作者: Khalid Salama
创建日期 2021/02/10
最后修改日期 2025/01/08
描述: 使用门控残差和变量选择网络进行收入水平预测。
此示例演示了 Bryan Lim 等人在 用于可解释多水平时间序列预测的时间融合转换器 (TFT) 中提出的门控残差网络 (GRN) 和变量选择网络 (VSN) 在结构化数据分类中的应用。GRN 使模型可以灵活地仅在需要的地方应用非线性处理。VSN 允许模型软删除任何不必要的噪声输入,这些输入可能会对性能产生负面影响。这些技术共同帮助提高了深度神经网络模型的学习能力。
请注意,此示例仅实现了论文中描述的 GRN 和 VSN 组件,而不是整个 TFT 模型,因为 GRN 和 VSN 本身对于结构化数据学习任务也很有用。
要运行代码,您需要使用 TensorFlow 2.3 或更高版本。
此示例使用 美国人口普查收入数据集,该数据集由 加州大学欧文分校机器学习存储库 提供。该任务是二元分类,以确定一个人的年收入是否超过 5 万美元。
该数据集包含约 30 万个实例,具有 41 个输入特征:7 个数值特征和 34 个类别特征。
import os
import subprocess
import tarfile
os.environ["KERAS_BACKEND"] = "torch" # or jax, or tensorflow
import numpy as np
import pandas as pd
import keras
from keras import layers
首先,我们将数据从 UCI 机器学习存储库加载到 Pandas DataFrame 中。
# Column names.
CSV_HEADER = [
"age",
"class_of_worker",
"detailed_industry_recode",
"detailed_occupation_recode",
"education",
"wage_per_hour",
"enroll_in_edu_inst_last_wk",
"marital_stat",
"major_industry_code",
"major_occupation_code",
"race",
"hispanic_origin",
"sex",
"member_of_a_labor_union",
"reason_for_unemployment",
"full_or_part_time_employment_stat",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"tax_filer_stat",
"region_of_previous_residence",
"state_of_previous_residence",
"detailed_household_and_family_stat",
"detailed_household_summary_in_household",
"instance_weight",
"migration_code-change_in_msa",
"migration_code-change_in_reg",
"migration_code-move_within_reg",
"live_in_this_house_1_year_ago",
"migration_prev_res_in_sunbelt",
"num_persons_worked_for_employer",
"family_members_under_18",
"country_of_birth_father",
"country_of_birth_mother",
"country_of_birth_self",
"citizenship",
"own_business_or_self_employed",
"fill_inc_questionnaire_for_veterans_admin",
"veterans_benefits",
"weeks_worked_in_year",
"year",
"income_level",
]
data_url = "https://archive.ics.uci.edu/static/public/117/census+income+kdd.zip"
keras.utils.get_file(origin=data_url, extract=True)
'/home/humbulani/.keras/datasets/census+income+kdd.zip'
确定下载的 .tar.gz 文件的路径,并从下载的 .tar.gz 文件中提取文件
extracted_path = os.path.join(
os.path.expanduser("~"), ".keras", "datasets", "census+income+kdd.zip"
)
for root, dirs, files in os.walk(extracted_path):
for file in files:
if file.endswith(".tar.gz"):
tar_gz_path = os.path.join(root, file)
with tarfile.open(tar_gz_path, "r:gz") as tar:
tar.extractall(path=root)
train_data_path = os.path.join(
os.path.expanduser("~"),
".keras",
"datasets",
"census+income+kdd.zip",
"census-income.data",
)
test_data_path = os.path.join(
os.path.expanduser("~"),
".keras",
"datasets",
"census+income+kdd.zip",
"census-income.test",
)
data = pd.read_csv(train_data_path, header=None, names=CSV_HEADER)
test_data = pd.read_csv(test_data_path, header=None, names=CSV_HEADER)
print(f"Data shape: {data.shape}")
print(f"Test data shape: {test_data.shape}")
Data shape: (199523, 42)
Test data shape: (99762, 42)
我们将目标列从字符串转换为整数。
data["income_level"] = data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
test_data["income_level"] = test_data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
然后,我们将数据集拆分为训练集和验证集。
random_selection = np.random.rand(len(data.index)) <= 0.85
train_data = data[random_selection]
valid_data = data[~random_selection]
最后,我们将训练和测试数据分割本地存储到 CSV 文件中。
train_data_file = "train_data.csv"
valid_data_file = "valid_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False, header=False)
valid_data.to_csv(valid_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)
在这里,我们定义数据集的元数据,这些元数据对于将数据读取和解析为输入特征,以及根据输入特征的类型对其进行编码非常有用。
# Target feature name.
TARGET_FEATURE_NAME = "income_level"
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"wage_per_hour",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"num_persons_worked_for_employer",
"weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
# Note that we add 'v=' as a prefix to all categorical feature values to make
# sure that they are treated as strings.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
feature_name: sorted([str(value) for value in list(data[feature_name].unique())])
for feature_name in CSV_HEADER
if feature_name
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
}
# All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
)
# Feature default values.
COLUMN_DEFAULTS = [
(
[0.0]
if feature_name
in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
else ["NA"]
)
for feature_name in CSV_HEADER
]
tf.data.Dataset
我们创建一个输入函数来读取和解析文件,并将特征和标签转换为 [tf.data.Dataset
](https://tensorflowcn.cn/api_docs/python/tf/data/Dataset) 以进行训练和评估。
# Tensorflow required for tf.data.Datasets
import tensorflow as tf
# We process our datasets elements here (categorical) and convert them to indices to avoid this step
# during model training since only tensorflow support strings.
def process(features, target):
for feature_name in features:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Cast categorical feature values to string.
features[feature_name] = tf.cast(features[feature_name], "string")
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert a string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
index = layers.StringLookup(
vocabulary=vocabulary,
mask_token=None,
num_oov_indices=0,
output_mode="int",
)
# Convert the string input values into integer indices.
value_index = index(features[feature_name])
features[feature_name] = value_index
else:
# Do nothing for numerical features
pass
# Get the instance weight.
weight = features.pop(WEIGHT_COLUMN_NAME)
# Change features from OrderedDict to Dict to match Inputs as they are Dict.
return dict(features), target, weight
def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
dataset = tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=False,
shuffle=shuffle,
).map(process)
return dataset
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Make them int64, they are Categorical (whole units)
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="int64"
)
else:
# Make them float32, they are Real numbers
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="float32"
)
return inputs
门控线性单元 (GLU) 提供了抑制与给定任务无关的输入的灵活性。
class GatedLinearUnit(layers.Layer):
def __init__(self, units):
super().__init__()
self.linear = layers.Dense(units)
self.sigmoid = layers.Dense(units, activation="sigmoid")
def call(self, inputs):
return self.linear(inputs) * self.sigmoid(inputs)
# Remove build warnings
def build(self):
self.built = True
门控残差网络 (GRN) 的工作方式如下
class GatedResidualNetwork(layers.Layer):
def __init__(self, units, dropout_rate):
super().__init__()
self.units = units
self.elu_dense = layers.Dense(units, activation="elu")
self.linear_dense = layers.Dense(units)
self.dropout = layers.Dropout(dropout_rate)
self.gated_linear_unit = GatedLinearUnit(units)
self.layer_norm = layers.LayerNormalization()
self.project = layers.Dense(units)
def call(self, inputs):
x = self.elu_dense(inputs)
x = self.linear_dense(x)
x = self.dropout(x)
if inputs.shape[-1] != self.units:
inputs = self.project(inputs)
x = inputs + self.gated_linear_unit(x)
x = self.layer_norm(x)
return x
# Remove build warnings
def build(self):
self.built = True
变量选择网络 (VSN) 的工作方式如下
请注意,VSN 的输出是 [batch_size, encoding_size],与输入特征的数量无关。
对于类别特征,我们使用 layers.Embedding
对它们进行编码,使用 encoding_size
作为嵌入维度。对于数值特征,我们使用 layers.Dense
应用线性变换,将每个特征投影到 encoding_size
维向量中。因此,所有编码后的特征都将具有相同的维度。
class VariableSelection(layers.Layer):
def __init__(self, num_features, units, dropout_rate):
super().__init__()
self.units = units
# Create an embedding layers with the specified dimensions
self.embeddings = dict()
for input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[input_]
embedding_encoder = layers.Embedding(
input_dim=len(vocabulary), output_dim=self.units, name=input_
)
self.embeddings[input_] = embedding_encoder
# Projection layers for numeric features
self.proj_layer = dict()
for input_ in NUMERIC_FEATURE_NAMES:
proj_layer = layers.Dense(units=self.units)
self.proj_layer[input_] = proj_layer
self.grns = list()
# Create a GRN for each feature independently
for idx in range(num_features):
grn = GatedResidualNetwork(units, dropout_rate)
self.grns.append(grn)
# Create a GRN for the concatenation of all the features
self.grn_concat = GatedResidualNetwork(units, dropout_rate)
self.softmax = layers.Dense(units=num_features, activation="softmax")
def call(self, inputs):
concat_inputs = []
for input_ in inputs:
if input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
max_index = self.embeddings[input_].input_dim - 1 # Clamp the indices
# torch had some index errors during embedding hence the clip function
embedded_feature = self.embeddings[input_](
keras.ops.clip(inputs[input_], 0, max_index)
)
concat_inputs.append(embedded_feature)
else:
