuracy: 0.8342 - loss: 723.0760


 17/Unknown  4s 186ms/step - accuracy: 0.8389 - loss: 709.2202


 18/Unknown  4s 202ms/step - accuracy: 0.8432 - loss: 696.8585


 19/Unknown  4s 200ms/step - accuracy: 0.8470 - loss: 685.7762


 20/Unknown  4s 198ms/step - accuracy: 0.8505 - loss: 675.3044


 21/Unknown  5s 197ms/step - accuracy: 0.8537 - loss: 665.8409


 22/Unknown  5s 196ms/step - accuracy: 0.8566 - loss: 657.3629


 23/Unknown  5s 195ms/step - accuracy: 0.8593 - loss: 649.5444


 24/Unknown  5s 195ms/step - accuracy: 0.8618 - loss: 642.1780


 25/Unknown  5s 194ms/step - accuracy: 0.8641 - loss: 635.1900


 26/Unknown  6s 195ms/step - accuracy: 0.8662 - loss: 628.5919


 27/Unknown  6s 195ms/step - accuracy: 0.8683 - loss: 622.2363


 28/Unknown  6s 195ms/step - accuracy: 0.8702 - loss: 616.1565


 29/Unknown  6s 194ms/step - accuracy: 0.8720 - loss: 610.3881


 30/Unknown  6s 194ms/step - accuracy: 0.8737 - loss: 604.7990


 31/Unknown  6s 193ms/step - accuracy: 0.8753 - loss: 599.5613


 32/Unknown  7s 194ms/step - accuracy: 0.8769 - loss: 594.4847


 33/Unknown  7s 194ms/step - accuracy: 0.8783 - loss: 589.5745


 34/Unknown  7s 194ms/step - accuracy: 0.8797 - loss: 584.9431


 35/Unknown  7s 194ms/step - accuracy: 0.8810 - loss: 580.5197


 36/Unknown  7s 193ms/step - accuracy: 0.8822 - loss: 576.2609


 37/Unknown  8s 193ms/step - accuracy: 0.8834 - loss: 572.0708


 38/Unknown  8s 194ms/step - accuracy: 0.8845 - loss: 567.9126


 39/Unknown  8s 194ms/step - accuracy: 0.8856 - loss: 563.8269


 40/Unknown  8s 194ms/step - accuracy: 0.8867 - loss: 559.9911


 41/Unknown  8s 194ms/step - accuracy: 0.8877 - loss: 556.2637


 42/Unknown  9s 193ms/step - accuracy: 0.8886 - loss: 552.6080


 43/Unknown  9s 193ms/step - accuracy: 0.8896 - loss: 549.0726


 44/Unknown  9s 193ms/step - accuracy: 0.8905 - loss: 545.6210


 45/Unknown  9s 193ms/step - accuracy: 0.8913 - loss: 542.2662


 46/Unknown  9s 193ms/step - accuracy: 0.8921 - loss: 539.0649


 47/Unknown  10s 193ms/step - accuracy: 0.8929 - loss: 535.9783


 48/Unknown  10s 193ms/step - accuracy: 0.8936 - loss: 532.9994


 49/Unknown  10s 193ms/step - accuracy: 0.8944 - loss: 530.0856


 50/Unknown  10s 193ms/step - accuracy: 0.8951 - loss: 527.2556


 51/Unknown  10s 194ms/step - accuracy: 0.8957 - loss: 524.4853


 52/Unknown  11s 194ms/step - accuracy: 0.8964 - loss: 521.8221


 53/Unknown  11s 194ms/step - accuracy: 0.8970 - loss: 519.2384


 54/Unknown  11s 194ms/step - accuracy: 0.8976 - loss: 516.6887


 55/Unknown  11s 195ms/step - accuracy: 0.8982 - loss: 514.2283


 56/Unknown  11s 195ms/step - accuracy: 0.8987 - loss: 511.8073


 57/Unknown  12s 195ms/step - accuracy: 0.8993 - loss: 509.4113


 58/Unknown  12s 194ms/step - accuracy: 0.8998 - loss: 507.0705


 59/Unknown  12s 194ms/step - accuracy: 0.9004 - loss: 504.7713


 60/Unknown  12s 194ms/step - accuracy: 0.9009 - loss: 502.5121


 61/Unknown  12s 195ms/step - accuracy: 0.9014 - loss: 500.2973


 62/Unknown  13s 195ms/step - accuracy: 0.9019 - loss: 498.1272


 63/Unknown  13s 196ms/step - accuracy: 0.9023 - loss: 496.0018


 64/Unknown  13s 196ms/step - accuracy: 0.9028 - loss: 493.9293


 65/Unknown  13s 197ms/step - accuracy: 0.9032 - loss: 491.9118


 66/Unknown  14s 197ms/step - accuracy: 0.9037 - loss: 489.9484


 67/Unknown  14s 197ms/step - accuracy: 0.9041 - loss: 488.0164


 68/Unknown  14s 197ms/step - accuracy: 0.9045 - loss: 486.1193


 69/Unknown  14s 197ms/step - accuracy: 0.9049 - loss: 484.2630


 70/Unknown  14s 197ms/step - accuracy: 0.9053 - loss: 482.4265


 71/Unknown  14s 197ms/step - accuracy: 0.9057 - loss: 480.6362


 72/Unknown  15s 197ms/step - accuracy: 0.9061 - loss: 478.8780


 73/Unknown  15s 197ms/step - accuracy: 0.9064 - loss: 477.1625


 74/Unknown  15s 197ms/step - accuracy: 0.9068 - loss: 475.4860


 75/Unknown  15s 198ms/step - accuracy: 0.9071 - loss: 473.8222


 76/Unknown  15s 197ms/step - accuracy: 0.9075 - loss: 472.2155


 77/Unknown  16s 197ms/step - accuracy: 0.9078 - loss: 470.6271


 78/Unknown  16s 196ms/step - accuracy: 0.9081 - loss: 469.0505


 79/Unknown  16s 196ms/step - accuracy: 0.9084 - loss: 467.4939


 80/Unknown  16s 196ms/step - accuracy: 0.9087 - loss: 465.9711


 81/Unknown  16s 196ms/step - accuracy: 0.9090 - loss: 464.4900


 82/Unknown  17s 196ms/step - accuracy: 0.9093 - loss: 463.0288


 83/Unknown  17s 196ms/step - accuracy: 0.9096 - loss: 461.5836


 84/Unknown  17s 196ms/step - accuracy: 0.9099 - loss: 460.1690


 85/Unknown  17s 196ms/step - accuracy: 0.9101 - loss: 458.7745


 86/Unknown  17s 196ms/step - accuracy: 0.9104 - loss: 457.3958


 87/Unknown  18s 196ms/step - accuracy: 0.9107 - loss: 456.0403


 88/Unknown  18s 196ms/step - accuracy: 0.9109 - loss: 454.6969


 89/Unknown  18s 195ms/step - accuracy: 0.9112 - loss: 453.3802


 90/Unknown  18s 195ms/step - accuracy: 0.9115 - loss: 452.0960


 91/Unknown  18s 195ms/step - accuracy: 0.9117 - loss: 450.8279


 92/Unknown  18s 195ms/step - accuracy: 0.9119 - loss: 449.5715


 93/Unknown  19s 195ms/step - accuracy: 0.9122 - loss: 448.3546


 94/Unknown  19s 195ms/step - accuracy: 0.9124 - loss: 447.1467


 95/Unknown  19s 195ms/step - accuracy: 0.9126 - loss: 445.9574


 96/Unknown  19s 195ms/step - accuracy: 0.9129 - loss: 444.7892


 97/Unknown  19s 195ms/step - accuracy: 0.9131 - loss: 443.6310


 98/Unknown  20s 195ms/step - accuracy: 0.9133 - loss: 442.5005


 99/Unknown  20s 195ms/step - accuracy: 0.9135 - loss: 441.3832


100/Unknown  20s 195ms/step - accuracy: 0.9137 - loss: 440.2770


101/Unknown  20s 194ms/step - accuracy: 0.9139 - loss: 439.1806


102/Unknown  20s 194ms/step - accuracy: 0.9141 - loss: 438.0936


103/Unknown  21s 194ms/step - accuracy: 0.9144 - loss: 437.0181


104/Unknown  21s 195ms/step - accuracy: 0.9146 - loss: 435.9646


105/Unknown  21s 195ms/step - accuracy: 0.9148 - loss: 434.9277


106/Unknown  21s 195ms/step - accuracy: 0.9150 - loss: 433.8949


107/Unknown  21s 195ms/step - accuracy: 0.9151 - loss: 432.8877


108/Unknown  22s 195ms/step - accuracy: 0.9153 - loss: 431.8965


109/Unknown  22s 195ms/step - accuracy: 0.9155 - loss: 430.9133


110/Unknown  22s 196ms/step - accuracy: 0.9157 - loss: 429.9397


111/Unknown  22s 196ms/step - accuracy: 0.9159 - loss: 428.9818


112/Unknown  22s 196ms/step - accuracy: 0.9161 - loss: 428.0353


113/Unknown  23s 197ms/step - accuracy: 0.9162 - loss: 427.0999


114/Unknown  23s 197ms/step - accuracy: 0.9164 - loss: 426.1697


115/Unknown  23s 197ms/step - accuracy: 0.9166 - loss: 425.2458


116/Unknown  23s 197ms/step - accuracy: 0.9168 - loss: 424.3345


117/Unknown  24s 197ms/step - accuracy: 0.9169 - loss: 423.4386


118/Unknown  24s 197ms/step - accuracy: 0.9171 - loss: 422.5567


119/Unknown  24s 197ms/step - accuracy: 0.9173 - loss: 421.6823


120/Unknown  24s 197ms/step - accuracy: 0.9174 - loss: 420.8182


121/Unknown  24s 197ms/step - accuracy: 0.9176 - loss: 419.9664


