代码示例 / 自然语言处理 / 使用决策森林和预训练嵌入进行文本分类

使用决策森林和预训练嵌入进行文本分类

作者:Gitesh Chawda
创建日期 09/05/2022
最后修改日期 09/05/2022
描述:使用 TensorFlow 决策森林进行文本分类。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码


简介

TensorFlow 决策森林 (TF-DF) 是一个包含最先进的决策森林模型算法的集合,兼容 Keras API。该模块包括随机森林、梯度提升树和 CART,可用于回归、分类和排序任务。

在本例中,我们将使用预训练嵌入的梯度提升树来对与灾难相关的推文进行分类。

另请参阅

使用以下命令安装 TensorFlow 决策森林:pip install tensorflow_decision_forests


导入

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub
from tensorflow.keras import layers
import tensorflow_decision_forests as tfdf
import matplotlib.pyplot as plt

获取数据

数据集可在 Kaggle 上获得

数据集描述

文件

  • train.csv:训练集

  • id:每条推文的唯一标识符
  • text:推文的文本
  • location:发送推文的位置(可能为空白)
  • keyword:推文中的特定关键词(可能为空白)
  • target:仅在 train.csv 中,表示一条推文是否与真实灾难相关(1)或不相关(0)
# Turn .csv files into pandas DataFrame's
df = pd.read_csv(
    "https://raw.githubusercontent.com/IMvision12/Tweets-Classification-NLP/main/train.csv"
)
print(df.head())
   id keyword location                                               text  \
0   1     NaN      NaN  Our Deeds are the Reason of this #earthquake M...   
1   4     NaN      NaN             Forest fire near La Ronge Sask. Canada   
2   5     NaN      NaN  All residents asked to 'shelter in place' are ...   
3   6     NaN      NaN  13,000 people receive #wildfires evacuation or...   
4   7     NaN      NaN  Just got sent this photo from Ruby #Alaska as ...   
   target  
0       1  
1       1  
2       1  
3       1  
4       1  

数据集包含 7613 个样本,5 列。

print(f"Training dataset shape: {df.shape}")
Training dataset shape: (7613, 5)

洗牌并丢弃不必要的列

df_shuffled = df.sample(frac=1, random_state=42)
# Dropping id, keyword and location columns as these columns consists of mostly nan values
# we will be using only text and target columns
df_shuffled.drop(["id", "keyword", "location"], axis=1, inplace=True)
df_shuffled.reset_index(inplace=True, drop=True)
print(df_shuffled.head())
                                                text  target
0  So you have a new weapon that can cause un-ima...       1
1  The f$&@ing things I do for #GISHWHES Just...       0
2  DT @georgegalloway: RT @Galloway4Mayor: ‰ÛÏThe...       1
3  Aftershock back to school kick off was great. ...       0
4  in response to trauma Children of Addicts deve...       0

打印洗牌后的数据框的信息

print(df_shuffled.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7613 entries, 0 to 7612
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype 
---  ------  --------------  ----- 
 0   text    7613 non-null   object
 1   target  7613 non-null   int64 
dtypes: int64(1), object(1)
memory usage: 119.1+ KB
None

"灾难"和"非灾难"推文的总数

print(
    "Total Number of disaster and non-disaster tweets: "
    f"{df_shuffled.target.value_counts()}"
)
Total Number of disaster and non-disaster tweets: 0    4342
1    3271
Name: target, dtype: int64

让我们预览一些样本

for index, example in df_shuffled[:5].iterrows():
    print(f"Example #{index}")
    print(f"\tTarget : {example['target']}")
    print(f"\tText : {example['text']}")
Example #0
    Target : 1
    Text : So you have a new weapon that can cause un-imaginable destruction.
Example #1
    Target : 0
    Text : The f$&amp;@ing things I do for #GISHWHES Just got soaked in a deluge going for pads and tampons. Thx @mishacollins @/@
Example #2
    Target : 1
    Text : DT @georgegalloway: RT @Galloway4Mayor: ‰ÛÏThe CoL police can catch a pickpocket in Liverpool Stree... https://127.0.0.1/vXIn1gOq4Q
Example #3
    Target : 0
    Text : Aftershock back to school kick off was great. I want to thank everyone for making it possible. What a great night.
Example #4
    Target : 0
    Text : in response to trauma Children of Addicts develop a defensive self - one that decreases vulnerability. (3