# Project the numeric feature to encoding_size using linear transformation.
proj_feature = keras.ops.expand_dims(inputs[input_], -1)
proj_feature = self.proj_layer[input_](proj_feature)
concat_inputs.append(proj_feature)
v = layers.concatenate(concat_inputs)
v = self.grn_concat(v)
v = keras.ops.expand_dims(self.softmax(v), axis=-1)
x = []
for idx, input in enumerate(concat_inputs):
x.append(self.grns[idx](input))
x = keras.ops.stack(x, axis=1)
return keras.ops.squeeze(
keras.ops.matmul(keras.ops.transpose(v, axes=[0, 2, 1]), x), axis=1
)
# to remove the build warnings
def build(self):
self.built = True
def create_model(encoding_size):
inputs = create_model_inputs()
num_features = len(inputs)
features = VariableSelection(num_features, encoding_size, dropout_rate)(inputs)
outputs = layers.Dense(units=1, activation="sigmoid")(features)
# Functional model
model = keras.Model(inputs=inputs, outputs=outputs)
return model
learning_rate = 0.001
dropout_rate = 0.15
batch_size = 265
num_epochs = 20 # may be adjusted to a desired value
encoding_size = 16
model = create_model(encoding_size)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
让我们可视化连接图
# `rankdir='LR'` is to make the graph horizontal.
keras.utils.plot_model(model, show_shapes=True, show_layer_names=True, rankdir="LR")
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=5, restore_best_weights=True
)
print("Start training the model...")
train_dataset = get_dataset_from_csv(
train_data_file, shuffle=True, batch_size=batch_size
)
valid_dataset = get_dataset_from_csv(valid_data_file, batch_size=batch_size)
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=valid_dataset,
callbacks=[early_stopping],
)
print("Model training finished.")
print("Evaluating model performance...")
test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Start training the model...
1/Unknown 1s 698ms/step - accuracy: 0.4717 - loss: 1212.3043
2/Unknown 1s 200ms/step - accuracy: 0.5745 - loss: 1141.6052
3/Unknown 1s 195ms/step - accuracy: 0.6388 - loss: 1084.4358
4/Unknown 1s 199ms/step - accuracy: 0.6822 - loss: 1031.0354
5/Unknown 2s 201ms/step - accuracy: 0.7131 - loss: 986.4984
6/Unknown 2s 197ms/step - accuracy: 0.7363 - loss: 947.2644
7/Unknown 2s 190ms/step - accuracy: 0.7546 - loss: 912.4213
8/Unknown 2s 188ms/step - accuracy: 0.7698 - loss: 881.4526
9/Unknown 2s 186ms/step - accuracy: 0.7824 - loss: 853.8523
10/Unknown 2s 184ms/step - accuracy: 0.7932 - loss: 829.0496
11/Unknown 3s 183ms/step - accuracy: 0.8022 - loss: 807.4752
12/Unknown 3s 184ms/step - accuracy: 0.8100 - loss: 788.1222
13/Unknown 3s 187ms/step - accuracy: 0.8170 - loss: 770.3723
14/Unknown 3s 187ms/step - accuracy: 0.8233 - loss: 753.6734
15/Unknown 3s 186ms/step - accuracy: 0.8289 - loss: 737.9523
16/Unknown 3s 186ms/step - accuracy: 0.8342 - loss: 723.0760
17/Unknown 4s 186ms/step - accuracy: 0.8389 - loss: 709.2202
18/Unknown 4s 202ms/step - accuracy: 0.8432 - loss: 696.8585
19/Unknown 4s 200ms/step - accuracy: 0.8470 - loss: 685.7762
20/Unknown 4s 198ms/step - accuracy: 0.8505 - loss: 675.3044
21/Unknown 5s 197ms/step - accuracy: 0.8537 - loss: 665.8409
22/Unknown 5s 196ms/step - accuracy: 0.8566 - loss: 657.3629
23/Unknown 5s 195ms/step - accuracy: 0.8593 - loss: 649.5444
24/Unknown 5s 195ms/step - accuracy: 0.8618 - loss: 642.1780
25/Unknown 5s 194ms/step - accuracy: 0.8641 - loss: 635.1900
26/Unknown 6s 195ms/step - accuracy: 0.8662 - loss: 628.5919
27/Unknown 6s 195ms/step - accuracy: 0.8683 - loss: 622.2363
28/Unknown 6s 195ms/step - accuracy: 0.8702 - loss: 616.1565
29/Unknown 6s 194ms/step - accuracy: 0.8720 - loss: 610.3881
30/Unknown 6s 194ms/step - accuracy: 0.8737 - loss: 604.7990
31/Unknown 6s 193ms/step - accuracy: 0.8753 - loss: 599.5613
32/Unknown 7s 194ms/step - accuracy: 0.8769 - loss: 594.4847
33/Unknown 7s 194ms/step - accuracy: 0.8783 - loss: 589.5745
34/Unknown 7s 194ms/step - accuracy: 0.8797 - loss: 584.9431
35/Unknown 7s 194ms/step - accuracy: 0.8810 - loss: 580.5197
36/Unknown 7s 193ms/step - accuracy: 0.8822 - loss: 576.2609
37/Unknown 8s 193ms/step - accuracy: 0.8834 - loss: 572.0708
38/Unknown 8s 194ms/step - accuracy: 0.8845 - loss: 567.9126
39/Unknown 8s 194ms/step - accuracy: 0.8856 - loss: 563.8269
40/Unknown 8s 194ms/step - accuracy: 0.8867 - loss: 559.9911
41/Unknown 8s 194ms/step - accuracy: 0.8877 - loss: 556.2637
42/Unknown 9s 193ms/step - accuracy: 0.8886 - loss: 552.6080
43/Unknown 9s 193ms/step - accuracy: 0.8896 - loss: 549.0726
44/Unknown 9s 193ms/step - accuracy: 0.8905 - loss: 545.6210
45/Unknown 9s 193ms/step - accuracy: 0.8913 - loss: 542.2662
46/Unknown 9s 193ms/step - accuracy: 0.8921 - loss: 539.0649
47/Unknown 10s 193ms/step - accuracy: 0.8929 - loss: 535.9783
48/Unknown 10s 193ms/step - accuracy: 0.8936 - loss: 532.9994
49/Unknown 10s 193ms/step - accuracy: 0.8944 - loss: 530.0856
50/Unknown 10s 193ms/step - accuracy: 0.8951 - loss: 527.2556
51/Unknown 10s 194ms/step - accuracy: 0.8957 - loss: 524.4853
52/Unknown 11s 194ms/step - accuracy: 0.8964 - loss: 521.8221
53/Unknown 11s 194ms/step - accuracy: 0.8970 - loss: 519.2384
54/Unknown 11s 194ms/step - accuracy: 0.8976 - loss: 516.6887
55/Unknown 11s 195ms/step - accuracy: 0.8982 - loss: 514.2283
56/Unknown 11s 195ms/step - accuracy: 0.8987 - loss: 511.8073
57/Unknown 12s 195ms/step - accuracy: 0.8993 - loss: 509.4113
58/Unknown 12s 194ms/step - accuracy: 0.8998 - loss: 507.0705
59/Unknown 12s 194ms/step - accuracy: 0.9004 - loss: 504.7713
60/Unknown 12s 194ms/step - accuracy: 0.9009 - loss: 502.5121
61/Unknown 12s 195ms/step - accuracy: 0.9014 - loss: 500.2973
62/Unknown 13s 195ms/step - accuracy: 0.9019 - loss: 498.1272
63/Unknown 13s 196ms/step - accuracy: 0.9023 - loss: 496.0018
64/Unknown 13s 196ms/step - accuracy: 0.9028 - loss: 493.9293
65/Unknown 13s 197ms/step - accuracy: 0.9032 - loss: 491.9118
66/Unknown 14s 197ms/step - accuracy: 0.9037 - loss: 489.9484
67/Unknown 14s 197ms/step - accuracy: 0.9041 - loss: 488.0164
68/Unknown 14s 197ms/step - accuracy: 0.9045 - loss: 486.1193
69/Unknown 14s 197ms/step - accuracy: 0.9049 - loss: 484.2630
70/Unknown 14s 197ms/step - accuracy: 0.9053 - loss: 482.4265
71/Unknown 14s 197ms/step - accuracy: 0.9057 - loss: 480.6362
72/Unknown 15s 197ms/step - accuracy: 0.9061 - loss: 478.8780
73/Unknown 15s 197ms/step - accuracy: 0.9064 - loss: 477.1625
74/Unknown 15s 197ms/step - accuracy: 0.9068 - loss: 475.4860
75/Unknown 15s 198ms/step - accuracy: 0.9071 - loss: 473.8222
76/Unknown 15s 197ms/step - accuracy: 0.9075 - loss: 472.2155
77/Unknown 16s 197ms/step - accuracy: 0.9078 - loss: 470.6271
78/Unknown 16s 196ms/step - accuracy: 0.9081 - loss: 469.0505
79/Unknown 16s 196ms/step - accuracy: 0.9084 - loss: 467.4939
80/Unknown 16s 196ms/step - accuracy: 0.9087 - loss: 465.9711
81/Unknown 16s 196ms/step - accuracy: 0.9090 - loss: 464.4900
82/Unknown 17s 196ms/step - accuracy: 0.9093 - loss: 463.0288
83/Unknown 17s 196ms/step - accuracy: 0.9096 - loss: 461.5836
84/Unknown 17s 196ms/step - accuracy: 0.9099 - loss: 460.1690
85/Unknown 17s 196ms/step - accuracy: 0.9101 - loss: 458.7745
86/Unknown 17s 196ms/step - accuracy: 0.9104 - loss: 457.3958
87/Unknown 18s 196ms/step - accuracy: 0.9107 - loss: 456.0403
88/Unknown 18s 196ms/step - accuracy: 0.9109 - loss: 454.6969
89/Unknown 18s 195ms/step - accuracy: 0.9112 - loss: 453.3802
90/Unknown 18s 195ms/step - accuracy: 0.9115 - loss: 452.0960
91/Unknown 18s 195ms/step - accuracy: 0.9117 - loss: 450.8279
92/Unknown 18s 195ms/step - accuracy: 0.9119 - loss: 449.5715
93/Unknown 19s 195ms/step - accuracy: 0.9122 - loss: 448.3546
94/Unknown 19s 195ms/step - accuracy: 0.9124 - loss: 447.1467
95/Unknown 19s 195ms/step - accuracy: 0.9126 - loss: 445.9574
96/Unknown 19s 195ms/step - accuracy: 0.9129 - loss: 444.7892
97/Unknown 19s 195ms/step - accuracy: 0.9131 - loss: 443.6310
98/Unknown 20s 195ms/step - accuracy: 0.9133 - loss: 442.5005
99/Unknown 20s 195ms/step - accuracy: 0.9135 - loss: 441.3832
100/Unknown 20s 195ms/step - accuracy: 0.9137 - loss: 440.2770
101/Unknown 20s 194ms/step - accuracy: 0.9139 - loss: 439.1806
102/Unknown 20s 194ms/step - accuracy: 0.9141 - loss: 438.0936
103/Unknown 21s 194ms/step - accuracy: 0.9144 - loss: 437.0181
104/Unknown 21s 195ms/step - accuracy: 0.9146 - loss: 435.9646
105/Unknown 21s 195ms/step - accuracy: 0.9148 - loss: 434.9277
106/Unknown 21s 195ms/step - accuracy: 0.9150 - loss: 433.8949
107/Unknown 21s 195ms/step - accuracy: 0.9151 - loss: 432.8877
108/Unknown 22s 195ms/step - accuracy: 0.9153 - loss: 431.8965
109/Unknown 22s 195ms/step - accuracy: 0.9155 - loss: 430.9133
110/Unknown 22s 196ms/step - accuracy: 0.9157 - loss: 429.9397
111/Unknown 22s 196ms/step - accuracy: 0.9159 - loss: 428.9818
112/Unknown 22s 196ms/step - accuracy: 0.9161 - loss: 428.0353
113/Unknown 23s 197ms/step - accuracy: 0.9162 - loss: 427.0999
114/Unknown 23s 197ms/step - accuracy: 0.9164 - loss: 426.1697
115/Unknown 23s 197ms/step - accuracy: 0.9166 - loss: 425.2458
116/Unknown 23s 197ms/step - accuracy: 0.9168 - loss: 424.3345
117/Unknown 24s 197ms/step - accuracy: 0.9169 - loss: 423.4386
118/Unknown 24s 197ms/step - accuracy: 0.9171 - loss: 422.5567
119/Unknown 24s 197ms/step - accuracy: 0.9173 - loss: 421.6823
120/Unknown 24s 197ms/step - accuracy: 0.9174 - loss: 420.8182
121/Unknown 24s 197ms/step - accuracy: 0.9176 - loss: 419.9664
122/Unknown 25s 197ms/step - accuracy: 0.9177 - loss: 419.1238
123/Unknown 25s 197ms/step - accuracy: 0.9179 - loss: 418.2940