122/Unknown  25s 197ms/step - accuracy: 0.9177 - loss: 419.1238


123/Unknown  25s 197ms/step - accuracy: 0.9179 - loss: 418.2940


124/Unknown  25s 197ms/step - accuracy: 0.9181 - loss: 417.4785


125/Unknown  25s 197ms/step - accuracy: 0.9182 - loss: 416.6722


126/Unknown  25s 197ms/step - accuracy: 0.9183 - loss: 415.8714


127/Unknown  26s 197ms/step - accuracy: 0.9185 - loss: 415.0771


128/Unknown  26s 197ms/step - accuracy: 0.9186 - loss: 414.2919


129/Unknown  26s 197ms/step - accuracy: 0.9188 - loss: 413.5163


130/Unknown  26s 197ms/step - accuracy: 0.9189 - loss: 412.7452


131/Unknown  26s 198ms/step - accuracy: 0.9191 - loss: 411.9837


132/Unknown  27s 197ms/step - accuracy: 0.9192 - loss: 411.2362


133/Unknown  27s 198ms/step - accuracy: 0.9193 - loss: 410.4987


134/Unknown  27s 198ms/step - accuracy: 0.9195 - loss: 409.7713


135/Unknown  27s 198ms/step - accuracy: 0.9196 - loss: 409.0497


136/Unknown  27s 198ms/step - accuracy: 0.9197 - loss: 408.3427


137/Unknown  28s 198ms/step - accuracy: 0.9199 - loss: 407.6457


138/Unknown  28s 198ms/step - accuracy: 0.9200 - loss: 406.9554


139/Unknown  28s 198ms/step - accuracy: 0.9201 - loss: 406.2739


140/Unknown  28s 198ms/step - accuracy: 0.9202 - loss: 405.6025


141/Unknown  28s 198ms/step - accuracy: 0.9204 - loss: 404.9378


142/Unknown  29s 198ms/step - accuracy: 0.9205 - loss: 404.2800


143/Unknown  29s 198ms/step - accuracy: 0.9206 - loss: 403.6313


144/Unknown  29s 198ms/step - accuracy: 0.9207 - loss: 402.9886


145/Unknown  29s 198ms/step - accuracy: 0.9208 - loss: 402.3509


146/Unknown  29s 198ms/step - accuracy: 0.9209 - loss: 401.7167


147/Unknown  30s 199ms/step - accuracy: 0.9211 - loss: 401.0935


148/Unknown  30s 199ms/step - accuracy: 0.9212 - loss: 400.4745


149/Unknown  30s 200ms/step - accuracy: 0.9213 - loss: 399.8633


150/Unknown  30s 200ms/step - accuracy: 0.9214 - loss: 399.2570


151/Unknown  31s 200ms/step - accuracy: 0.9215 - loss: 398.6591


152/Unknown  31s 200ms/step - accuracy: 0.9216 - loss: 398.0708


153/Unknown  31s 201ms/step - accuracy: 0.9217 - loss: 397.4871


154/Unknown  31s 201ms/step - accuracy: 0.9218 - loss: 396.9082


155/Unknown  32s 201ms/step - accuracy: 0.9219 - loss: 396.3336


156/Unknown  32s 201ms/step - accuracy: 0.9220 - loss: 395.7641


157/Unknown  32s 202ms/step - accuracy: 0.9222 - loss: 395.1993


158/Unknown  32s 202ms/step - accuracy: 0.9223 - loss: 394.6414


159/Unknown  33s 202ms/step - accuracy: 0.9224 - loss: 394.0871


160/Unknown  33s 202ms/step - accuracy: 0.9225 - loss: 393.5349


161/Unknown  33s 202ms/step - accuracy: 0.9226 - loss: 392.9877


162/Unknown  33s 202ms/step - accuracy: 0.9227 - loss: 392.4430


163/Unknown  33s 202ms/step - accuracy: 0.9228 - loss: 391.9062


164/Unknown  34s 202ms/step - accuracy: 0.9229 - loss: 391.3741


165/Unknown  34s 202ms/step - accuracy: 0.9230 - loss: 390.8450


166/Unknown  34s 202ms/step - accuracy: 0.9231 - loss: 390.3184


167/Unknown  34s 202ms/step - accuracy: 0.9232 - loss: 389.7947


168/Unknown  34s 202ms/step - accuracy: 0.9233 - loss: 389.2769


169/Unknown  35s 201ms/step - accuracy: 0.9234 - loss: 388.7642


170/Unknown  35s 201ms/step - accuracy: 0.9234 - loss: 388.2601


171/Unknown  35s 202ms/step - accuracy: 0.9235 - loss: 387.7563


172/Unknown  35s 202ms/step - accuracy: 0.9236 - loss: 387.2565


173/Unknown  35s 202ms/step - accuracy: 0.9237 - loss: 386.7589


174/Unknown  36s 202ms/step - accuracy: 0.9238 - loss: 386.2676


175/Unknown  36s 202ms/step - accuracy: 0.9239 - loss: 385.7783


176/Unknown  36s 202ms/step - accuracy: 0.9240 - loss: 385.2943


177/Unknown  36s 202ms/step - accuracy: 0.9241 - loss: 384.8183


178/Unknown  36s 202ms/step - accuracy: 0.9242 - loss: 384.3459


179/Unknown  37s 202ms/step - accuracy: 0.9243 - loss: 383.8763


180/Unknown  37s 202ms/step - accuracy: 0.9243 - loss: 383.4090


181/Unknown  37s 202ms/step - accuracy: 0.9244 - loss: 382.9447


182/Unknown  37s 202ms/step - accuracy: 0.9245 - loss: 382.4837


183/Unknown  37s 202ms/step - accuracy: 0.9246 - loss: 382.0276


184/Unknown  38s 202ms/step - accuracy: 0.9247 - loss: 381.5741


185/Unknown  38s 202ms/step - accuracy: 0.9248 - loss: 381.1227


186/Unknown  38s 203ms/step - accuracy: 0.9248 - loss: 380.6739


187/Unknown  38s 203ms/step - accuracy: 0.9249 - loss: 380.2263


188/Unknown  39s 203ms/step - accuracy: 0.9250 - loss: 379.7803


189/Unknown  39s 203ms/step - accuracy: 0.9251 - loss: 379.3362


190/Unknown  39s 203ms/step - accuracy: 0.9252 - loss: 378.8958


191/Unknown  39s 203ms/step - accuracy: 0.9252 - loss: 378.4580


192/Unknown  40s 203ms/step - accuracy: 0.9253 - loss: 378.0284


193/Unknown  40s 203ms/step - accuracy: 0.9254 - loss: 377.6024


194/Unknown  40s 203ms/step - accuracy: 0.9255 - loss: 377.1786


195/Unknown  40s 203ms/step - accuracy: 0.9256 - loss: 376.7578


196/Unknown  40s 203ms/step - accuracy: 0.9256 - loss: 376.3396


197/Unknown  41s 203ms/step - accuracy: 0.9257 - loss: 375.9260


198/Unknown  41s 203ms/step - accuracy: 0.9258 - loss: 375.5150


199/Unknown  41s 203ms/step - accuracy: 0.9259 - loss: 375.1063


200/Unknown  41s 203ms/step - accuracy: 0.9259 - loss: 374.6986


201/Unknown  41s 203ms/step - accuracy: 0.9260 - loss: 374.2932


202/Unknown  42s 203ms/step - accuracy: 0.9261 - loss: 373.8907


203/Unknown  42s 203ms/step - accuracy: 0.9262 - loss: 373.4908


204/Unknown  42s 203ms/step - accuracy: 0.9262 - loss: 373.0950


205/Unknown  42s 203ms/step - accuracy: 0.9263 - loss: 372.7011


206/Unknown  42s 203ms/step - accuracy: 0.9264 - loss: 372.3101


207/Unknown  43s 203ms/step - accuracy: 0.9264 - loss: 371.9205


208/Unknown  43s 203ms/step - accuracy: 0.9265 - loss: 371.5334


209/Unknown  43s 203ms/step - accuracy: 0.9266 - loss: 371.1480


210/Unknown  43s 203ms/step - accuracy: 0.9266 - loss: 370.7651


211/Unknown  43s 203ms/step - accuracy: 0.9267 - loss: 370.3852


212/Unknown  44s 203ms/step - accuracy: 0.9268 - loss: 370.0093


213/Unknown  44s 203ms/step - accuracy: 0.9268 - loss: 369.6351


214/Unknown  44s 204ms/step - accuracy: 0.9269 - loss: 369.2646


215/Unknown  44s 204ms/step - accuracy: 0.9270 - loss: 368.8969


216/Unknown  45s 204ms/step - accuracy: 0.9270 - loss: 368.5307


217/Unknown  45s 204ms/step - accuracy: 0.9271 - loss: 368.1656


218/Unknown  45s 204ms/step - accuracy: 0.9272 - loss: 367.8022


219/Unknown  45s 204ms/step - accuracy: 0.9272 - loss: 367.4400


220/Unknown  45s 204ms/step - accuracy: 0.9273 - loss: 367.0780


221/Unknown  46s 204ms/step - accuracy: 0.9274 - loss: 366.7194


222/Unknown  46s 204ms/step - accuracy: 0.9274 - loss: 366.3614


223/Unknown  46s 204ms/step - accuracy: 0.9275 - loss: 366.0057


224/Unknown  46s 205ms/step - accuracy: 0.9275 - loss: 365.6517


225/Unknown  47s 205ms/step - accuracy: 0.9276 - loss: 365.2998


226/Unknown  47s 205ms/step - accuracy: 0.9277 - loss: 364.9511


