作者:Gitesh Chawda
创建日期 09/05/2022
上次修改 09/05/2022
描述:使用 TensorFlow 决策森林进行文本分类。
TensorFlow 决策森林 (TF-DF) 是一个包含最先进的决策森林模型算法的集合,与 Keras API 兼容。该模块包括随机森林、梯度提升树和 CART,可用于回归、分类和排序任务。
在本例中,我们将使用梯度提升树和预训练嵌入来对与灾难相关的推文进行分类。
使用以下命令安装 TensorFlow 决策森林:pip install tensorflow_decision_forests
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub
from tensorflow.keras import layers
import tensorflow_decision_forests as tfdf
import matplotlib.pyplot as plt
数据集可在 Kaggle 上获得
数据集描述
文件
列
# Turn .csv files into pandas DataFrame's
df = pd.read_csv(
"https://raw.githubusercontent.com/IMvision12/Tweets-Classification-NLP/main/train.csv"
)
print(df.head())
id keyword location text \
0 1 NaN NaN Our Deeds are the Reason of this #earthquake M...
1 4 NaN NaN Forest fire near La Ronge Sask. Canada
2 5 NaN NaN All residents asked to 'shelter in place' are ...
3 6 NaN NaN 13,000 people receive #wildfires evacuation or...
4 7 NaN NaN Just got sent this photo from Ruby #Alaska as ...
target
0 1
1 1
2 1
3 1
4 1
数据集包含 7613 个样本,5 列数据。
print(f"Training dataset shape: {df.shape}")
Training dataset shape: (7613, 5)
随机排序并删除不必要的列
df_shuffled = df.sample(frac=1, random_state=42)
# Dropping id, keyword and location columns as these columns consists of mostly nan values
# we will be using only text and target columns
df_shuffled.drop(["id", "keyword", "location"], axis=1, inplace=True)
df_shuffled.reset_index(inplace=True, drop=True)
print(df_shuffled.head())
text target
0 So you have a new weapon that can cause un-ima... 1
1 The f$&@ing things I do for #GISHWHES Just... 0
2 DT @georgegalloway: RT @Galloway4Mayor: ÛÏThe... 1
3 Aftershock back to school kick off was great. ... 0
4 in response to trauma Children of Addicts deve... 0
打印随机排序后的数据框信息
print(df_shuffled.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7613 entries, 0 to 7612
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 text 7613 non-null object
1 target 7613 non-null int64
dtypes: int64(1), object(1)
memory usage: 119.1+ KB
None
"灾难"和"非灾难"推文的总数
print(
"Total Number of disaster and non-disaster tweets: "
f"{df_shuffled.target.value_counts()}"
)
Total Number of disaster and non-disaster tweets: 0 4342
1 3271
Name: target, dtype: int64
让我们预览一些样本
for index, example in df_shuffled[:5].iterrows():
print(f"Example #{index}")
print(f"\tTarget : {example['target']}")
print(f"\tText : {example['text']}")
Example #0
Target : 1
Text : So you have a new weapon that can cause un-imaginable destruction.
Example #1
Target : 0
Text : The f$&@ing things I do for #GISHWHES Just got soaked in a deluge going for pads and tampons. Thx @mishacollins @/@
Example #2
Target : 1
Text : DT @georgegalloway: RT @Galloway4Mayor: ÛÏThe CoL police can catch a pickpocket in Liverpool Stree... http://t.co/vXIn1gOq4Q
Example #3
Target : 0
Text : Aftershock back to school kick off was great. I want to thank everyone for making it possible. What a great night.