124/Unknown 25s 197ms/step - accuracy: 0.9181 - loss: 417.4785
125/Unknown 25s 197ms/step - accuracy: 0.9182 - loss: 416.6722
126/Unknown 25s 197ms/step - accuracy: 0.9183 - loss: 415.8714
127/Unknown 26s 197ms/step - accuracy: 0.9185 - loss: 415.0771
128/Unknown 26s 197ms/step - accuracy: 0.9186 - loss: 414.2919
129/Unknown 26s 197ms/step - accuracy: 0.9188 - loss: 413.5163
130/Unknown 26s 197ms/step - accuracy: 0.9189 - loss: 412.7452
131/Unknown 26s 198ms/step - accuracy: 0.9191 - loss: 411.9837
132/Unknown 27s 197ms/step - accuracy: 0.9192 - loss: 411.2362
133/Unknown 27s 198ms/step - accuracy: 0.9193 - loss: 410.4987
134/Unknown 27s 198ms/step - accuracy: 0.9195 - loss: 409.7713
135/Unknown 27s 198ms/step - accuracy: 0.9196 - loss: 409.0497
136/Unknown 27s 198ms/step - accuracy: 0.9197 - loss: 408.3427
137/Unknown 28s 198ms/step - accuracy: 0.9199 - loss: 407.6457
138/Unknown 28s 198ms/step - accuracy: 0.9200 - loss: 406.9554
139/Unknown 28s 198ms/step - accuracy: 0.9201 - loss: 406.2739
140/Unknown 28s 198ms/step - accuracy: 0.9202 - loss: 405.6025
141/Unknown 28s 198ms/step - accuracy: 0.9204 - loss: 404.9378
142/Unknown 29s 198ms/step - accuracy: 0.9205 - loss: 404.2800
143/Unknown 29s 198ms/step - accuracy: 0.9206 - loss: 403.6313
144/Unknown 29s 198ms/step - accuracy: 0.9207 - loss: 402.9886
145/Unknown 29s 198ms/step - accuracy: 0.9208 - loss: 402.3509
146/Unknown 29s 198ms/step - accuracy: 0.9209 - loss: 401.7167
147/Unknown 30s 199ms/step - accuracy: 0.9211 - loss: 401.0935
148/Unknown 30s 199ms/step - accuracy: 0.9212 - loss: 400.4745
149/Unknown 30s 200ms/step - accuracy: 0.9213 - loss: 399.8633
150/Unknown 30s 200ms/step - accuracy: 0.9214 - loss: 399.2570
151/Unknown 31s 200ms/step - accuracy: 0.9215 - loss: 398.6591
152/Unknown 31s 200ms/step - accuracy: 0.9216 - loss: 398.0708
153/Unknown 31s 201ms/step - accuracy: 0.9217 - loss: 397.4871
154/Unknown 31s 201ms/step - accuracy: 0.9218 - loss: 396.9082
155/Unknown 32s 201ms/step - accuracy: 0.9219 - loss: 396.3336
156/Unknown 32s 201ms/step - accuracy: 0.9220 - loss: 395.7641
157/Unknown 32s 202ms/step - accuracy: 0.9222 - loss: 395.1993
158/Unknown 32s 202ms/step - accuracy: 0.9223 - loss: 394.6414
159/Unknown 33s 202ms/step - accuracy: 0.9224 - loss: 394.0871
160/Unknown 33s 202ms/step - accuracy: 0.9225 - loss: 393.5349
161/Unknown 33s 202ms/step - accuracy: 0.9226 - loss: 392.9877
162/Unknown 33s 202ms/step - accuracy: 0.9227 - loss: 392.4430
163/Unknown 33s 202ms/step - accuracy: 0.9228 - loss: 391.9062
164/Unknown 34s 202ms/step - accuracy: 0.9229 - loss: 391.3741
165/Unknown 34s 202ms/step - accuracy: 0.9230 - loss: 390.8450
166/Unknown 34s 202ms/step - accuracy: 0.9231 - loss: 390.3184
167/Unknown 34s 202ms/step - accuracy: 0.9232 - loss: 389.7947
168/Unknown 34s 202ms/step - accuracy: 0.9233 - loss: 389.2769
169/Unknown 35s 201ms/step - accuracy: 0.9234 - loss: 388.7642
170/Unknown 35s 201ms/step - accuracy: 0.9234 - loss: 388.2601
171/Unknown 35s 202ms/step - accuracy: 0.9235 - loss: 387.7563
172/Unknown 35s 202ms/step - accuracy: 0.9236 - loss: 387.2565
173/Unknown 35s 202ms/step - accuracy: 0.9237 - loss: 386.7589
174/Unknown 36s 202ms/step - accuracy: 0.9238 - loss: 386.2676
175/Unknown 36s 202ms/step - accuracy: 0.9239 - loss: 385.7783
176/Unknown 36s 202ms/step - accuracy: 0.9240 - loss: 385.2943
177/Unknown 36s 202ms/step - accuracy: 0.9241 - loss: 384.8183
178/Unknown 36s 202ms/step - accuracy: 0.9242 - loss: 384.3459
179/Unknown 37s 202ms/step - accuracy: 0.9243 - loss: 383.8763
180/Unknown 37s 202ms/step - accuracy: 0.9243 - loss: 383.4090
181/Unknown 37s 202ms/step - accuracy: 0.9244 - loss: 382.9447
182/Unknown 37s 202ms/step - accuracy: 0.9245 - loss: 382.4837
183/Unknown 37s 202ms/step - accuracy: 0.9246 - loss: 382.0276
184/Unknown 38s 202ms/step - accuracy: 0.9247 - loss: 381.5741
185/Unknown 38s 202ms/step - accuracy: 0.9248 - loss: 381.1227
186/Unknown 38s 203ms/step - accuracy: 0.9248 - loss: 380.6739
187/Unknown 38s 203ms/step - accuracy: 0.9249 - loss: 380.2263
188/Unknown 39s 203ms/step - accuracy: 0.9250 - loss: 379.7803
189/Unknown 39s 203ms/step - accuracy: 0.9251 - loss: 379.3362
190/Unknown 39s 203ms/step - accuracy: 0.9252 - loss: 378.8958
191/Unknown 39s 203ms/step - accuracy: 0.9252 - loss: 378.4580
192/Unknown 40s 203ms/step - accuracy: 0.9253 - loss: 378.0284
193/Unknown 40s 203ms/step - accuracy: 0.9254 - loss: 377.6024
194/Unknown 40s 203ms/step - accuracy: 0.9255 - loss: 377.1786
195/Unknown 40s 203ms/step - accuracy: 0.9256 - loss: 376.7578
196/Unknown 40s 203ms/step - accuracy: 0.9256 - loss: 376.3396
197/Unknown 41s 203ms/step - accuracy: 0.9257 - loss: 375.9260
198/Unknown 41s 203ms/step - accuracy: 0.9258 - loss: 375.5150
199/Unknown 41s 203ms/step - accuracy: 0.9259 - loss: 375.1063
200/Unknown 41s 203ms/step - accuracy: 0.9259 - loss: 374.6986
201/Unknown 41s 203ms/step - accuracy: 0.9260 - loss: 374.2932
202/Unknown 42s 203ms/step - accuracy: 0.9261 - loss: 373.8907
203/Unknown 42s 203ms/step - accuracy: 0.9262 - loss: 373.4908
204/Unknown 42s 203ms/step - accuracy: 0.9262 - loss: 373.0950
205/Unknown 42s 203ms/step - accuracy: 0.9263 - loss: 372.7011
206/Unknown 42s 203ms/step - accuracy: 0.9264 - loss: 372.3101
207/Unknown 43s 203ms/step - accuracy: 0.9264 - loss: 371.9205
208/Unknown 43s 203ms/step - accuracy: 0.9265 - loss: 371.5334
209/Unknown 43s 203ms/step - accuracy: 0.9266 - loss: 371.1480
210/Unknown 43s 203ms/step - accuracy: 0.9266 - loss: 370.7651
211/Unknown 43s 203ms/step - accuracy: 0.9267 - loss: 370.3852
212/Unknown 44s 203ms/step - accuracy: 0.9268 - loss: 370.0093
213/Unknown 44s 203ms/step - accuracy: 0.9268 - loss: 369.6351
214/Unknown 44s 204ms/step - accuracy: 0.9269 - loss: 369.2646
215/Unknown 44s 204ms/step - accuracy: 0.9270 - loss: 368.8969
216/Unknown 45s 204ms/step - accuracy: 0.9270 - loss: 368.5307
217/Unknown 45s 204ms/step - accuracy: 0.9271 - loss: 368.1656
218/Unknown 45s 204ms/step - accuracy: 0.9272 - loss: 367.8022
219/Unknown 45s 204ms/step - accuracy: 0.9272 - loss: 367.4400
220/Unknown 45s 204ms/step - accuracy: 0.9273 - loss: 367.0780
221/Unknown 46s 204ms/step - accuracy: 0.9274 - loss: 366.7194
222/Unknown 46s 204ms/step - accuracy: 0.9274 - loss: 366.3614
223/Unknown 46s 204ms/step - accuracy: 0.9275 - loss: 366.0057
224/Unknown 46s 205ms/step - accuracy: 0.9275 - loss: 365.6517
225/Unknown 47s 205ms/step - accuracy: 0.9276 - loss: 365.2998
226/Unknown 47s 205ms/step - accuracy: 0.9277 - loss: 364.9511
227/Unknown 47s 205ms/step - accuracy: 0.9277 - loss: 364.6082
228/Unknown 47s 205ms/step - accuracy: 0.9278 - loss: 364.2671
229/Unknown 47s 205ms/step - accuracy: 0.9278 - loss: 363.9267
230/Unknown 48s 205ms/step - accuracy: 0.9279 - loss: 363.5866
231/Unknown 48s 205ms/step - accuracy: 0.9280 - loss: 363.2502
232/Unknown 48s 205ms/step - accuracy: 0.9280 - loss: 362.9175
233/Unknown 48s 205ms/step - accuracy: 0.9281 - loss: 362.5866
234/Unknown 49s 205ms/step - accuracy: 0.9281 - loss: 362.2563
235/Unknown 49s 205ms/step - accuracy: 0.9282 - loss: 361.9282
236/Unknown 49s 206ms/step - accuracy: 0.9283 - loss: 361.6011
237/Unknown 49s 206ms/step - accuracy: 0.9283 - loss: 361.2760
238/Unknown 50s 207ms/step - accuracy: 0.9284 - loss: 360.9536
239/Unknown 50s 207ms/step - accuracy: 0.9284 - loss: 360.6325
240/Unknown 50s 207ms/step - accuracy: 0.9285 - loss: 360.3125
241/Unknown 51s 208ms/step - accuracy: 0.9285 - loss: 359.9926
242/Unknown 51s 208ms/step - accuracy: 0.9286 - loss: 359.6747
243/Unknown 51s 208ms/step - accuracy: 0.9287 - loss: 359.3593
244/Unknown 51s 209ms/step - accuracy: 0.9287 - loss: 359.0458
245/Unknown 52s 209ms/step - accuracy: 0.9288 - loss: 358.7349
246/Unknown 52s 209ms/step - accuracy: 0.9288 - loss: 358.4268
247/Unknown 52s 209ms/step - accuracy: 0.9289 - loss: 358.1215
248/Unknown 52s 209ms/step - accuracy: 0.9289 - loss: 357.8191
249/Unknown 53s 209ms/step - accuracy: 0.9290 - loss: 357.5194
250/Unknown 53s 209ms/step - accuracy: 0.9290 - loss: 357.2212
251/Unknown 53s 209ms/step - accuracy: 0.9291 - loss: 356.9238
252/Unknown 53s 209ms/step - accuracy: 0.9291 - loss: 356.6286
253/Unknown 53s 209ms/step - accuracy: 0.9292 - loss: 356.3355
254/Unknown 54s 210ms/step - accuracy: 0.9292 - loss: 356.0449
255/Unknown 54s 210ms/step - accuracy: 0.9293 - loss: 355.7557
256/Unknown 54s 210ms/step - accuracy: 0.9293 - loss: 355.4673
257/Unknown 54s 210ms/step - accuracy: 0.9294 - loss: 355.1799
258/Unknown 55s 210ms/step - accuracy: 0.9294 - loss: 354.8956
259/Unknown 55s 210ms/step - accuracy: 0.9295 - loss: 354.6136
260/Unknown 55s 210ms/step - accuracy: 0.9295 - loss: 354.3326
261/Unknown 55s 210ms/step - accuracy: 0.9296 - loss: 354.0539
262/Unknown 56s 210ms/step - accuracy: 0.9296 - loss: 353.7773
263/Unknown 56s 210ms/step - accuracy: 0.9297 - loss: 353.5032
264/Unknown 56s 211ms/step - accuracy: 0.9297 - loss: 353.2297
265/Unknown 56s 211ms/step - accuracy: 0.9298 - loss: 352.9581
266/Unknown 57s 211ms/step - accuracy: 0.9298 - loss: 352.6891
267/Unknown 57s 211ms/step - accuracy: 0.9299 - loss: 352.4228
268/Unknown 57s 211ms/step - accuracy: 0.9299 - loss: 352.1577
269/Unknown 57s 212ms/step - accuracy: 0.9300 - loss: 351.8944
270/Unknown 58s 212ms/step - accuracy: 0.9300 - loss: 351.6331
271/Unknown 58s 212ms/step - accuracy: 0.9300 - loss: 351.3750
272/Unknown 58s 212ms/step - accuracy: 0.9301 - loss: 351.1187
273/Unknown 59s 213ms/step - accuracy: 0.9301 - loss: 350.8644