227/Unknown  47s 205ms/step - accuracy: 0.9277 - loss: 364.6082


228/Unknown  47s 205ms/step - accuracy: 0.9278 - loss: 364.2671


229/Unknown  47s 205ms/step - accuracy: 0.9278 - loss: 363.9267


230/Unknown  48s 205ms/step - accuracy: 0.9279 - loss: 363.5866


231/Unknown  48s 205ms/step - accuracy: 0.9280 - loss: 363.2502


232/Unknown  48s 205ms/step - accuracy: 0.9280 - loss: 362.9175


233/Unknown  48s 205ms/step - accuracy: 0.9281 - loss: 362.5866


234/Unknown  49s 205ms/step - accuracy: 0.9281 - loss: 362.2563


235/Unknown  49s 205ms/step - accuracy: 0.9282 - loss: 361.9282


236/Unknown  49s 206ms/step - accuracy: 0.9283 - loss: 361.6011


237/Unknown  49s 206ms/step - accuracy: 0.9283 - loss: 361.2760


238/Unknown  50s 207ms/step - accuracy: 0.9284 - loss: 360.9536


239/Unknown  50s 207ms/step - accuracy: 0.9284 - loss: 360.6325


240/Unknown  50s 207ms/step - accuracy: 0.9285 - loss: 360.3125


241/Unknown  51s 208ms/step - accuracy: 0.9285 - loss: 359.9926


242/Unknown  51s 208ms/step - accuracy: 0.9286 - loss: 359.6747


243/Unknown  51s 208ms/step - accuracy: 0.9287 - loss: 359.3593


244/Unknown  51s 209ms/step - accuracy: 0.9287 - loss: 359.0458


245/Unknown  52s 209ms/step - accuracy: 0.9288 - loss: 358.7349


246/Unknown  52s 209ms/step - accuracy: 0.9288 - loss: 358.4268


247/Unknown  52s 209ms/step - accuracy: 0.9289 - loss: 358.1215


248/Unknown  52s 209ms/step - accuracy: 0.9289 - loss: 357.8191


249/Unknown  53s 209ms/step - accuracy: 0.9290 - loss: 357.5194


250/Unknown  53s 209ms/step - accuracy: 0.9290 - loss: 357.2212


251/Unknown  53s 209ms/step - accuracy: 0.9291 - loss: 356.9238


252/Unknown  53s 209ms/step - accuracy: 0.9291 - loss: 356.6286


253/Unknown  53s 209ms/step - accuracy: 0.9292 - loss: 356.3355


254/Unknown  54s 210ms/step - accuracy: 0.9292 - loss: 356.0449


255/Unknown  54s 210ms/step - accuracy: 0.9293 - loss: 355.7557


256/Unknown  54s 210ms/step - accuracy: 0.9293 - loss: 355.4673


257/Unknown  54s 210ms/step - accuracy: 0.9294 - loss: 355.1799


258/Unknown  55s 210ms/step - accuracy: 0.9294 - loss: 354.8956


259/Unknown  55s 210ms/step - accuracy: 0.9295 - loss: 354.6136


260/Unknown  55s 210ms/step - accuracy: 0.9295 - loss: 354.3326


261/Unknown  55s 210ms/step - accuracy: 0.9296 - loss: 354.0539


262/Unknown  56s 210ms/step - accuracy: 0.9296 - loss: 353.7773


263/Unknown  56s 210ms/step - accuracy: 0.9297 - loss: 353.5032


264/Unknown  56s 211ms/step - accuracy: 0.9297 - loss: 353.2297


265/Unknown  56s 211ms/step - accuracy: 0.9298 - loss: 352.9581


266/Unknown  57s 211ms/step - accuracy: 0.9298 - loss: 352.6891


267/Unknown  57s 211ms/step - accuracy: 0.9299 - loss: 352.4228


268/Unknown  57s 211ms/step - accuracy: 0.9299 - loss: 352.1577


269/Unknown  57s 212ms/step - accuracy: 0.9300 - loss: 351.8944


270/Unknown  58s 212ms/step - accuracy: 0.9300 - loss: 351.6331


271/Unknown  58s 212ms/step - accuracy: 0.9300 - loss: 351.3750


272/Unknown  58s 212ms/step - accuracy: 0.9301 - loss: 351.1187


273/Unknown  59s 213ms/step - accuracy: 0.9301 - loss: 350.8644


274/Unknown  59s 213ms/step - accuracy: 0.9302 - loss: 350.6121


275/Unknown  59s 213ms/step - accuracy: 0.9302 - loss: 350.3619


276/Unknown  59s 213ms/step - accuracy: 0.9303 - loss: 350.1118


277/Unknown  60s 213ms/step - accuracy: 0.9303 - loss: 349.8630


278/Unknown  60s 213ms/step - accuracy: 0.9303 - loss: 349.6153


279/Unknown  60s 213ms/step - accuracy: 0.9304 - loss: 349.3688


280/Unknown  60s 213ms/step - accuracy: 0.9304 - loss: 349.1229


281/Unknown  60s 213ms/step - accuracy: 0.9305 - loss: 348.8784


282/Unknown  61s 213ms/step - accuracy: 0.9305 - loss: 348.6351


283/Unknown  61s 213ms/step - accuracy: 0.9306 - loss: 348.3920


284/Unknown  61s 213ms/step - accuracy: 0.9306 - loss: 348.1502


285/Unknown  61s 214ms/step - accuracy: 0.9306 - loss: 347.9100


286/Unknown  62s 214ms/step - accuracy: 0.9307 - loss: 347.6703


287/Unknown  62s 214ms/step - accuracy: 0.9307 - loss: 347.4321


288/Unknown  62s 214ms/step - accuracy: 0.9308 - loss: 347.1949


289/Unknown  62s 214ms/step - accuracy: 0.9308 - loss: 346.9582


290/Unknown  63s 214ms/step - accuracy: 0.9308 - loss: 346.7231


291/Unknown  63s 214ms/step - accuracy: 0.9309 - loss: 346.4895


292/Unknown  63s 214ms/step - accuracy: 0.9309 - loss: 346.2580


293/Unknown  63s 214ms/step - accuracy: 0.9310 - loss: 346.0265


294/Unknown  63s 214ms/step - accuracy: 0.9310 - loss: 345.7953


295/Unknown  64s 214ms/step - accuracy: 0.9310 - loss: 345.5652


296/Unknown  64s 214ms/step - accuracy: 0.9311 - loss: 345.3354


297/Unknown  64s 214ms/step - accuracy: 0.9311 - loss: 345.1051


298/Unknown  64s 214ms/step - accuracy: 0.9312 - loss: 344.8757


299/Unknown  65s 214ms/step - accuracy: 0.9312 - loss: 344.6488


300/Unknown  65s 215ms/step - accuracy: 0.9312 - loss: 344.4228


301/Unknown  65s 215ms/step - accuracy: 0.9313 - loss: 344.1973


302/Unknown  65s 215ms/step - accuracy: 0.9313 - loss: 343.9730


303/Unknown  66s 215ms/step - accuracy: 0.9314 - loss: 343.7490


304/Unknown  66s 215ms/step - accuracy: 0.9314 - loss: 343.5257


305/Unknown  66s 215ms/step - accuracy: 0.9314 - loss: 343.3047


306/Unknown  66s 215ms/step - accuracy: 0.9315 - loss: 343.0848


307/Unknown  66s 215ms/step - accuracy: 0.9315 - loss: 342.8660


308/Unknown  67s 215ms/step - accuracy: 0.9315 - loss: 342.6490


309/Unknown  67s 215ms/step - accuracy: 0.9316 - loss: 342.4344


310/Unknown  67s 215ms/step - accuracy: 0.9316 - loss: 342.2202


311/Unknown  67s 215ms/step - accuracy: 0.9316 - loss: 342.0071


312/Unknown  67s 215ms/step - accuracy: 0.9317 - loss: 341.7946


313/Unknown  68s 215ms/step - accuracy: 0.9317 - loss: 341.5840


314/Unknown  68s 215ms/step - accuracy: 0.9318 - loss: 341.3745


315/Unknown  68s 215ms/step - accuracy: 0.9318 - loss: 341.1663


316/Unknown  68s 215ms/step - accuracy: 0.9318 - loss: 340.9592


317/Unknown  69s 215ms/step - accuracy: 0.9319 - loss: 340.7528


318/Unknown  69s 215ms/step - accuracy: 0.9319 - loss: 340.5479


319/Unknown  69s 215ms/step - accuracy: 0.9319 - loss: 340.3434


320/Unknown  69s 215ms/step - accuracy: 0.9320 - loss: 340.1393


321/Unknown  69s 215ms/step - accuracy: 0.9320 - loss: 339.9351


322/Unknown  70s 215ms/step - accuracy: 0.9320 - loss: 339.7322


323/Unknown  70s 214ms/step - accuracy: 0.9321 - loss: 339.5305


324/Unknown  70s 214ms/step - accuracy: 0.9321 - loss: 339.3291


325/Unknown  70s 214ms/step - accuracy: 0.9321 - loss: 339.1288


326/Unknown  70s 214ms/step - accuracy: 0.9322 - loss: 338.9296


327/Unknown  71s 214ms/step - accuracy: 0.9322 - loss: 338.7308


328/Unknown  71s 214ms/step - accuracy: 0.9322 - loss: 338.5333


329/Unknown  71s 214ms/step - accuracy: 0.9323 - loss: 338.3367


330/Unknown  71s 214ms/step - accuracy: 0.9323 - loss: 338.1408


331/Unknown  71s 214ms/step - accuracy: 0.9323 - loss: 337.9453