将数据集拆分为训练集和测试集

test_df = df_shuffled.sample(frac=0.1, random_state=42)
train_df = df_shuffled.drop(test_df.index)
print(f"Using {len(train_df)} samples for training and {len(test_df)} for validation")
Using 6852 samples for training and 761 for validation

训练数据中"灾难"和"非灾难"推文的总数

print(train_df["target"].value_counts())
0    3929
1    2923
Name: target, dtype: int64

测试数据中"灾难"和"非灾难"推文的总数

print(test_df["target"].value_counts())
0    413
1    348
Name: target, dtype: int64

将数据转换为 tf.data.Dataset

def create_dataset(dataframe):
    dataset = tf.data.Dataset.from_tensor_slices(
        (dataframe["text"].to_numpy(), dataframe["target"].to_numpy())
    )
    dataset = dataset.batch(100)
    dataset = dataset.prefetch(tf.data.AUTOTUNE)
    return dataset


train_ds = create_dataset(train_df)
test_ds = create_dataset(test_df)

下载预训练嵌入

通用句子编码器嵌入将文本编码为高维向量,可用于文本分类、语义相似性、聚类和其他自然语言任务。它们在各种数据源和各种任务上进行训练。它们的输入是可变长度的英文文本,输出是 512 维向量。

要了解有关这些预训练嵌入的更多信息,请参阅 通用句子编码器

sentence_encoder_layer = hub.KerasLayer(
    "https://tfhub.dev/google/universal-sentence-encoder/4"
)

创建我们的模型

我们创建了两个模型。在第一个模型(model_1)中,原始文本将首先通过预训练嵌入进行编码,然后传递给梯度提升树模型进行分类。在第二个模型(model_2)中,原始文本将直接传递给梯度提升树模型。

构建 model_1

inputs = layers.Input(shape=(), dtype=tf.string)
outputs = sentence_encoder_layer(inputs)
preprocessor = keras.Model(inputs=inputs, outputs=outputs)
model_1 = tfdf.keras.GradientBoostedTreesModel(preprocessing=preprocessor)
Use /tmp/tmpsp7fmsyk as temporary training directory

构建 model_2

model_2 = tfdf.keras.GradientBoostedTreesModel()
Use /tmp/tmpl0zj3vw0 as temporary training directory

训练模型

我们通过传递指标AccuracyRecallPrecisionAUC来编译我们的模型。在损失方面,TF-DF 会自动检测任务(分类或回归)的最佳损失。它在模型摘要中打印。

此外,由于它们是批量训练模型而不是小批量梯度下降模型,因此 TF-DF 模型不需要验证数据集来监控过拟合或提前停止训练。某些算法不使用验证数据集(例如随机森林),而某些算法则使用(例如梯度提升树)。如果需要验证数据集,它将自动从训练数据集中提取。

# Compiling model_1
model_1.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"])
# Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset
model_1.fit(train_ds)

# Compiling model_2
model_2.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"])
# Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset
model_2.fit(train_ds)
Reading training dataset...
Training dataset read in 0:00:06.473683. Found 6852 examples.
Training model...
Model trained in 0:00:41.461477
Compiling model...

Model compiled.
Reading training dataset...
Training dataset read in 0:00:00.087930. Found 6852 examples.
Training model...
Model trained in 0:00:00.367492
Compiling model...

Model compiled.