274/Unknown 59s 213ms/step - accuracy: 0.9302 - loss: 350.6121
275/Unknown 59s 213ms/step - accuracy: 0.9302 - loss: 350.3619
276/Unknown 59s 213ms/step - accuracy: 0.9303 - loss: 350.1118
277/Unknown 60s 213ms/step - accuracy: 0.9303 - loss: 349.8630
278/Unknown 60s 213ms/step - accuracy: 0.9303 - loss: 349.6153
279/Unknown 60s 213ms/step - accuracy: 0.9304 - loss: 349.3688
280/Unknown 60s 213ms/step - accuracy: 0.9304 - loss: 349.1229
281/Unknown 60s 213ms/step - accuracy: 0.9305 - loss: 348.8784
282/Unknown 61s 213ms/step - accuracy: 0.9305 - loss: 348.6351
283/Unknown 61s 213ms/step - accuracy: 0.9306 - loss: 348.3920
284/Unknown 61s 213ms/step - accuracy: 0.9306 - loss: 348.1502
285/Unknown 61s 214ms/step - accuracy: 0.9306 - loss: 347.9100
286/Unknown 62s 214ms/step - accuracy: 0.9307 - loss: 347.6703
287/Unknown 62s 214ms/step - accuracy: 0.9307 - loss: 347.4321
288/Unknown 62s 214ms/step - accuracy: 0.9308 - loss: 347.1949
289/Unknown 62s 214ms/step - accuracy: 0.9308 - loss: 346.9582
290/Unknown 63s 214ms/step - accuracy: 0.9308 - loss: 346.7231
291/Unknown 63s 214ms/step - accuracy: 0.9309 - loss: 346.4895
292/Unknown 63s 214ms/step - accuracy: 0.9309 - loss: 346.2580
293/Unknown 63s 214ms/step - accuracy: 0.9310 - loss: 346.0265
294/Unknown 63s 214ms/step - accuracy: 0.9310 - loss: 345.7953
295/Unknown 64s 214ms/step - accuracy: 0.9310 - loss: 345.5652
296/Unknown 64s 214ms/step - accuracy: 0.9311 - loss: 345.3354
297/Unknown 64s 214ms/step - accuracy: 0.9311 - loss: 345.1051
298/Unknown 64s 214ms/step - accuracy: 0.9312 - loss: 344.8757
299/Unknown 65s 214ms/step - accuracy: 0.9312 - loss: 344.6488
300/Unknown 65s 215ms/step - accuracy: 0.9312 - loss: 344.4228
301/Unknown 65s 215ms/step - accuracy: 0.9313 - loss: 344.1973
302/Unknown 65s 215ms/step - accuracy: 0.9313 - loss: 343.9730
303/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.7490
304/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.5257
305/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.3047
306/Unknown 66s 215ms/step - accuracy: 0.9315 - loss: 343.0848
307/Unknown 66s 215ms/step - accuracy: 0.9315 - loss: 342.8660
308/Unknown 67s 215ms/step - accuracy: 0.9315 - loss: 342.6490
309/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.4344
310/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.2202
311/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.0071
312/Unknown 67s 215ms/step - accuracy: 0.9317 - loss: 341.7946
313/Unknown 68s 215ms/step - accuracy: 0.9317 - loss: 341.5840
314/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 341.3745
315/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 341.1663
316/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 340.9592
317/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.7528
318/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.5479
319/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.3434
320/Unknown 69s 215ms/step - accuracy: 0.9320 - loss: 340.1393
321/Unknown 69s 215ms/step - accuracy: 0.9320 - loss: 339.9351
322/Unknown 70s 215ms/step - accuracy: 0.9320 - loss: 339.7322
323/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.5305
324/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.3291
325/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.1288
326/Unknown 70s 214ms/step - accuracy: 0.9322 - loss: 338.9296
327/Unknown 71s 214ms/step - accuracy: 0.9322 - loss: 338.7308
328/Unknown 71s 214ms/step - accuracy: 0.9322 - loss: 338.5333
329/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 338.3367
330/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 338.1408
331/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 337.9453
332/Unknown 71s 214ms/step - accuracy: 0.9324 - loss: 337.7515
333/Unknown 72s 214ms/step - accuracy: 0.9324 - loss: 337.5584
334/Unknown 72s 214ms/step - accuracy: 0.9324 - loss: 337.3662
335/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 337.1747
336/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 336.9847
337/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 336.7955
338/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.6066
339/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.4176
340/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.2293
341/Unknown 73s 214ms/step - accuracy: 0.9327 - loss: 336.0417
342/Unknown 74s 214ms/step - accuracy: 0.9327 - loss: 335.8549
343/Unknown 74s 213ms/step - accuracy: 0.9327 - loss: 335.6696
344/Unknown 74s 213ms/step - accuracy: 0.9328 - loss: 335.4847
345/Unknown 74s 213ms/step - accuracy: 0.9328 - loss: 335.3005
346/Unknown 74s 214ms/step - accuracy: 0.9328 - loss: 335.1162
347/Unknown 75s 214ms/step - accuracy: 0.9328 - loss: 334.9317
348/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.7472
349/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.5628
350/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.3791
351/Unknown 75s 214ms/step - accuracy: 0.9330 - loss: 334.1966
352/Unknown 76s 214ms/step - accuracy: 0.9330 - loss: 334.0144
353/Unknown 76s 214ms/step - accuracy: 0.9330 - loss: 333.8329
354/Unknown 76s 214ms/step - accuracy: 0.9331 - loss: 333.6525
355/Unknown 76s 214ms/step - accuracy: 0.9331 - loss: 333.4737
356/Unknown 77s 214ms/step - accuracy: 0.9331 - loss: 333.2956
357/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 333.1186
358/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.9418
359/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.7658
360/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.5904
361/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.4163
362/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.2424
363/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.0692
364/Unknown 78s 214ms/step - accuracy: 0.9334 - loss: 331.8963
365/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.7242
366/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.5526
367/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.3815
368/Unknown 79s 214ms/step - accuracy: 0.9335 - loss: 331.2112
369/Unknown 79s 214ms/step - accuracy: 0.9335 - loss: 331.0415
370/Unknown 80s 214ms/step - accuracy: 0.9335 - loss: 330.8718
371/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.7039
372/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.5366
373/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.3701
374/Unknown 81s 214ms/step - accuracy: 0.9336 - loss: 330.2039
375/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 330.0381
376/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 329.8729
377/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 329.7084
378/Unknown 81s 214ms/step - accuracy: 0.9338 - loss: 329.5450
379/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.3824
380/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.2206
381/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.0592
382/Unknown 82s 214ms/step - accuracy: 0.9339 - loss: 328.8988
383/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.7392
384/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.5800
385/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.4217
386/Unknown 83s 214ms/step - accuracy: 0.9340 - loss: 328.2640
387/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 328.1079
388/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 327.9520
389/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 327.7965
390/Unknown 84s 215ms/step - accuracy: 0.9341 - loss: 327.6415
391/Unknown 84s 215ms/step - accuracy: 0.9341 - loss: 327.4871
392/Unknown 85s 215ms/step - accuracy: 0.9341 - loss: 327.3329
393/Unknown 85s 215ms/step - accuracy: 0.9341 - loss: 327.1793
394/Unknown 85s 215ms/step - accuracy: 0.9342 - loss: 327.0259
395/Unknown 85s 215ms/step - accuracy: 0.9342 - loss: 326.8732
396/Unknown 86s 215ms/step - accuracy: 0.9342 - loss: 326.7209
397/Unknown 86s 215ms/step - accuracy: 0.9342 - loss: 326.5693
398/Unknown 86s 215ms/step - accuracy: 0.9343 - loss: 326.4187
399/Unknown 86s 215ms/step - accuracy: 0.9343 - loss: 326.2686
400/Unknown 87s 216ms/step - accuracy: 0.9343 - loss: 326.1197
401/Unknown 87s 216ms/step - accuracy: 0.9343 - loss: 325.9718
402/Unknown 87s 216ms/step - accuracy: 0.9344 - loss: 325.8240
403/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.6769
404/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.5306
405/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.3849
406/Unknown 88s 216ms/step - accuracy: 0.9345 - loss: 325.2393
407/Unknown 88s 216ms/step - accuracy: 0.9345 - loss: 325.0950
408/Unknown 89s 216ms/step - accuracy: 0.9345 - loss: 324.9518
409/Unknown 89s 216ms/step - accuracy: 0.9345 - loss: 324.8096
410/Unknown 89s 216ms/step - accuracy: 0.9346 - loss: 324.6682
411/Unknown 89s 216ms/step - accuracy: 0.9346 - loss: 324.5275
412/Unknown 90s 216ms/step - accuracy: 0.9346 - loss: 324.3878
413/Unknown 90s 216ms/step - accuracy: 0.9346 - loss: 324.2490
414/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 324.1107
415/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 323.9733
416/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 323.8363
417/Unknown 91s 216ms/step - accuracy: 0.9347 - loss: 323.7005
418/Unknown 91s 216ms/step - accuracy: 0.9347 - loss: 323.5650
419/Unknown 91s 216ms/step - accuracy: 0.9348 - loss: 323.4300
420/Unknown 91s 216ms/step - accuracy: 0.9348 - loss: 323.2954
421/Unknown 92s 216ms/step - accuracy: 0.9348 - loss: 323.1616