332/Unknown  71s 214ms/step - accuracy: 0.9324 - loss: 337.7515


333/Unknown  72s 214ms/step - accuracy: 0.9324 - loss: 337.5584


334/Unknown  72s 214ms/step - accuracy: 0.9324 - loss: 337.3662


335/Unknown  72s 214ms/step - accuracy: 0.9325 - loss: 337.1747


336/Unknown  72s 214ms/step - accuracy: 0.9325 - loss: 336.9847


337/Unknown  72s 214ms/step - accuracy: 0.9325 - loss: 336.7955


338/Unknown  73s 214ms/step - accuracy: 0.9326 - loss: 336.6066


339/Unknown  73s 214ms/step - accuracy: 0.9326 - loss: 336.4176


340/Unknown  73s 214ms/step - accuracy: 0.9326 - loss: 336.2293


341/Unknown  73s 214ms/step - accuracy: 0.9327 - loss: 336.0417


342/Unknown  74s 214ms/step - accuracy: 0.9327 - loss: 335.8549


343/Unknown  74s 213ms/step - accuracy: 0.9327 - loss: 335.6696


344/Unknown  74s 213ms/step - accuracy: 0.9328 - loss: 335.4847


345/Unknown  74s 213ms/step - accuracy: 0.9328 - loss: 335.3005


346/Unknown  74s 214ms/step - accuracy: 0.9328 - loss: 335.1162


347/Unknown  75s 214ms/step - accuracy: 0.9328 - loss: 334.9317


348/Unknown  75s 214ms/step - accuracy: 0.9329 - loss: 334.7472


349/Unknown  75s 214ms/step - accuracy: 0.9329 - loss: 334.5628


350/Unknown  75s 214ms/step - accuracy: 0.9329 - loss: 334.3791


351/Unknown  75s 214ms/step - accuracy: 0.9330 - loss: 334.1966


352/Unknown  76s 214ms/step - accuracy: 0.9330 - loss: 334.0144


353/Unknown  76s 214ms/step - accuracy: 0.9330 - loss: 333.8329


354/Unknown  76s 214ms/step - accuracy: 0.9331 - loss: 333.6525


355/Unknown  76s 214ms/step - accuracy: 0.9331 - loss: 333.4737


356/Unknown  77s 214ms/step - accuracy: 0.9331 - loss: 333.2956


357/Unknown  77s 214ms/step - accuracy: 0.9332 - loss: 333.1186


358/Unknown  77s 214ms/step - accuracy: 0.9332 - loss: 332.9418


359/Unknown  77s 214ms/step - accuracy: 0.9332 - loss: 332.7658


360/Unknown  77s 214ms/step - accuracy: 0.9332 - loss: 332.5904


361/Unknown  78s 214ms/step - accuracy: 0.9333 - loss: 332.4163


362/Unknown  78s 214ms/step - accuracy: 0.9333 - loss: 332.2424


363/Unknown  78s 214ms/step - accuracy: 0.9333 - loss: 332.0692


364/Unknown  78s 214ms/step - accuracy: 0.9334 - loss: 331.8963


365/Unknown  79s 214ms/step - accuracy: 0.9334 - loss: 331.7242


366/Unknown  79s 214ms/step - accuracy: 0.9334 - loss: 331.5526


367/Unknown  79s 214ms/step - accuracy: 0.9334 - loss: 331.3815


368/Unknown  79s 214ms/step - accuracy: 0.9335 - loss: 331.2112


369/Unknown  79s 214ms/step - accuracy: 0.9335 - loss: 331.0415


370/Unknown  80s 214ms/step - accuracy: 0.9335 - loss: 330.8718


371/Unknown  80s 214ms/step - accuracy: 0.9336 - loss: 330.7039


372/Unknown  80s 214ms/step - accuracy: 0.9336 - loss: 330.5366


373/Unknown  80s 214ms/step - accuracy: 0.9336 - loss: 330.3701


374/Unknown  81s 214ms/step - accuracy: 0.9336 - loss: 330.2039


375/Unknown  81s 214ms/step - accuracy: 0.9337 - loss: 330.0381


376/Unknown  81s 214ms/step - accuracy: 0.9337 - loss: 329.8729


377/Unknown  81s 214ms/step - accuracy: 0.9337 - loss: 329.7084


378/Unknown  81s 214ms/step - accuracy: 0.9338 - loss: 329.5450


379/Unknown  82s 214ms/step - accuracy: 0.9338 - loss: 329.3824


380/Unknown  82s 214ms/step - accuracy: 0.9338 - loss: 329.2206


381/Unknown  82s 214ms/step - accuracy: 0.9338 - loss: 329.0592


382/Unknown  82s 214ms/step - accuracy: 0.9339 - loss: 328.8988


383/Unknown  83s 214ms/step - accuracy: 0.9339 - loss: 328.7392


384/Unknown  83s 214ms/step - accuracy: 0.9339 - loss: 328.5800


385/Unknown  83s 214ms/step - accuracy: 0.9339 - loss: 328.4217


386/Unknown  83s 214ms/step - accuracy: 0.9340 - loss: 328.2640


387/Unknown  84s 215ms/step - accuracy: 0.9340 - loss: 328.1079


388/Unknown  84s 215ms/step - accuracy: 0.9340 - loss: 327.9520


389/Unknown  84s 215ms/step - accuracy: 0.9340 - loss: 327.7965


390/Unknown  84s 215ms/step - accuracy: 0.9341 - loss: 327.6415


391/Unknown  84s 215ms/step - accuracy: 0.9341 - loss: 327.4871


392/Unknown  85s 215ms/step - accuracy: 0.9341 - loss: 327.3329


393/Unknown  85s 215ms/step - accuracy: 0.9341 - loss: 327.1793


394/Unknown  85s 215ms/step - accuracy: 0.9342 - loss: 327.0259


395/Unknown  85s 215ms/step - accuracy: 0.9342 - loss: 326.8732


396/Unknown  86s 215ms/step - accuracy: 0.9342 - loss: 326.7209


397/Unknown  86s 215ms/step - accuracy: 0.9342 - loss: 326.5693


398/Unknown  86s 215ms/step - accuracy: 0.9343 - loss: 326.4187


399/Unknown  86s 215ms/step - accuracy: 0.9343 - loss: 326.2686


400/Unknown  87s 216ms/step - accuracy: 0.9343 - loss: 326.1197


401/Unknown  87s 216ms/step - accuracy: 0.9343 - loss: 325.9718


402/Unknown  87s 216ms/step - accuracy: 0.9344 - loss: 325.8240


403/Unknown  88s 216ms/step - accuracy: 0.9344 - loss: 325.6769


404/Unknown  88s 216ms/step - accuracy: 0.9344 - loss: 325.5306


405/Unknown  88s 216ms/step - accuracy: 0.9344 - loss: 325.3849


406/Unknown  88s 216ms/step - accuracy: 0.9345 - loss: 325.2393


407/Unknown  88s 216ms/step - accuracy: 0.9345 - loss: 325.0950


408/Unknown  89s 216ms/step - accuracy: 0.9345 - loss: 324.9518


409/Unknown  89s 216ms/step - accuracy: 0.9345 - loss: 324.8096


410/Unknown  89s 216ms/step - accuracy: 0.9346 - loss: 324.6682


411/Unknown  89s 216ms/step - accuracy: 0.9346 - loss: 324.5275


412/Unknown  90s 216ms/step - accuracy: 0.9346 - loss: 324.3878


413/Unknown  90s 216ms/step - accuracy: 0.9346 - loss: 324.2490


414/Unknown  90s 216ms/step - accuracy: 0.9347 - loss: 324.1107


415/Unknown  90s 216ms/step - accuracy: 0.9347 - loss: 323.9733


416/Unknown  90s 216ms/step - accuracy: 0.9347 - loss: 323.8363


417/Unknown  91s 216ms/step - accuracy: 0.9347 - loss: 323.7005


418/Unknown  91s 216ms/step - accuracy: 0.9347 - loss: 323.5650


419/Unknown  91s 216ms/step - accuracy: 0.9348 - loss: 323.4300


420/Unknown  91s 216ms/step - accuracy: 0.9348 - loss: 323.2954


421/Unknown  92s 216ms/step - accuracy: 0.9348 - loss: 323.1616


422/Unknown  92s 216ms/step - accuracy: 0.9348 - loss: 323.0279


423/Unknown  92s 216ms/step - accuracy: 0.9349 - loss: 322.8943


424/Unknown  92s 217ms/step - accuracy: 0.9349 - loss: 322.7610


425/Unknown  93s 217ms/step - accuracy: 0.9349 - loss: 322.6279


426/Unknown  93s 217ms/step - accuracy: 0.9349 - loss: 322.4956


427/Unknown  93s 217ms/step - accuracy: 0.9349 - loss: 322.3640


428/Unknown  93s 217ms/step - accuracy: 0.9350 - loss: 322.2333


429/Unknown  93s 217ms/step - accuracy: 0.9350 - loss: 322.1030


430/Unknown  94s 217ms/step - accuracy: 0.9350 - loss: 321.9735


431/Unknown  94s 217ms/step - accuracy: 0.9350 - loss: 321.8445


432/Unknown  94s 217ms/step - accuracy: 0.9350 - loss: 321.7156


433/Unknown  95s 217ms/step - accuracy: 0.9351 - loss: 321.5872


434/Unknown  95s 217ms/step - accuracy: 0.9351 - loss: 321.4588


435/Unknown  95s 217ms/step - accuracy: 0.9351 - loss: 321.3307


436/Unknown  95s 217ms/step - accuracy: 0.9351 - loss: 321.2033