Example #4
Target : 0
Text : in response to trauma Children of Addicts develop a defensive self - one that decreases vulnerability. (3
将数据集拆分为训练集和测试集
test_df = df_shuffled.sample(frac=0.1, random_state=42)
train_df = df_shuffled.drop(test_df.index)
print(f"Using {len(train_df)} samples for training and {len(test_df)} for validation")
Using 6852 samples for training and 761 for validation
训练数据中"灾难"和"非灾难"推文的总数
print(train_df["target"].value_counts())
0 3929
1 2923
Name: target, dtype: int64
测试数据中"灾难"和"非灾难"推文的总数
print(test_df["target"].value_counts())
0 413
1 348
Name: target, dtype: int64
tf.data.Dataset
def create_dataset(dataframe):
dataset = tf.data.Dataset.from_tensor_slices(
(dataframe["text"].to_numpy(), dataframe["target"].to_numpy())
)
dataset = dataset.batch(100)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
train_ds = create_dataset(train_df)
test_ds = create_dataset(test_df)
通用句子编码器嵌入将文本编码为高维向量,可用于文本分类、语义相似性、聚类和其他自然语言任务。它们在各种数据源和各种任务上进行训练。它们的输入是可变长度的英文文本,输出是 512 维向量。
要了解有关这些预训练嵌入的更多信息,请参阅 通用句子编码器。
sentence_encoder_layer = hub.KerasLayer(
"https://tfhub.dev/google/universal-sentence-encoder/4"
)
我们创建两个模型。在第一个模型 (model_1) 中,原始文本将首先通过预训练嵌入进行编码,然后传递到梯度提升树模型进行分类。在第二个模型 (model_2) 中,原始文本将直接传递到梯度提升树模型。
构建 model_1
inputs = layers.Input(shape=(), dtype=tf.string)
outputs = sentence_encoder_layer(inputs)
preprocessor = keras.Model(inputs=inputs, outputs=outputs)
model_1 = tfdf.keras.GradientBoostedTreesModel(preprocessing=preprocessor)
Use /tmp/tmpsp7fmsyk as temporary training directory
构建 model_2
model_2 = tfdf.keras.GradientBoostedTreesModel()
Use /tmp/tmpl0zj3vw0 as temporary training directory
我们通过传递指标 Accuracy
、Recall
、Precision
和 AUC
来编译模型。在损失方面,TF-DF 会自动检测任务(分类或回归)的最佳损失。它将在模型摘要中打印。
此外,由于它们是批量训练模型而不是小批量梯度下降模型,因此 TF-DF 模型不需要验证数据集来监控过拟合或提前停止训练。某些算法不使用验证数据集(例如随机森林),而另一些算法则使用(例如梯度提升树)。如果需要验证数据集,它将自动从训练数据集中提取。
# Compiling model_1
model_1.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"])
# Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset
model_1.fit(train_ds)
# Compiling model_2
model_2.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"])
# Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset
model_2.fit(train_ds)
Reading training dataset...
Training dataset read in 0:00:06.473683. Found 6852 examples.
Training model...
Model trained in 0:00:41.461477
Compiling model...
Model compiled.
Reading training dataset...
Training dataset read in 0:00:00.087930. Found 6852 examples.
Training model...
Model trained in 0:00:00.367492
Compiling model...
Model compiled.
<keras.callbacks.History at 0x7fe09ded1b40>
打印 model_1 的训练日志
logs_1 = model_1.make_inspector().training_logs()
print(logs_1)
打印 model_2 的训练日志
logs_2 = model_2.make_inspector().training_logs()
print(logs_2)
model.summary() 方法打印有关决策树模型的各种信息,包括模型类型、任务、输入特征和特征重要性。
print("model_1 summary: ")
print(model_1.summary())
print()
print("model_2 summary: ")
print(model_2.summary())
model_1 summary:
Model: "gradient_boosted_trees_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model (Functional) (None, 512) 256797824
=================================================================
Total params: 256,797,825
Trainable params: 0
Non-trainable params: 256,797,825
_________________________________________________________________
Type: "GRADIENT_BOOSTED_TREES"
Task: CLASSIFICATION
Label: "__LABEL"
No weights