422/Unknown 92s 216ms/step - accuracy: 0.9348 - loss: 323.0279
423/Unknown 92s 216ms/step - accuracy: 0.9349 - loss: 322.8943
424/Unknown 92s 217ms/step - accuracy: 0.9349 - loss: 322.7610
425/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.6279
426/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.4956
427/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.3640
428/Unknown 93s 217ms/step - accuracy: 0.9350 - loss: 322.2333
429/Unknown 93s 217ms/step - accuracy: 0.9350 - loss: 322.1030
430/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.9735
431/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.8445
432/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.7156
433/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.5872
434/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.4588
435/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.3307
436/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.2033
437/Unknown 95s 217ms/step - accuracy: 0.9352 - loss: 321.0760
438/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.9493
439/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.8226
440/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.6959
441/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.5698
442/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.4443
443/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.3189
444/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.1938
445/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.0695
446/Unknown 98s 218ms/step - accuracy: 0.9353 - loss: 319.9457
447/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.8219
448/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.6988
449/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.5759
450/Unknown 99s 218ms/step - accuracy: 0.9354 - loss: 319.4533
451/Unknown 99s 218ms/step - accuracy: 0.9354 - loss: 319.3317
452/Unknown 99s 218ms/step - accuracy: 0.9355 - loss: 319.2104
453/Unknown 99s 218ms/step - accuracy: 0.9355 - loss: 319.0900
454/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.9702
455/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.8509
456/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.7319
457/Unknown 100s 218ms/step - accuracy: 0.9356 - loss: 318.6129
458/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.4945
459/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.3764
460/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.2592
461/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.1426
462/Unknown 102s 219ms/step - accuracy: 0.9356 - loss: 318.0262
463/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.9101
464/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.7942
465/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.6788
466/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.5635
467/Unknown 103s 219ms/step - accuracy: 0.9357 - loss: 317.4484
468/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.3335
469/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.2188
470/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.1040
471/Unknown 104s 219ms/step - accuracy: 0.9358 - loss: 316.9898
472/Unknown 104s 219ms/step - accuracy: 0.9358 - loss: 316.8763
473/Unknown 104s 219ms/step - accuracy: 0.9359 - loss: 316.7631
474/Unknown 104s 219ms/step - accuracy: 0.9359 - loss: 316.6501
475/Unknown 105s 219ms/step - accuracy: 0.9359 - loss: 316.5378
476/Unknown 105s 219ms/step - accuracy: 0.9359 - loss: 316.4257
477/Unknown 105s 220ms/step - accuracy: 0.9359 - loss: 316.3138
478/Unknown 105s 220ms/step - accuracy: 0.9359 - loss: 316.2022
479/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 316.0910
480/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.9806
481/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.8706
482/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.7607
483/Unknown 107s 220ms/step - accuracy: 0.9360 - loss: 315.6510
484/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.5415
485/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.4324
486/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.3241
487/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.2159
488/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.1081
489/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.0006
490/Unknown 108s 220ms/step - accuracy: 0.9362 - loss: 314.8934
491/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.7863
492/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.6796
493/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.5731
494/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.4671
495/Unknown 109s 220ms/step - accuracy: 0.9363 - loss: 314.3610
496/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.2551
497/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.1498
498/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.0451
499/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 313.9405
500/Unknown 111s 220ms/step - accuracy: 0.9363 - loss: 313.8364
501/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.7324
502/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.6290
503/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.5266
504/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.4240
505/Unknown 112s 220ms/step - accuracy: 0.9364 - loss: 313.3215
506/Unknown 112s 220ms/step - accuracy: 0.9364 - loss: 313.2194
507/Unknown 112s 220ms/step - accuracy: 0.9365 - loss: 313.1174
508/Unknown 112s 220ms/step - accuracy: 0.9365 - loss: 313.0163
509/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.9149
510/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.8137
511/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.7127
512/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.6117
513/Unknown 113s 220ms/step - accuracy: 0.9366 - loss: 312.5108
514/Unknown 114s 220ms/step - accuracy: 0.9366 - loss: 312.4105
515/Unknown 114s 220ms/step - accuracy: 0.9366 - loss: 312.3107
516/Unknown 114s 221ms/step - accuracy: 0.9366 - loss: 312.2112
517/Unknown 115s 221ms/step - accuracy: 0.9366 - loss: 312.1120
518/Unknown 115s 221ms/step - accuracy: 0.9366 - loss: 312.0136
519/Unknown 115s 221ms/step - accuracy: 0.9367 - loss: 311.9154
520/Unknown 115s 221ms/step - accuracy: 0.9367 - loss: 311.8175
521/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.7198
522/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.6223
523/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.5254
524/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.4289
525/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.3327
526/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.2370
527/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.1415
528/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.0460
529/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.9506
530/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.8556
531/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.7611
532/Unknown 118s 221ms/step - accuracy: 0.9369 - loss: 310.6666
533/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.5723
534/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.4783
535/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.3845
536/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.2907
537/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.1972
538/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 310.1041
539/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 310.0114
540/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 309.9187
541/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 309.8263
542/Unknown 121s 221ms/step - accuracy: 0.9370 - loss: 309.7338
543/Unknown 121s 221ms/step - accuracy: 0.9370 - loss: 309.6414
544/Unknown 121s 222ms/step - accuracy: 0.9370 - loss: 309.5492
545/Unknown 121s 222ms/step - accuracy: 0.9371 - loss: 309.4574
546/Unknown 121s 222ms/step - accuracy: 0.9371 - loss: 309.3658
547/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.2743
548/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.1831
549/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.0924
550/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.0020
551/Unknown 123s 222ms/step - accuracy: 0.9371 - loss: 308.9121
552/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.8221
553/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.7321
554/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.6426
555/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.5534
556/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.4645
557/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.3757
558/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.2873
559/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.1992
560/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.1115
561/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.0239
562/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 307.9366
563/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.8493
564/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.7624
565/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.6758
566/Unknown 126s 222ms/step - accuracy: 0.9374 - loss: 307.5896
567/Unknown 126s 222ms/step - accuracy: 0.9374 - loss: 307.5038
568/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.4184
569/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.3336
570/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.2491