437/Unknown  95s 217ms/step - accuracy: 0.9352 - loss: 321.0760


438/Unknown  96s 217ms/step - accuracy: 0.9352 - loss: 320.9493


439/Unknown  96s 217ms/step - accuracy: 0.9352 - loss: 320.8226


440/Unknown  96s 217ms/step - accuracy: 0.9352 - loss: 320.6959


441/Unknown  96s 217ms/step - accuracy: 0.9352 - loss: 320.5698


442/Unknown  97s 218ms/step - accuracy: 0.9353 - loss: 320.4443


443/Unknown  97s 218ms/step - accuracy: 0.9353 - loss: 320.3189


444/Unknown  97s 218ms/step - accuracy: 0.9353 - loss: 320.1938


445/Unknown  97s 218ms/step - accuracy: 0.9353 - loss: 320.0695


446/Unknown  98s 218ms/step - accuracy: 0.9353 - loss: 319.9457


447/Unknown  98s 218ms/step - accuracy: 0.9354 - loss: 319.8219


448/Unknown  98s 218ms/step - accuracy: 0.9354 - loss: 319.6988


449/Unknown  98s 218ms/step - accuracy: 0.9354 - loss: 319.5759


450/Unknown  99s 218ms/step - accuracy: 0.9354 - loss: 319.4533


451/Unknown  99s 218ms/step - accuracy: 0.9354 - loss: 319.3317


452/Unknown  99s 218ms/step - accuracy: 0.9355 - loss: 319.2104


453/Unknown  99s 218ms/step - accuracy: 0.9355 - loss: 319.0900


454/Unknown  100s 218ms/step - accuracy: 0.9355 - loss: 318.9702


455/Unknown  100s 218ms/step - accuracy: 0.9355 - loss: 318.8509


456/Unknown  100s 218ms/step - accuracy: 0.9355 - loss: 318.7319


457/Unknown  100s 218ms/step - accuracy: 0.9356 - loss: 318.6129


458/Unknown  101s 219ms/step - accuracy: 0.9356 - loss: 318.4945


459/Unknown  101s 219ms/step - accuracy: 0.9356 - loss: 318.3764


460/Unknown  101s 219ms/step - accuracy: 0.9356 - loss: 318.2592


461/Unknown  101s 219ms/step - accuracy: 0.9356 - loss: 318.1426


462/Unknown  102s 219ms/step - accuracy: 0.9356 - loss: 318.0262


463/Unknown  102s 219ms/step - accuracy: 0.9357 - loss: 317.9101


464/Unknown  102s 219ms/step - accuracy: 0.9357 - loss: 317.7942


465/Unknown  102s 219ms/step - accuracy: 0.9357 - loss: 317.6788


466/Unknown  102s 219ms/step - accuracy: 0.9357 - loss: 317.5635


467/Unknown  103s 219ms/step - accuracy: 0.9357 - loss: 317.4484


468/Unknown  103s 219ms/step - accuracy: 0.9358 - loss: 317.3335


469/Unknown  103s 219ms/step - accuracy: 0.9358 - loss: 317.2188


470/Unknown  103s 219ms/step - accuracy: 0.9358 - loss: 317.1040


471/Unknown  104s 219ms/step - accuracy: 0.9358 - loss: 316.9898


472/Unknown  104s 219ms/step - accuracy: 0.9358 - loss: 316.8763


473/Unknown  104s 219ms/step - accuracy: 0.9359 - loss: 316.7631


474/Unknown  104s 219ms/step - accuracy: 0.9359 - loss: 316.6501


475/Unknown  105s 219ms/step - accuracy: 0.9359 - loss: 316.5378


476/Unknown  105s 219ms/step - accuracy: 0.9359 - loss: 316.4257


477/Unknown  105s 220ms/step - accuracy: 0.9359 - loss: 316.3138


478/Unknown  105s 220ms/step - accuracy: 0.9359 - loss: 316.2022


479/Unknown  106s 220ms/step - accuracy: 0.9360 - loss: 316.0910


480/Unknown  106s 220ms/step - accuracy: 0.9360 - loss: 315.9806


481/Unknown  106s 220ms/step - accuracy: 0.9360 - loss: 315.8706


482/Unknown  106s 220ms/step - accuracy: 0.9360 - loss: 315.7607


483/Unknown  107s 220ms/step - accuracy: 0.9360 - loss: 315.6510


484/Unknown  107s 220ms/step - accuracy: 0.9361 - loss: 315.5415


485/Unknown  107s 220ms/step - accuracy: 0.9361 - loss: 315.4324


486/Unknown  107s 220ms/step - accuracy: 0.9361 - loss: 315.3241


487/Unknown  108s 220ms/step - accuracy: 0.9361 - loss: 315.2159


488/Unknown  108s 220ms/step - accuracy: 0.9361 - loss: 315.1081


489/Unknown  108s 220ms/step - accuracy: 0.9361 - loss: 315.0006


490/Unknown  108s 220ms/step - accuracy: 0.9362 - loss: 314.8934


491/Unknown  109s 220ms/step - accuracy: 0.9362 - loss: 314.7863


492/Unknown  109s 220ms/step - accuracy: 0.9362 - loss: 314.6796


493/Unknown  109s 220ms/step - accuracy: 0.9362 - loss: 314.5731


494/Unknown  109s 220ms/step - accuracy: 0.9362 - loss: 314.4671


495/Unknown  109s 220ms/step - accuracy: 0.9363 - loss: 314.3610


496/Unknown  110s 220ms/step - accuracy: 0.9363 - loss: 314.2551


497/Unknown  110s 220ms/step - accuracy: 0.9363 - loss: 314.1498


498/Unknown  110s 220ms/step - accuracy: 0.9363 - loss: 314.0451


499/Unknown  110s 220ms/step - accuracy: 0.9363 - loss: 313.9405


500/Unknown  111s 220ms/step - accuracy: 0.9363 - loss: 313.8364


501/Unknown  111s 220ms/step - accuracy: 0.9364 - loss: 313.7324


502/Unknown  111s 220ms/step - accuracy: 0.9364 - loss: 313.6290


503/Unknown  111s 220ms/step - accuracy: 0.9364 - loss: 313.5266


504/Unknown  111s 220ms/step - accuracy: 0.9364 - loss: 313.4240


505/Unknown  112s 220ms/step - accuracy: 0.9364 - loss: 313.3215


506/Unknown  112s 220ms/step - accuracy: 0.9364 - loss: 313.2194


507/Unknown  112s 220ms/step - accuracy: 0.9365 - loss: 313.1174


508/Unknown  112s 220ms/step - accuracy: 0.9365 - loss: 313.0163


509/Unknown  113s 220ms/step - accuracy: 0.9365 - loss: 312.9149


510/Unknown  113s 220ms/step - accuracy: 0.9365 - loss: 312.8137


511/Unknown  113s 220ms/step - accuracy: 0.9365 - loss: 312.7127


512/Unknown  113s 220ms/step - accuracy: 0.9365 - loss: 312.6117


513/Unknown  113s 220ms/step - accuracy: 0.9366 - loss: 312.5108


514/Unknown  114s 220ms/step - accuracy: 0.9366 - loss: 312.4105


515/Unknown  114s 220ms/step - accuracy: 0.9366 - loss: 312.3107


516/Unknown  114s 221ms/step - accuracy: 0.9366 - loss: 312.2112


517/Unknown  115s 221ms/step - accuracy: 0.9366 - loss: 312.1120


518/Unknown  115s 221ms/step - accuracy: 0.9366 - loss: 312.0136


519/Unknown  115s 221ms/step - accuracy: 0.9367 - loss: 311.9154


520/Unknown  115s 221ms/step - accuracy: 0.9367 - loss: 311.8175


521/Unknown  116s 221ms/step - accuracy: 0.9367 - loss: 311.7198


522/Unknown  116s 221ms/step - accuracy: 0.9367 - loss: 311.6223


523/Unknown  116s 221ms/step - accuracy: 0.9367 - loss: 311.5254


524/Unknown  116s 221ms/step - accuracy: 0.9367 - loss: 311.4289


525/Unknown  117s 221ms/step - accuracy: 0.9368 - loss: 311.3327


526/Unknown  117s 221ms/step - accuracy: 0.9368 - loss: 311.2370


527/Unknown  117s 221ms/step - accuracy: 0.9368 - loss: 311.1415


528/Unknown  117s 221ms/step - accuracy: 0.9368 - loss: 311.0460


529/Unknown  118s 221ms/step - accuracy: 0.9368 - loss: 310.9506


530/Unknown  118s 221ms/step - accuracy: 0.9368 - loss: 310.8556


531/Unknown  118s 221ms/step - accuracy: 0.9368 - loss: 310.7611


532/Unknown  118s 221ms/step - accuracy: 0.9369 - loss: 310.6666


533/Unknown  119s 222ms/step - accuracy: 0.9369 - loss: 310.5723


534/Unknown  119s 222ms/step - accuracy: 0.9369 - loss: 310.4783


535/Unknown  119s 222ms/step - accuracy: 0.9369 - loss: 310.3845


536/Unknown  119s 222ms/step - accuracy: 0.9369 - loss: 310.2907


537/Unknown  119s 222ms/step - accuracy: 0.9369 - loss: 310.1972


538/Unknown  120s 222ms/step - accuracy: 0.9370 - loss: 310.1041


539/Unknown  120s 222ms/step - accuracy: 0.9370 - loss: 310.0114


540/Unknown  120s 222ms/step - accuracy: 0.9370 - loss: 309.9187