<keras.callbacks.History at 0x7fe09ded1b40>

打印 model_1 的训练日志

logs_1 = model_1.make_inspector().training_logs()
print(logs_1)

打印 model_2 的训练日志

logs_2 = model_2.make_inspector().training_logs()
print(logs_2)

model.summary() 方法打印有关决策树模型的各种信息,包括模型类型、任务、输入特征和特征重要性。

print("model_1 summary: ")
print(model_1.summary())
print()
print("model_2 summary: ")
print(model_2.summary())
model_1 summary: 
Model: "gradient_boosted_trees_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 model (Functional)          (None, 512)               256797824 

=================================================================
Total params: 256,797,825
Trainable params: 0
Non-trainable params: 256,797,825
_________________________________________________________________
Type: "GRADIENT_BOOSTED_TREES"
Task: CLASSIFICATION
Label: "__LABEL"

No weights




Loss: BINOMIAL_LOG_LIKELIHOOD
Validation loss value: 0.806777
Number of trees per iteration: 1
Node format: NOT_SET
Number of trees: 137
Total number of nodes: 6671
Number of nodes by tree:
Count: 137 Average: 48.6934 StdDev: 9.91023
Min: 21 Max: 63 Ignored: 0
----------------------------------------------
[ 21, 23)  1   0.73%   0.73%
[ 23, 25)  1   0.73%   1.46%
[ 25, 27)  0   0.00%   1.46%
[ 27, 29)  1   0.73%   2.19%
[ 29, 31)  3   2.19%   4.38% #
[ 31, 33)  3   2.19%   6.57% #
[ 33, 36)  9   6.57%  13.14% ####
[ 36, 38)  4   2.92%  16.06% ##
[ 38, 40)  4   2.92%  18.98% ##
[ 40, 42)  8   5.84%  24.82% ####
[ 42, 44)  8   5.84%  30.66% ####
[ 44, 46)  9   6.57%  37.23% ####
[ 46, 48)  7   5.11%  42.34% ###
[ 48, 51) 10   7.30%  49.64% #####
[ 51, 53) 13   9.49%  59.12% ######
[ 53, 55) 10   7.30%  66.42% #####
[ 55, 57) 10   7.30%  73.72% #####
[ 57, 59)  6   4.38%  78.10% ###
[ 59, 61)  8   5.84%  83.94% ####
[ 61, 63] 22  16.06% 100.00% ##########
Depth by leafs:
Count: 3404 Average: 4.81052 StdDev: 0.557183
Min: 1 Max: 5 Ignored: 0
----------------------------------------------
[ 1, 2)    6   0.18%   0.18%
[ 2, 3)   38   1.12%   1.29%
[ 3, 4)  117   3.44%   4.73%
[ 4, 5)  273   8.02%  12.75% #
[ 5, 5] 2970  87.25% 100.00% ##########
Number of training obs by leaf:
Count: 3404 Average: 248.806 StdDev: 517.403
Min: 5 Max: 4709 Ignored: 0
----------------------------------------------
[    5,  240) 2615  76.82%  76.82% ##########
[  240,  475)  243   7.14%  83.96% #
[  475,  710)  162   4.76%  88.72% #
[  710,  946)  104   3.06%  91.77%
[  946, 1181)   80   2.35%  94.12%
[ 1181, 1416)   48   1.41%  95.53%
[ 1416, 1651)   44   1.29%  96.83%
[ 1651, 1887)   27   0.79%  97.62%
[ 1887, 2122)   18   0.53%  98.15%
[ 2122, 2357)   19   0.56%  98.71%
[ 2357, 2592)   10   0.29%  99.00%
[ 2592, 2828)    6   0.18%  99.18%
[ 2828, 3063)    8   0.24%  99.41%
[ 3063, 3298)    7   0.21%  99.62%
[ 3298, 3533)    3   0.09%  99.71%
[ 3533, 3769)    5   0.15%  99.85%
[ 3769, 4004)    2   0.06%  99.91%
[ 4004, 4239)    1   0.03%  99.94%
[ 4239, 4474)    1   0.03%  99.97%
[ 4474, 4709]    1   0.03% 100.00%