571/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.1649
572/Unknown 128s 222ms/step - accuracy: 0.9374 - loss: 307.0807
573/Unknown 128s 222ms/step - accuracy: 0.9375 - loss: 306.9967
574/Unknown 128s 223ms/step - accuracy: 0.9375 - loss: 306.9132
575/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.8299
576/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.7468
577/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.6639
578/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.5809
579/Unknown 130s 223ms/step - accuracy: 0.9375 - loss: 306.4984
580/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.4160
581/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.3336
582/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.2515
583/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.1693
584/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.0871
585/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.0051
586/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 305.9232
587/Unknown 132s 223ms/step - accuracy: 0.9376 - loss: 305.8415
588/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.7600
589/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.6787
590/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.5978
591/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.5169
592/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.4363
593/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.3560
594/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.2758
595/Unknown 133s 223ms/step - accuracy: 0.9378 - loss: 305.1960
596/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 305.1167
597/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 305.0374
598/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.9583
599/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.8791
600/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.8002
601/Unknown 135s 223ms/step - accuracy: 0.9378 - loss: 304.7217
602/Unknown 135s 223ms/step - accuracy: 0.9378 - loss: 304.6434
603/Unknown 135s 223ms/step - accuracy: 0.9379 - loss: 304.5656
604/Unknown 135s 223ms/step - accuracy: 0.9379 - loss: 304.4879
605/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.4105
606/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.3331
607/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.2561
608/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.1792
609/Unknown 137s 223ms/step - accuracy: 0.9379 - loss: 304.1025
610/Unknown 137s 223ms/step - accuracy: 0.9379 - loss: 304.0259
611/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.9494
612/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.8730
613/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.7966
614/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.7203
615/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.6440
616/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.5678
617/Unknown 138s 224ms/step - accuracy: 0.9380 - loss: 303.4917
618/Unknown 139s 224ms/step - accuracy: 0.9380 - loss: 303.4161
619/Unknown 139s 224ms/step - accuracy: 0.9380 - loss: 303.3405
620/Unknown 139s 224ms/step - accuracy: 0.9381 - loss: 303.2652
621/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.1904
622/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.1159
623/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.0418
624/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 302.9678
625/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.8940
626/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.8201
627/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.7465
628/Unknown 141s 224ms/step - accuracy: 0.9382 - loss: 302.6730
629/Unknown 141s 224ms/step - accuracy: 0.9382 - loss: 302.5998
630/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.5268
631/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.4539
632/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.3810
633/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.3086
634/Unknown 143s 224ms/step - accuracy: 0.9382 - loss: 302.2364
635/Unknown 143s 224ms/step - accuracy: 0.9382 - loss: 302.1645
636/Unknown 143s 224ms/step - accuracy: 0.9383 - loss: 302.0930
637/Unknown 143s 224ms/step - accuracy: 0.9383 - loss: 302.0216
638/Unknown 144s 224ms/step - accuracy: 0.9383 - loss: 301.9502
639/Unknown 144s 224ms/step - accuracy: 0.9383 - loss: 301.8791
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
639/639 ━━━━━━━━━━━━━━━━━━━━ 160s 249ms/step - accuracy: 0.9383 - loss: 301.8082 - val_accuracy: 0.9485 - val_loss: 235.7996
Model training finished.
Evaluating model performance...
1/Unknown 0s 331ms/step - accuracy: 0.9623 - loss: 160.6135
2/Unknown 0s 119ms/step - accuracy: 0.9557 - loss: 181.4366
3/Unknown 1s 131ms/step - accuracy: 0.9524 - loss: 198.4659
4/Unknown 1s 129ms/step - accuracy: 0.9502 - loss: 209.3009
5/Unknown 1s 133ms/step - accuracy: 0.9499 - loss: 215.6982
6/Unknown 1s 131ms/step - accuracy: 0.9499 - loss: 219.7466
7/Unknown 1s 132ms/step - accuracy: 0.9502 - loss: 220.2296
8/Unknown 1s 132ms/step - accuracy: 0.9504 - loss: 219.6000
9/Unknown 1s 133ms/step - accuracy: 0.9506 - loss: 218.5403
10/Unknown 2s 133ms/step - accuracy: 0.9507 - loss: 217.4007
11/Unknown 2s 134ms/step - accuracy: 0.9507 - loss: 216.4865
12/Unknown 2s 133ms/step - accuracy: 0.9504 - loss: 215.7090
13/Unknown 2s 135ms/step - accuracy: 0.9502 - loss: 215.4628
14/Unknown 2s 135ms/step - accuracy: 0.9500 - loss: 215.0735
15/Unknown 2s 134ms/step - accuracy: 0.9499 - loss: 214.8078
16/Unknown 2s 134ms/step - accuracy: 0.9500 - loss: 214.3558
17/Unknown 2s 134ms/step - accuracy: 0.9500 - loss: 213.9521
18/Unknown 3s 135ms/step - accuracy: 0.9501 - loss: 213.9012
19/Unknown 3s 134ms/step - accuracy: 0.9501 - loss: 214.0063
20/Unknown 3s 135ms/step - accuracy: 0.9501 - loss: 214.2168
21/Unknown 3s 134ms/step - accuracy: 0.9500 - loss: 214.5657
22/Unknown 3s 135ms/step - accuracy: 0.9500 - loss: 214.8618
23/Unknown 3s 134ms/step - accuracy: 0.9500 - loss: 215.1154
24/Unknown 3s 135ms/step - accuracy: 0.9499 - loss: 215.2906
25/Unknown 4s 134ms/step - accuracy: 0.9499 - loss: 215.6145
26/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 215.8544
27/Unknown 4s 135ms/step - accuracy: 0.9498 - loss: 216.0591
28/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.2666
29/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.4423
30/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.5613
31/Unknown 4s 135ms/step - accuracy: 0.9498 - loss: 216.7220
32/Unknown 5s 135ms/step - accuracy: 0.9498 - loss: 216.8842
33/Unknown 5s 135ms/step - accuracy: 0.9498 - loss: 217.1658
34/Unknown 5s 135ms/step - accuracy: 0.9497 - loss: 217.4608
35/Unknown 5s 135ms/step - accuracy: 0.9496 - loss: 217.7231
36/Unknown 5s 134ms/step - accuracy: 0.9496 - loss: 217.9504
37/Unknown 5s 135ms/step - accuracy: 0.9496 - loss: 218.1658
38/Unknown 5s 134ms/step - accuracy: 0.9495 - loss: 218.3597
39/Unknown 5s 134ms/step - accuracy: 0.9495 - loss: 218.5269
40/Unknown 6s 135ms/step - accuracy: 0.9495 - loss: 218.7106
41/Unknown 6s 135ms/step - accuracy: 0.9494 - loss: 218.8721
42/Unknown 6s 136ms/step - accuracy: 0.9494 - loss: 218.9924
43/Unknown 6s 136ms/step - accuracy: 0.9494 - loss: 219.1745
44/Unknown 6s 137ms/step - accuracy: 0.9494 - loss: 219.3449
45/Unknown 6s 138ms/step - accuracy: 0.9493 - loss: 219.4943
46/Unknown 7s 137ms/step - accuracy: 0.9493 - loss: 219.6201
47/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.7240
48/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.8335
49/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.9367
50/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 220.0834
51/Unknown 7s 138ms/step - accuracy: 0.9492 - loss: 220.2067
52/Unknown 7s 139ms/step - accuracy: 0.9492 - loss: 220.2963
53/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.3649
54/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.4462
55/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.5459
56/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.6197
57/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.6727
58/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.7652
59/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.8513
60/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.9392
61/Unknown 9s 138ms/step - accuracy: 0.9491 - loss: 221.0330
62/Unknown 9s 137ms/step - accuracy: 0.9491 - loss: 221.1127
63/Unknown 9s 137ms/step - accuracy: 0.9491 - loss: 221.2177
64/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.3382
65/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.4572
66/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.5552
67/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.6626
68/Unknown 9s 136ms/step - accuracy: 0.9490 - loss: 221.7653
69/Unknown 10s 136ms/step - accuracy: 0.9490 - loss: 221.8680
70/Unknown 10s 136ms/step - accuracy: 0.9490 - loss: 221.9582
71/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.0398
72/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.1409
73/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.2496
74/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.3526
75/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.4433
76/Unknown 11s 136ms/step - accuracy: 0.9489 - loss: 222.5272
77/Unknown 11s 136ms/step - accuracy: 0.9489 - loss: 222.6031
78/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.6857