541/Unknown  120s 222ms/step - accuracy: 0.9370 - loss: 309.8263


542/Unknown  121s 221ms/step - accuracy: 0.9370 - loss: 309.7338


543/Unknown  121s 221ms/step - accuracy: 0.9370 - loss: 309.6414


544/Unknown  121s 222ms/step - accuracy: 0.9370 - loss: 309.5492


545/Unknown  121s 222ms/step - accuracy: 0.9371 - loss: 309.4574


546/Unknown  121s 222ms/step - accuracy: 0.9371 - loss: 309.3658


547/Unknown  122s 222ms/step - accuracy: 0.9371 - loss: 309.2743


548/Unknown  122s 222ms/step - accuracy: 0.9371 - loss: 309.1831


549/Unknown  122s 222ms/step - accuracy: 0.9371 - loss: 309.0924


550/Unknown  122s 222ms/step - accuracy: 0.9371 - loss: 309.0020


551/Unknown  123s 222ms/step - accuracy: 0.9371 - loss: 308.9121


552/Unknown  123s 222ms/step - accuracy: 0.9372 - loss: 308.8221


553/Unknown  123s 222ms/step - accuracy: 0.9372 - loss: 308.7321


554/Unknown  123s 222ms/step - accuracy: 0.9372 - loss: 308.6426


555/Unknown  124s 222ms/step - accuracy: 0.9372 - loss: 308.5534


556/Unknown  124s 222ms/step - accuracy: 0.9372 - loss: 308.4645


557/Unknown  124s 222ms/step - accuracy: 0.9372 - loss: 308.3757


558/Unknown  124s 222ms/step - accuracy: 0.9372 - loss: 308.2873


559/Unknown  125s 222ms/step - accuracy: 0.9373 - loss: 308.1992


560/Unknown  125s 222ms/step - accuracy: 0.9373 - loss: 308.1115


561/Unknown  125s 222ms/step - accuracy: 0.9373 - loss: 308.0239


562/Unknown  125s 222ms/step - accuracy: 0.9373 - loss: 307.9366


563/Unknown  126s 222ms/step - accuracy: 0.9373 - loss: 307.8493


564/Unknown  126s 222ms/step - accuracy: 0.9373 - loss: 307.7624


565/Unknown  126s 222ms/step - accuracy: 0.9373 - loss: 307.6758


566/Unknown  126s 222ms/step - accuracy: 0.9374 - loss: 307.5896


567/Unknown  126s 222ms/step - accuracy: 0.9374 - loss: 307.5038


568/Unknown  127s 222ms/step - accuracy: 0.9374 - loss: 307.4184


569/Unknown  127s 222ms/step - accuracy: 0.9374 - loss: 307.3336


570/Unknown  127s 222ms/step - accuracy: 0.9374 - loss: 307.2491


571/Unknown  127s 222ms/step - accuracy: 0.9374 - loss: 307.1649


572/Unknown  128s 222ms/step - accuracy: 0.9374 - loss: 307.0807


573/Unknown  128s 222ms/step - accuracy: 0.9375 - loss: 306.9967


574/Unknown  128s 223ms/step - accuracy: 0.9375 - loss: 306.9132


575/Unknown  129s 223ms/step - accuracy: 0.9375 - loss: 306.8299


576/Unknown  129s 223ms/step - accuracy: 0.9375 - loss: 306.7468


577/Unknown  129s 223ms/step - accuracy: 0.9375 - loss: 306.6639


578/Unknown  129s 223ms/step - accuracy: 0.9375 - loss: 306.5809


579/Unknown  130s 223ms/step - accuracy: 0.9375 - loss: 306.4984


580/Unknown  130s 223ms/step - accuracy: 0.9376 - loss: 306.4160


581/Unknown  130s 223ms/step - accuracy: 0.9376 - loss: 306.3336


582/Unknown  130s 223ms/step - accuracy: 0.9376 - loss: 306.2515


583/Unknown  131s 223ms/step - accuracy: 0.9376 - loss: 306.1693


584/Unknown  131s 223ms/step - accuracy: 0.9376 - loss: 306.0871


585/Unknown  131s 223ms/step - accuracy: 0.9376 - loss: 306.0051


586/Unknown  131s 223ms/step - accuracy: 0.9376 - loss: 305.9232


587/Unknown  132s 223ms/step - accuracy: 0.9376 - loss: 305.8415


588/Unknown  132s 223ms/step - accuracy: 0.9377 - loss: 305.7600


589/Unknown  132s 223ms/step - accuracy: 0.9377 - loss: 305.6787


590/Unknown  132s 223ms/step - accuracy: 0.9377 - loss: 305.5978


591/Unknown  133s 223ms/step - accuracy: 0.9377 - loss: 305.5169


592/Unknown  133s 223ms/step - accuracy: 0.9377 - loss: 305.4363


593/Unknown  133s 223ms/step - accuracy: 0.9377 - loss: 305.3560


594/Unknown  133s 223ms/step - accuracy: 0.9377 - loss: 305.2758


595/Unknown  133s 223ms/step - accuracy: 0.9378 - loss: 305.1960


596/Unknown  134s 223ms/step - accuracy: 0.9378 - loss: 305.1167


597/Unknown  134s 223ms/step - accuracy: 0.9378 - loss: 305.0374


598/Unknown  134s 223ms/step - accuracy: 0.9378 - loss: 304.9583


599/Unknown  134s 223ms/step - accuracy: 0.9378 - loss: 304.8791


600/Unknown  134s 223ms/step - accuracy: 0.9378 - loss: 304.8002


601/Unknown  135s 223ms/step - accuracy: 0.9378 - loss: 304.7217


602/Unknown  135s 223ms/step - accuracy: 0.9378 - loss: 304.6434


603/Unknown  135s 223ms/step - accuracy: 0.9379 - loss: 304.5656


604/Unknown  135s 223ms/step - accuracy: 0.9379 - loss: 304.4879


605/Unknown  136s 223ms/step - accuracy: 0.9379 - loss: 304.4105


606/Unknown  136s 223ms/step - accuracy: 0.9379 - loss: 304.3331


607/Unknown  136s 223ms/step - accuracy: 0.9379 - loss: 304.2561


608/Unknown  136s 223ms/step - accuracy: 0.9379 - loss: 304.1792


609/Unknown  137s 223ms/step - accuracy: 0.9379 - loss: 304.1025


610/Unknown  137s 223ms/step - accuracy: 0.9379 - loss: 304.0259


611/Unknown  137s 223ms/step - accuracy: 0.9380 - loss: 303.9494


612/Unknown  137s 223ms/step - accuracy: 0.9380 - loss: 303.8730


613/Unknown  137s 223ms/step - accuracy: 0.9380 - loss: 303.7966


614/Unknown  138s 223ms/step - accuracy: 0.9380 - loss: 303.7203


615/Unknown  138s 223ms/step - accuracy: 0.9380 - loss: 303.6440


616/Unknown  138s 223ms/step - accuracy: 0.9380 - loss: 303.5678


617/Unknown  138s 224ms/step - accuracy: 0.9380 - loss: 303.4917


618/Unknown  139s 224ms/step - accuracy: 0.9380 - loss: 303.4161


619/Unknown  139s 224ms/step - accuracy: 0.9380 - loss: 303.3405


620/Unknown  139s 224ms/step - accuracy: 0.9381 - loss: 303.2652


621/Unknown  140s 224ms/step - accuracy: 0.9381 - loss: 303.1904


622/Unknown  140s 224ms/step - accuracy: 0.9381 - loss: 303.1159


623/Unknown  140s 224ms/step - accuracy: 0.9381 - loss: 303.0418


624/Unknown  140s 224ms/step - accuracy: 0.9381 - loss: 302.9678


625/Unknown  141s 224ms/step - accuracy: 0.9381 - loss: 302.8940


626/Unknown  141s 224ms/step - accuracy: 0.9381 - loss: 302.8201


627/Unknown  141s 224ms/step - accuracy: 0.9381 - loss: 302.7465


628/Unknown  141s 224ms/step - accuracy: 0.9382 - loss: 302.6730


629/Unknown  141s 224ms/step - accuracy: 0.9382 - loss: 302.5998


630/Unknown  142s 224ms/step - accuracy: 0.9382 - loss: 302.5268


631/Unknown  142s 224ms/step - accuracy: 0.9382 - loss: 302.4539


632/Unknown  142s 224ms/step - accuracy: 0.9382 - loss: 302.3810


633/Unknown  142s 224ms/step - accuracy: 0.9382 - loss: 302.3086


634/Unknown  143s 224ms/step - accuracy: 0.9382 - loss: 302.2364


635/Unknown  143s 224ms/step - accuracy: 0.9382 - loss: 302.1645


636/Unknown  143s 224ms/step - accuracy: 0.9383 - loss: 302.0930


637/Unknown  143s 224ms/step - accuracy: 0.9383 - loss: 302.0216


638/Unknown  144s 224ms/step - accuracy: 0.9383 - loss: 301.9502


639/Unknown  144s 224ms/step - accuracy: 0.9383 - loss: 301.8791

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()



639/639 ━━━━━━━━━━━━━━━━━━━━ 160s 249ms/step - accuracy: 0.9383 - loss: 301.8082 - val_accuracy: 0.9485 - val_loss: 235.7996

Model training finished.
Evaluating model performance...
  1/Unknown  0s 331ms/step - accuracy: 0.9623 - loss: 160.6135