Condition type in nodes:
    3267 : HigherCondition
Condition type in nodes with depth <= 0:
    137 : HigherCondition
Condition type in nodes with depth <= 1:
    405 : HigherCondition
Condition type in nodes with depth <= 2:
    903 : HigherCondition
Condition type in nodes with depth <= 3:
    1782 : HigherCondition
Condition type in nodes with depth <= 5:
    3267 : HigherCondition
None
model_2 summary: 
Model: "gradient_boosted_trees_model_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
=================================================================
Total params: 1
Trainable params: 0
Non-trainable params: 1
_________________________________________________________________
Type: "GRADIENT_BOOSTED_TREES"
Task: CLASSIFICATION
Label: "__LABEL"
Input Features (1):
    data:0
No weights
Variable Importance: MEAN_MIN_DEPTH:
    1. "__LABEL"  2.250000 ################
    2.  "data:0"  0.000000 
Variable Importance: NUM_AS_ROOT:
    1. "data:0" 117.000000 
Variable Importance: NUM_NODES:
    1. "data:0" 351.000000 
Variable Importance: SUM_SCORE:
    1. "data:0" 32.035971 
Loss: BINOMIAL_LOG_LIKELIHOOD
Validation loss value: 1.36429
Number of trees per iteration: 1
Node format: NOT_SET
Number of trees: 117
Total number of nodes: 819
Number of nodes by tree:
Count: 117 Average: 7 StdDev: 0
Min: 7 Max: 7 Ignored: 0
----------------------------------------------
[ 7, 7] 117 100.00% 100.00% ##########
Depth by leafs:
Count: 468 Average: 2.25 StdDev: 0.829156
Min: 1 Max: 3 Ignored: 0
----------------------------------------------
[ 1, 2) 117  25.00%  25.00% #####
[ 2, 3) 117  25.00%  50.00% #####
[ 3, 3] 234  50.00% 100.00% ##########
Number of training obs by leaf:
Count: 468 Average: 1545.5 StdDev: 2660.15
Min: 5 Max: 6153 Ignored: 0
----------------------------------------------
[    5,  312) 351  75.00%  75.00% ##########
[  312,  619)   0   0.00%  75.00%
[  619,  927)   0   0.00%  75.00%
[  927, 1234)   0   0.00%  75.00%
[ 1234, 1542)   0   0.00%  75.00%
[ 1542, 1849)   0   0.00%  75.00%
[ 1849, 2157)   0   0.00%  75.00%
[ 2157, 2464)   0   0.00%  75.00%
[ 2464, 2772)   0   0.00%  75.00%
[ 2772, 3079)   0   0.00%  75.00%
[ 3079, 3386)   0   0.00%  75.00%
[ 3386, 3694)   0   0.00%  75.00%
[ 3694, 4001)   0   0.00%  75.00%
[ 4001, 4309)   0   0.00%  75.00%
[ 4309, 4616)   0   0.00%  75.00%
[ 4616, 4924)   0   0.00%  75.00%
[ 4924, 5231)   0   0.00%  75.00%
[ 5231, 5539)   0   0.00%  75.00%
[ 5539, 5846)   0   0.00%  75.00%
[ 5846, 6153] 117  25.00% 100.00% ###
Attribute in nodes:
    351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 0:
    117 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 1:
    234 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 2:
    351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 3:
    351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 5:
    351 : data:0 [CATEGORICAL]
Condition type in nodes:
    351 : ContainsBitmapCondition
Condition type in nodes with depth <= 0:
    117 : ContainsBitmapCondition
Condition type in nodes with depth <= 1:
    234 : ContainsBitmapCondition
Condition type in nodes with depth <= 2:
    351 : ContainsBitmapCondition
Condition type in nodes with depth <= 3:
    351 : ContainsBitmapCondition
Condition type in nodes with depth <= 5:
    351 : ContainsBitmapCondition
None