79/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.7623
80/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.8322
81/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.8963
82/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.9694
83/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 223.0455
84/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.1209
85/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.1990
86/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.2825
87/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.3633
88/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.4366
89/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.5151
90/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.5958
91/Unknown 13s 136ms/step - accuracy: 0.9487 - loss: 223.6727
92/Unknown 13s 137ms/step - accuracy: 0.9487 - loss: 223.7505
93/Unknown 13s 137ms/step - accuracy: 0.9487 - loss: 223.8250
94/Unknown 13s 137ms/step - accuracy: 0.9486 - loss: 223.9114
95/Unknown 13s 137ms/step - accuracy: 0.9486 - loss: 223.9948
96/Unknown 13s 138ms/step - accuracy: 0.9486 - loss: 224.0807
97/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.1586
98/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.2289
99/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.2979
100/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.3739
101/Unknown 14s 138ms/step - accuracy: 0.9485 - loss: 224.4488
102/Unknown 14s 138ms/step - accuracy: 0.9485 - loss: 224.5210
103/Unknown 14s 139ms/step - accuracy: 0.9485 - loss: 224.5936
104/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.6630
105/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.7316
106/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.8002
107/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.8736
108/Unknown 15s 139ms/step - accuracy: 0.9484 - loss: 224.9466
109/Unknown 15s 138ms/step - accuracy: 0.9484 - loss: 225.0268
110/Unknown 15s 138ms/step - accuracy: 0.9484 - loss: 225.1065
111/Unknown 16s 138ms/step - accuracy: 0.9484 - loss: 225.1895
112/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.2730
113/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.3562
114/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.4317
115/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.5018
116/Unknown 16s 139ms/step - accuracy: 0.9483 - loss: 225.5749
117/Unknown 16s 139ms/step - accuracy: 0.9483 - loss: 225.6508
118/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.7233
119/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.7933
120/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.8627
121/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.9334
122/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.0017
123/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.0612
124/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.1206
125/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.1817
126/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.2397
127/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.2974
128/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.3512
129/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4005
130/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4489
131/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4945
132/Unknown 19s 139ms/step - accuracy: 0.9482 - loss: 226.5418
133/Unknown 19s 139ms/step - accuracy: 0.9482 - loss: 226.5853
134/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.6308
135/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.6727
136/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.7198
137/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.7688
138/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.8152
139/Unknown 20s 140ms/step - accuracy: 0.9482 - loss: 226.8609
140/Unknown 20s 140ms/step - accuracy: 0.9482 - loss: 226.9056
141/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 226.9498
142/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 226.9936
143/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 227.0366
144/Unknown 20s 139ms/step - accuracy: 0.9481 - loss: 227.0785
145/Unknown 20s 139ms/step - accuracy: 0.9481 - loss: 227.1189
146/Unknown 21s 139ms/step - accuracy: 0.9481 - loss: 227.1589
147/Unknown 21s 139ms/step - accuracy: 0.9481 - loss: 227.1976
148/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.2341
149/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.2737
150/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3114
151/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3518
152/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3940
153/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.4359
154/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.4770
155/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.5203
156/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.5634
157/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6052
158/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6457
159/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6858
160/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7236
161/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7598
162/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7944
163/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.8277
164/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.8596
165/Unknown 23s 140ms/step - accuracy: 0.9480 - loss: 227.8896
166/Unknown 23s 140ms/step - accuracy: 0.9480 - loss: 227.9187
167/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9463
168/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9726
169/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9972
170/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0219
171/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0469
172/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0727
173/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0992
174/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1232
175/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1466
176/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1700
177/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1928
178/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2146
179/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2334
180/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2502
181/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.2660
182/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.2829
183/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3001
184/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3197
185/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3382
186/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3550
187/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3710
188/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3866
189/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4023
190/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4187
191/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4339
192/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4476
193/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4600
194/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4714
195/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4833
196/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4972
197/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5084
198/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5233
199/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5378
200/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5527
201/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5660
202/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5789
203/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5915
204/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6026
205/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6157
206/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6292
207/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6418
208/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6543
209/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6688
210/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6819
211/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6941
212/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7058
213/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7174
214/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7294
215/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7410
216/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7537
217/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7657
218/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7765
219/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.7861
220/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.7945
221/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8020
222/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8082
223/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8140
224/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8199
225/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8271
226/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8340
227/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8403
228/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8456
229/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8512