  2/Unknown  0s 119ms/step - accuracy: 0.9557 - loss: 181.4366


  3/Unknown  1s 131ms/step - accuracy: 0.9524 - loss: 198.4659


  4/Unknown  1s 129ms/step - accuracy: 0.9502 - loss: 209.3009


  5/Unknown  1s 133ms/step - accuracy: 0.9499 - loss: 215.6982


  6/Unknown  1s 131ms/step - accuracy: 0.9499 - loss: 219.7466


  7/Unknown  1s 132ms/step - accuracy: 0.9502 - loss: 220.2296


  8/Unknown  1s 132ms/step - accuracy: 0.9504 - loss: 219.6000


  9/Unknown  1s 133ms/step - accuracy: 0.9506 - loss: 218.5403


 10/Unknown  2s 133ms/step - accuracy: 0.9507 - loss: 217.4007


 11/Unknown  2s 134ms/step - accuracy: 0.9507 - loss: 216.4865


 12/Unknown  2s 133ms/step - accuracy: 0.9504 - loss: 215.7090


 13/Unknown  2s 135ms/step - accuracy: 0.9502 - loss: 215.4628


 14/Unknown  2s 135ms/step - accuracy: 0.9500 - loss: 215.0735


 15/Unknown  2s 134ms/step - accuracy: 0.9499 - loss: 214.8078


 16/Unknown  2s 134ms/step - accuracy: 0.9500 - loss: 214.3558


 17/Unknown  2s 134ms/step - accuracy: 0.9500 - loss: 213.9521


 18/Unknown  3s 135ms/step - accuracy: 0.9501 - loss: 213.9012


 19/Unknown  3s 134ms/step - accuracy: 0.9501 - loss: 214.0063


 20/Unknown  3s 135ms/step - accuracy: 0.9501 - loss: 214.2168


 21/Unknown  3s 134ms/step - accuracy: 0.9500 - loss: 214.5657


 22/Unknown  3s 135ms/step - accuracy: 0.9500 - loss: 214.8618


 23/Unknown  3s 134ms/step - accuracy: 0.9500 - loss: 215.1154


 24/Unknown  3s 135ms/step - accuracy: 0.9499 - loss: 215.2906


 25/Unknown  4s 134ms/step - accuracy: 0.9499 - loss: 215.6145


 26/Unknown  4s 135ms/step - accuracy: 0.9499 - loss: 215.8544


 27/Unknown  4s 135ms/step - accuracy: 0.9498 - loss: 216.0591


 28/Unknown  4s 135ms/step - accuracy: 0.9499 - loss: 216.2666


 29/Unknown  4s 135ms/step - accuracy: 0.9499 - loss: 216.4423


 30/Unknown  4s 135ms/step - accuracy: 0.9499 - loss: 216.5613


 31/Unknown  4s 135ms/step - accuracy: 0.9498 - loss: 216.7220


 32/Unknown  5s 135ms/step - accuracy: 0.9498 - loss: 216.8842


 33/Unknown  5s 135ms/step - accuracy: 0.9498 - loss: 217.1658


 34/Unknown  5s 135ms/step - accuracy: 0.9497 - loss: 217.4608


 35/Unknown  5s 135ms/step - accuracy: 0.9496 - loss: 217.7231


 36/Unknown  5s 134ms/step - accuracy: 0.9496 - loss: 217.9504


 37/Unknown  5s 135ms/step - accuracy: 0.9496 - loss: 218.1658


 38/Unknown  5s 134ms/step - accuracy: 0.9495 - loss: 218.3597


 39/Unknown  5s 134ms/step - accuracy: 0.9495 - loss: 218.5269


 40/Unknown  6s 135ms/step - accuracy: 0.9495 - loss: 218.7106


 41/Unknown  6s 135ms/step - accuracy: 0.9494 - loss: 218.8721


 42/Unknown  6s 136ms/step - accuracy: 0.9494 - loss: 218.9924


 43/Unknown  6s 136ms/step - accuracy: 0.9494 - loss: 219.1745


 44/Unknown  6s 137ms/step - accuracy: 0.9494 - loss: 219.3449


 45/Unknown  6s 138ms/step - accuracy: 0.9493 - loss: 219.4943


 46/Unknown  7s 137ms/step - accuracy: 0.9493 - loss: 219.6201


 47/Unknown  7s 138ms/step - accuracy: 0.9493 - loss: 219.7240


 48/Unknown  7s 138ms/step - accuracy: 0.9493 - loss: 219.8335


 49/Unknown  7s 138ms/step - accuracy: 0.9493 - loss: 219.9367


 50/Unknown  7s 138ms/step - accuracy: 0.9493 - loss: 220.0834


 51/Unknown  7s 138ms/step - accuracy: 0.9492 - loss: 220.2067


 52/Unknown  7s 139ms/step - accuracy: 0.9492 - loss: 220.2963


 53/Unknown  8s 138ms/step - accuracy: 0.9492 - loss: 220.3649


 54/Unknown  8s 138ms/step - accuracy: 0.9492 - loss: 220.4462


 55/Unknown  8s 138ms/step - accuracy: 0.9492 - loss: 220.5459


 56/Unknown  8s 138ms/step - accuracy: 0.9492 - loss: 220.6197


 57/Unknown  8s 138ms/step - accuracy: 0.9491 - loss: 220.6727


 58/Unknown  8s 138ms/step - accuracy: 0.9491 - loss: 220.7652


 59/Unknown  8s 138ms/step - accuracy: 0.9491 - loss: 220.8513


 60/Unknown  8s 138ms/step - accuracy: 0.9491 - loss: 220.9392


 61/Unknown  9s 138ms/step - accuracy: 0.9491 - loss: 221.0330


 62/Unknown  9s 137ms/step - accuracy: 0.9491 - loss: 221.1127


 63/Unknown  9s 137ms/step - accuracy: 0.9491 - loss: 221.2177


 64/Unknown  9s 137ms/step - accuracy: 0.9490 - loss: 221.3382


 65/Unknown  9s 137ms/step - accuracy: 0.9490 - loss: 221.4572


 66/Unknown  9s 137ms/step - accuracy: 0.9490 - loss: 221.5552


 67/Unknown  9s 137ms/step - accuracy: 0.9490 - loss: 221.6626


 68/Unknown  9s 136ms/step - accuracy: 0.9490 - loss: 221.7653


 69/Unknown  10s 136ms/step - accuracy: 0.9490 - loss: 221.8680


 70/Unknown  10s 136ms/step - accuracy: 0.9490 - loss: 221.9582


 71/Unknown  10s 136ms/step - accuracy: 0.9489 - loss: 222.0398


 72/Unknown  10s 136ms/step - accuracy: 0.9489 - loss: 222.1409


 73/Unknown  10s 136ms/step - accuracy: 0.9489 - loss: 222.2496


 74/Unknown  10s 136ms/step - accuracy: 0.9489 - loss: 222.3526


 75/Unknown  10s 136ms/step - accuracy: 0.9489 - loss: 222.4433


 76/Unknown  11s 136ms/step - accuracy: 0.9489 - loss: 222.5272


 77/Unknown  11s 136ms/step - accuracy: 0.9489 - loss: 222.6031


 78/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 222.6857


 79/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 222.7623


 80/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 222.8322


 81/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 222.8963


 82/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 222.9694


 83/Unknown  11s 136ms/step - accuracy: 0.9488 - loss: 223.0455


 84/Unknown  12s 136ms/step - accuracy: 0.9488 - loss: 223.1209


 85/Unknown  12s 136ms/step - accuracy: 0.9488 - loss: 223.1990


 86/Unknown  12s 136ms/step - accuracy: 0.9488 - loss: 223.2825


 87/Unknown  12s 136ms/step - accuracy: 0.9487 - loss: 223.3633


 88/Unknown  12s 136ms/step - accuracy: 0.9487 - loss: 223.4366


 89/Unknown  12s 136ms/step - accuracy: 0.9487 - loss: 223.5151


 90/Unknown  12s 136ms/step - accuracy: 0.9487 - loss: 223.5958


 91/Unknown  13s 136ms/step - accuracy: 0.9487 - loss: 223.6727


 92/Unknown  13s 137ms/step - accuracy: 0.9487 - loss: 223.7505


 93/Unknown  13s 137ms/step - accuracy: 0.9487 - loss: 223.8250


 94/Unknown  13s 137ms/step - accuracy: 0.9486 - loss: 223.9114


 95/Unknown  13s 137ms/step - accuracy: 0.9486 - loss: 223.9948


 96/Unknown  13s 138ms/step - accuracy: 0.9486 - loss: 224.0807


 97/Unknown  14s 138ms/step - accuracy: 0.9486 - loss: 224.1586


 98/Unknown  14s 138ms/step - accuracy: 0.9486 - loss: 224.2289


 99/Unknown  14s 138ms/step - accuracy: 0.9486 - loss: 224.2979


100/Unknown  14s 138ms/step - accuracy: 0.9486 - loss: 224.3739


101/Unknown  14s 138ms/step - accuracy: 0.9485 - loss: 224.4488


102/Unknown  14s 138ms/step - accuracy: 0.9485 - loss: 224.5210


103/Unknown  14s 139ms/step - accuracy: 0.9485 - loss: 224.5936


104/Unknown  15s 139ms/step - accuracy: 0.9485 - loss: 224.6630


105/Unknown  15s 139ms/step - accuracy: 0.9485 - loss: 224.7316


106/Unknown  15s 139ms/step - accuracy: 0.9485 - loss: 224.8002


107/Unknown  15s 139ms/step - accuracy: 0.9485 - loss: 224.8736


108/Unknown  15s 139ms/step - accuracy: 0.9484 - loss: 224.9466


109/Unknown  15s 138ms/step - accuracy: 0.9484 - loss: 225.0268


110/Unknown  15s 138ms/step - accuracy: 0.9484 - loss: 225.1065


111/Unknown  16s 138ms/step - accuracy: 0.9484 - loss: 225.1895


112/Unknown  16s 139ms/step - accuracy: 0.9484 - loss: 225.2730


113/Unknown  16s 139ms/step - accuracy: 0.9484 - loss: 225.3562


114/Unknown  16s 139ms/step - accuracy: 0.9484 - loss: 225.4317


115/Unknown  16s 139ms/step - accuracy: 0.9484 - loss: 225.5018


116/Unknown  16s 139ms/step - accuracy: 0.9483 - loss: 225.5749


117/Unknown  16s 139ms/step - accuracy: 0.9483 - loss: 225.6508


118/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 225.7233


119/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 225.7933


120/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 225.8627


121/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 225.9334


122/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 226.0017


123/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 226.0612


124/Unknown  17s 139ms/step - accuracy: 0.9483 - loss: 226.1206


125/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.1817


126/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.2397


127/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.2974


128/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.3512


129/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.4005


130/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.4489


131/Unknown  18s 139ms/step - accuracy: 0.9482 - loss: 226.4945


132/Unknown  19s 139ms/step - accuracy: 0.9482 - loss: 226.5418


133/Unknown  19s 139ms/step - accuracy: 0.9482 - loss: 226.5853


134/Unknown  19s 140ms/step - accuracy: 0.9482 - loss: 226.6308


135/Unknown  19s 140ms/step - accuracy: 0.9482 - loss: 226.6727


136/Unknown  19s 140ms/step - accuracy: 0.9482 - loss: 226.7198


137/Unknown  19s 140ms/step - accuracy: 0.9482 - loss: 226.7688


138/Unknown  19s 140ms/step - accuracy: 0.9482 - loss: 226.8152


139/Unknown  20s 140ms/step - accuracy: 0.9482 - loss: 226.8609


140/Unknown  20s 140ms/step - accuracy: 0.9482 - loss: 226.9056


141/Unknown  20s 140ms/step - accuracy: 0.9481 - loss: 226.9498


142/Unknown  20s 140ms/step - accuracy: 0.9481 - loss: 226.9936


143/Unknown  20s 140ms/step - accuracy: 0.9481 - loss: 227.0366


144/Unknown  20s 139ms/step - accuracy: 0.9481 - loss: 227.0785


145/Unknown  20s 139ms/step - accuracy: 0.9481 - loss: 227.1189


146/Unknown  21s 139ms/step - accuracy: 0.9481 - loss: 227.1589


147/Unknown  21s 139ms/step - accuracy: 0.9481 - loss: 227.1976


148/Unknown  21s 140ms/step - accuracy: 0.9481 - loss: 227.2341


149/Unknown  21s 140ms/step - accuracy: 0.9481 - loss: 227.2737


150/Unknown  21s 140ms/step - accuracy: 0.9481 - loss: 227.3114


151/Unknown  21s 140ms/step - accuracy: 0.9481 - loss: 227.3518


152/Unknown  21s 140ms/step - accuracy: 0.9481 - loss: 227.3940


153/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.4359


154/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.4770


155/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.5203


156/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.5634


157/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.6052


158/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.6457


159/Unknown  22s 140ms/step - accuracy: 0.9481 - loss: 227.6858


160/Unknown  23s 140ms/step - accuracy: 0.9481 - loss: 227.7236


161/Unknown  23s 140ms/step - accuracy: 0.9481 - loss: 227.7598


162/Unknown  23s 140ms/step - accuracy: 0.9481 - loss: 227.7944


163/Unknown  23s 140ms/step - accuracy: 0.9481 - loss: 227.8277


164/Unknown  23s 140ms/step - accuracy: 0.9481 - loss: 227.8596


165/Unknown  23s 140ms/step - accuracy: 0.9480 - loss: 227.8896


166/Unknown  23s 140ms/step - accuracy: 0.9480 - loss: 227.9187


167/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 227.9463


168/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 227.9726


169/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 227.9972


170/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 228.0219


171/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 228.0469


172/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 228.0727


173/Unknown  24s 140ms/step - accuracy: 0.9480 - loss: 228.0992


174/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.1232


175/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.1466


176/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.1700


177/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.1928


178/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.2146


179/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.2334


180/Unknown  25s 140ms/step - accuracy: 0.9480 - loss: 228.2502


181/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.2660


182/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.2829


183/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3001


184/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3197


185/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3382


186/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3550


187/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3710


188/Unknown  26s 140ms/step - accuracy: 0.9480 - loss: 228.3866


189/Unknown  27s 140ms/step - accuracy: 0.9480 - loss: 228.4023


190/Unknown  27s 140ms/step - accuracy: 0.9480 - loss: 228.4187