绘制训练指标

def plot_curve(logs):
    plt.figure(figsize=(12, 4))

    plt.subplot(1, 2, 1)
    plt.plot([log.num_trees for log in logs], [log.evaluation.accuracy for log in logs])
    plt.xlabel("Number of trees")
    plt.ylabel("Accuracy")

    plt.subplot(1, 2, 2)
    plt.plot([log.num_trees for log in logs], [log.evaluation.loss for log in logs])
    plt.xlabel("Number of trees")
    plt.ylabel("Loss")

    plt.show()


plot_curve(logs_1)
plot_curve(logs_2)

png

png


在测试数据上评估

results = model_1.evaluate(test_ds, return_dict=True, verbose=0)
print("model_1 Evaluation: \n")
for name, value in results.items():
    print(f"{name}: {value:.4f}")

results = model_2.evaluate(test_ds, return_dict=True, verbose=0)
print("model_2 Evaluation: \n")
for name, value in results.items():
    print(f"{name}: {value:.4f}")
model_1 Evaluation: 
loss: 0.0000
Accuracy: 0.8160
recall: 0.7241
precision: 0.8514
auc: 0.8700
model_2 Evaluation: 
loss: 0.0000
Accuracy: 0.5440
recall: 0.0029
precision: 1.0000
auc: 0.5026

在验证数据上预测

test_df.reset_index(inplace=True, drop=True)
for index, row in test_df.iterrows():
    text = tf.expand_dims(row["text"], axis=0)
    preds = model_1.predict_step(text)
    preds = tf.squeeze(tf.round(preds))
    print(f"Text: {row['text']}")
    print(f"Prediction: {int(preds)}")
    print(f"Ground Truth : {row['target']}")
    if index == 10:
        break
Text: DFR EP016 Monthly Meltdown - On Dnbheaven 2015.08.06 https://127.0.0.1/EjKRf8N8A8 #Drum and Bass #heavy #nasty https://127.0.0.1/SPHWE6wFI5
Prediction: 0
Ground Truth : 0
Text: FedEx no longer to transport bioterror germs in wake of anthrax lab mishaps https://127.0.0.1/qZQc8WWwcN via @usatoday
Prediction: 1
Ground Truth : 0
Text: Gunmen kill four in El Salvador bus attack: Suspected Salvadoran gang members killed four people and wounded s... https://127.0.0.1/CNtwB6ScZj
Prediction: 1
Ground Truth : 1
Text: @camilacabello97 Internally and externally screaming
Prediction: 0
Ground Truth : 1
Text: Radiation emergency #preparedness starts with knowing to: get inside stay inside and stay tuned https://127.0.0.1/RFFPqBAz2F via @CDCgov
Prediction: 1
Ground Truth : 1
Text: Investigators rule catastrophic structural failure resulted in 2014 Virg.. Related Articles: https://127.0.0.1/Cy1LFeNyV8
Prediction: 1
Ground Truth : 1
Text: How the West was burned: Thousands of wildfires ablaze in #California alone https://127.0.0.1/iCSjGZ9tE1 #climate #energy https://127.0.0.1/9FxmN0l0Bd
Prediction: 1
Ground Truth : 1
Text: Map: Typhoon Soudelor's predicted path as it approaches Taiwan; expected to make landfall over southern China by S‰Û_ https://127.0.0.1/JDVSGVhlIs
Prediction: 1
Ground Truth : 1
Text: ‰Ûª93 blasts accused Yeda Yakub dies in Karachi of heart attack https://127.0.0.1/mfKqyxd8XG #Mumbai
Prediction: 1
Ground Truth : 1
Text: My ears are bleeding  https://127.0.0.1/k5KnNwugwT
Prediction: 0
Ground Truth : 0
Text: @RedCoatJackpot *As it was typical for them their bullets collided and none managed to reach their targets; such was the ''curse'' of a --
Prediction: 0
Ground Truth : 0

总结

TensorFlow 决策森林包提供了强大的模型,这些模型特别适用于结构化数据。在我们的实验中,使用预训练嵌入的梯度提升树模型实现了 81.6% 的测试准确率,而普通的梯度提升树模型的准确率为 54.4%。