230/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8562
231/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8611
232/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8642
233/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8672
234/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8694
235/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8721
236/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8762
237/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8797
238/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8838
239/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8885
240/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8919
241/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8947
242/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.8974
243/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9001
244/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9023
245/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9047
246/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9063
247/Unknown 34s 139ms/step - accuracy: 0.9481 - loss: 228.9082
248/Unknown 35s 139ms/step - accuracy: 0.9481 - loss: 228.9095
249/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9103
250/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9118
251/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9147
252/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9173
253/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9200
254/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9222
255/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9243
256/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9268
257/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9288
258/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9315
259/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9344
260/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9363
261/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9379
262/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9381
263/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9378
264/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9372
265/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9366
266/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9373
267/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9385
268/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9391
269/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9401
270/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9409
271/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9415
272/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9413
273/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9413
274/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9406
275/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9396
276/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9395
277/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9393
278/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9390
279/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9383
280/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9368
281/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9358
282/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9339
283/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9312
284/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9295
285/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9271
286/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9249
287/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9228
288/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9200
289/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9166
290/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9136
291/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9105
292/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9076
293/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9045
294/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9017
295/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8983
296/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8967
297/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8956
298/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8946
299/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8931
300/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8911
301/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8904
302/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8897
303/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8902
304/Unknown 42s 139ms/step - accuracy: 0.9484 - loss: 228.8911
305/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8920
306/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8923
307/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8938
308/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8946
309/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8958
310/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8979
311/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9006
312/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9027
313/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9051
314/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9074
315/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9098
316/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9117
317/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9142
318/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9171
319/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9203
320/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9232
321/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9262
322/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9293
323/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9324
324/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9353
325/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9387
326/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9429
327/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9469
328/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9508
329/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9543
330/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9582
331/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9617
332/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9662
333/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9707
334/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9747
335/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9783
336/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9814
337/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9847
338/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9882
339/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9913
340/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 228.9950
341/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 228.9996
342/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0038
343/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0080
344/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0122
345/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0163
346/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0210
347/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0256
348/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0313
349/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0372
350/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0429
351/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0492
352/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0551
353/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0615
354/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0690
355/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0767
356/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0841
357/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0911
358/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0985
359/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1061
360/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1136
361/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1216
362/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1297
363/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1375
364/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1453
365/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1526
366/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1591
367/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1653
368/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1717
369/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1778
370/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1837
371/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1893
372/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1947
373/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1999
374/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.2054
375/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.2110
376/Unknown 53s 139ms/step - accuracy: 0.9486 - loss: 229.2163
377/Unknown 53s 139ms/step - accuracy: 0.9486 - loss: 229.2217
377/377 ━━━━━━━━━━━━━━━━━━━━ 53s 139ms/step - accuracy: 0.9486 - loss: 229.2270
Test accuracy: 94.94%
您应该在测试集上获得超过 95% 的准确率。
要增加模型的学习能力,您可以尝试增加 encoding_size
值,或在 VSN 层之上堆叠多个 GRN 层。这可能还需要增加 dropout_rate
值以避免过拟合。
HuggingFace 上提供的示例
训练模型 | 演示 |
---|---|