191/Unknown  27s 140ms/step - accuracy: 0.9480 - loss: 228.4339


192/Unknown  27s 139ms/step - accuracy: 0.9480 - loss: 228.4476


193/Unknown  27s 139ms/step - accuracy: 0.9480 - loss: 228.4600


194/Unknown  27s 139ms/step - accuracy: 0.9480 - loss: 228.4714


195/Unknown  27s 139ms/step - accuracy: 0.9480 - loss: 228.4833


196/Unknown  27s 139ms/step - accuracy: 0.9480 - loss: 228.4972


197/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5084


198/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5233


199/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5378


200/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5527


201/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5660


202/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5789


203/Unknown  28s 139ms/step - accuracy: 0.9480 - loss: 228.5915


204/Unknown  29s 139ms/step - accuracy: 0.9480 - loss: 228.6026


205/Unknown  29s 139ms/step - accuracy: 0.9480 - loss: 228.6157


206/Unknown  29s 139ms/step - accuracy: 0.9480 - loss: 228.6292


207/Unknown  29s 139ms/step - accuracy: 0.9481 - loss: 228.6418


208/Unknown  29s 139ms/step - accuracy: 0.9481 - loss: 228.6543


209/Unknown  29s 139ms/step - accuracy: 0.9481 - loss: 228.6688


210/Unknown  29s 139ms/step - accuracy: 0.9481 - loss: 228.6819


211/Unknown  29s 139ms/step - accuracy: 0.9481 - loss: 228.6941


212/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7058


213/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7174


214/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7294


215/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7410


216/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7537


217/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7657


218/Unknown  30s 139ms/step - accuracy: 0.9481 - loss: 228.7765


219/Unknown  31s 139ms/step - accuracy: 0.9481 - loss: 228.7861


220/Unknown  31s 139ms/step - accuracy: 0.9481 - loss: 228.7945


221/Unknown  31s 139ms/step - accuracy: 0.9481 - loss: 228.8020


222/Unknown  31s 139ms/step - accuracy: 0.9481 - loss: 228.8082


223/Unknown  31s 139ms/step - accuracy: 0.9481 - loss: 228.8140


224/Unknown  31s 138ms/step - accuracy: 0.9481 - loss: 228.8199


225/Unknown  31s 138ms/step - accuracy: 0.9481 - loss: 228.8271


226/Unknown  31s 138ms/step - accuracy: 0.9481 - loss: 228.8340


227/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8403


228/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8456


229/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8512


230/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8562


231/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8611


232/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8642


233/Unknown  32s 138ms/step - accuracy: 0.9481 - loss: 228.8672


234/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8694


235/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8721


236/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8762


237/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8797


238/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8838


239/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8885


240/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8919


241/Unknown  33s 138ms/step - accuracy: 0.9481 - loss: 228.8947


242/Unknown  34s 138ms/step - accuracy: 0.9481 - loss: 228.8974


243/Unknown  34s 138ms/step - accuracy: 0.9481 - loss: 228.9001


244/Unknown  34s 138ms/step - accuracy: 0.9481 - loss: 228.9023


245/Unknown  34s 138ms/step - accuracy: 0.9481 - loss: 228.9047


246/Unknown  34s 138ms/step - accuracy: 0.9481 - loss: 228.9063


247/Unknown  34s 139ms/step - accuracy: 0.9481 - loss: 228.9082


248/Unknown  35s 139ms/step - accuracy: 0.9481 - loss: 228.9095


249/Unknown  35s 139ms/step - accuracy: 0.9482 - loss: 228.9103


250/Unknown  35s 139ms/step - accuracy: 0.9482 - loss: 228.9118


251/Unknown  35s 139ms/step - accuracy: 0.9482 - loss: 228.9147


252/Unknown  35s 139ms/step - accuracy: 0.9482 - loss: 228.9173


253/Unknown  35s 139ms/step - accuracy: 0.9482 - loss: 228.9200


254/Unknown  36s 139ms/step - accuracy: 0.9482 - loss: 228.9222


255/Unknown  36s 139ms/step - accuracy: 0.9482 - loss: 228.9243


256/Unknown  36s 139ms/step - accuracy: 0.9482 - loss: 228.9268


257/Unknown  36s 139ms/step - accuracy: 0.9482 - loss: 228.9288


258/Unknown  36s 140ms/step - accuracy: 0.9482 - loss: 228.9315


259/Unknown  36s 140ms/step - accuracy: 0.9482 - loss: 228.9344


260/Unknown  36s 140ms/step - accuracy: 0.9482 - loss: 228.9363


261/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9379


262/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9381


263/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9378


264/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9372


265/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9366


266/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9373


267/Unknown  37s 140ms/step - accuracy: 0.9482 - loss: 228.9385


268/Unknown  38s 140ms/step - accuracy: 0.9482 - loss: 228.9391


269/Unknown  38s 140ms/step - accuracy: 0.9482 - loss: 228.9401


270/Unknown  38s 140ms/step - accuracy: 0.9482 - loss: 228.9409


271/Unknown  38s 139ms/step - accuracy: 0.9482 - loss: 228.9415


272/Unknown  38s 139ms/step - accuracy: 0.9482 - loss: 228.9413


273/Unknown  38s 139ms/step - accuracy: 0.9482 - loss: 228.9413


274/Unknown  38s 139ms/step - accuracy: 0.9482 - loss: 228.9406


275/Unknown  38s 139ms/step - accuracy: 0.9482 - loss: 228.9396


276/Unknown  39s 139ms/step - accuracy: 0.9482 - loss: 228.9395


277/Unknown  39s 139ms/step - accuracy: 0.9482 - loss: 228.9393


278/Unknown  39s 139ms/step - accuracy: 0.9482 - loss: 228.9390


279/Unknown  39s 139ms/step - accuracy: 0.9482 - loss: 228.9383


280/Unknown  39s 139ms/step - accuracy: 0.9483 - loss: 228.9368


281/Unknown  39s 139ms/step - accuracy: 0.9483 - loss: 228.9358


282/Unknown  39s 139ms/step - accuracy: 0.9483 - loss: 228.9339


283/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9312


284/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9295


285/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9271


286/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9249


287/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9228


288/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9200


289/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9166


290/Unknown  40s 139ms/step - accuracy: 0.9483 - loss: 228.9136


291/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.9105


292/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.9076


293/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.9045


294/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.9017


295/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.8983


296/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.8967


297/Unknown  41s 139ms/step - accuracy: 0.9483 - loss: 228.8956


298/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8946


299/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8931


300/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8911


301/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8904


302/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8897


303/Unknown  42s 139ms/step - accuracy: 0.9483 - loss: 228.8902


304/Unknown  42s 139ms/step - accuracy: 0.9484 - loss: 228.8911


305/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8920


306/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8923


307/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8938


308/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8946


309/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8958


310/Unknown  43s 139ms/step - accuracy: 0.9484 - loss: 228.8979


311/Unknown  44s 139ms/step - accuracy: 0.9484 - loss: 228.9006


312/Unknown  44s 139ms/step - accuracy: 0.9484 - loss: 228.9027


313/Unknown  44s 139ms/step - accuracy: 0.9484 - loss: 228.9051


314/Unknown  44s 139ms/step - accuracy: 0.9484 - loss: 228.9074


315/Unknown  44s 140ms/step - accuracy: 0.9484 - loss: 228.9098


316/Unknown  44s 140ms/step - accuracy: 0.9484 - loss: 228.9117


317/Unknown  44s 140ms/step - accuracy: 0.9484 - loss: 228.9142


318/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9171


319/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9203


320/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9232


321/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9262


322/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9293


323/Unknown  45s 140ms/step - accuracy: 0.9484 - loss: 228.9324


324/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9353


325/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9387


326/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9429


327/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9469


328/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9508


329/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9543


330/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9582


331/Unknown  46s 140ms/step - accuracy: 0.9484 - loss: 228.9617


332/Unknown  47s 140ms/step - accuracy: 0.9484 - loss: 228.9662


333/Unknown  47s 140ms/step - accuracy: 0.9484 - loss: 228.9707


334/Unknown  47s 140ms/step - accuracy: 0.9484 - loss: 228.9747


335/Unknown  47s 140ms/step - accuracy: 0.9484 - loss: 228.9783


336/Unknown  47s 140ms/step - accuracy: 0.9485 - loss: 228.9814


337/Unknown  47s 140ms/step - accuracy: 0.9485 - loss: 228.9847


338/Unknown  47s 140ms/step - accuracy: 0.9485 - loss: 228.9882


339/Unknown  47s 140ms/step - accuracy: 0.9485 - loss: 228.9913


340/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 228.9950


341/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 228.9996


342/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 229.0038


343/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 229.0080


344/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 229.0122


345/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 229.0163


346/Unknown  48s 139ms/step - accuracy: 0.9485 - loss: 229.0210


347/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0256


348/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0313


349/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0372


350/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0429


351/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0492


352/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0551


353/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0615


354/Unknown  49s 139ms/step - accuracy: 0.9485 - loss: 229.0690


355/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.0767


356/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.0841


357/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.0911


358/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.0985


359/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.1061


360/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.1136


361/Unknown  50s 139ms/step - accuracy: 0.9485 - loss: 229.1216


362/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1297


363/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1375


364/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1453


365/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1526


366/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1591


367/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1653


368/Unknown  51s 139ms/step - accuracy: 0.9485 - loss: 229.1717


369/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.1778


370/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.1837


371/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.1893


372/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.1947


373/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.1999


374/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.2054


375/Unknown  52s 139ms/step - accuracy: 0.9485 - loss: 229.2110


376/Unknown  53s 139ms/step - accuracy: 0.9486 - loss: 229.2163


377/Unknown  53s 139ms/step - accuracy: 0.9486 - loss: 229.2217



377/377 ━━━━━━━━━━━━━━━━━━━━ 53s 139ms/step - accuracy: 0.9486 - loss: 229.2270

Test accuracy: 94.94%

您应该在测试集上获得超过 95% 的准确率。

要增加模型的学习能力,您可以尝试增加 encoding_size 值,或在 VSN 层之上堆叠多个 GRN 层。这可能还需要增加 dropout_rate 值以避免过拟合。

HuggingFace 上提供的示例

训练模型 演示
Generic badge Generic badge