Loss: BINOMIAL_LOG_LIKELIHOOD
Validation loss value: 0.806777
Number of trees per iteration: 1
Node format: NOT_SET
Number of trees: 137
Total number of nodes: 6671
Number of nodes by tree:
Count: 137 Average: 48.6934 StdDev: 9.91023
Min: 21 Max: 63 Ignored: 0
----------------------------------------------
[ 21, 23) 1 0.73% 0.73%
[ 23, 25) 1 0.73% 1.46%
[ 25, 27) 0 0.00% 1.46%
[ 27, 29) 1 0.73% 2.19%
[ 29, 31) 3 2.19% 4.38% #
[ 31, 33) 3 2.19% 6.57% #
[ 33, 36) 9 6.57% 13.14% ####
[ 36, 38) 4 2.92% 16.06% ##
[ 38, 40) 4 2.92% 18.98% ##
[ 40, 42) 8 5.84% 24.82% ####
[ 42, 44) 8 5.84% 30.66% ####
[ 44, 46) 9 6.57% 37.23% ####
[ 46, 48) 7 5.11% 42.34% ###
[ 48, 51) 10 7.30% 49.64% #####
[ 51, 53) 13 9.49% 59.12% ######
[ 53, 55) 10 7.30% 66.42% #####
[ 55, 57) 10 7.30% 73.72% #####
[ 57, 59) 6 4.38% 78.10% ###
[ 59, 61) 8 5.84% 83.94% ####
[ 61, 63] 22 16.06% 100.00% ##########
Depth by leafs:
Count: 3404 Average: 4.81052 StdDev: 0.557183
Min: 1 Max: 5 Ignored: 0
----------------------------------------------
[ 1, 2) 6 0.18% 0.18%
[ 2, 3) 38 1.12% 1.29%
[ 3, 4) 117 3.44% 4.73%
[ 4, 5) 273 8.02% 12.75% #
[ 5, 5] 2970 87.25% 100.00% ##########
Number of training obs by leaf:
Count: 3404 Average: 248.806 StdDev: 517.403
Min: 5 Max: 4709 Ignored: 0
----------------------------------------------
[ 5, 240) 2615 76.82% 76.82% ##########
[ 240, 475) 243 7.14% 83.96% #
[ 475, 710) 162 4.76% 88.72% #
[ 710, 946) 104 3.06% 91.77%
[ 946, 1181) 80 2.35% 94.12%
[ 1181, 1416) 48 1.41% 95.53%
[ 1416, 1651) 44 1.29% 96.83%
[ 1651, 1887) 27 0.79% 97.62%
[ 1887, 2122) 18 0.53% 98.15%
[ 2122, 2357) 19 0.56% 98.71%
[ 2357, 2592) 10 0.29% 99.00%
[ 2592, 2828) 6 0.18% 99.18%
[ 2828, 3063) 8 0.24% 99.41%
[ 3063, 3298) 7 0.21% 99.62%
[ 3298, 3533) 3 0.09% 99.71%
[ 3533, 3769) 5 0.15% 99.85%
[ 3769, 4004) 2 0.06% 99.91%
[ 4004, 4239) 1 0.03% 99.94%
[ 4239, 4474) 1 0.03% 99.97%
[ 4474, 4709] 1 0.03% 100.00%
Condition type in nodes:
3267 : HigherCondition
Condition type in nodes with depth <= 0:
137 : HigherCondition
Condition type in nodes with depth <= 1:
405 : HigherCondition
Condition type in nodes with depth <= 2:
903 : HigherCondition
Condition type in nodes with depth <= 3:
1782 : HigherCondition
Condition type in nodes with depth <= 5:
3267 : HigherCondition
None
model_2 summary:
Model: "gradient_boosted_trees_model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
=================================================================
Total params: 1
Trainable params: 0
Non-trainable params: 1
_________________________________________________________________
Type: "GRADIENT_BOOSTED_TREES"
Task: CLASSIFICATION
Label: "__LABEL"
Input Features (1):
data:0
No weights
Variable Importance: MEAN_MIN_DEPTH:
1. "__LABEL" 2.250000 ################
2. "data:0" 0.000000
Variable Importance: NUM_AS_ROOT:
1. "data:0" 117.000000
Variable Importance: NUM_NODES:
1. "data:0" 351.000000
Variable Importance: SUM_SCORE:
1. "data:0" 32.035971
Loss: BINOMIAL_LOG_LIKELIHOOD
Validation loss value: 1.36429
Number of trees per iteration: 1
Node format: NOT_SET
Number of trees: 117
Total number of nodes: 819
Number of nodes by tree:
Count: 117 Average: 7 StdDev: 0
Min: 7 Max: 7 Ignored: 0
----------------------------------------------
[ 7, 7] 117 100.00% 100.00% ##########
Depth by leafs:
Count: 468 Average: 2.25 StdDev: 0.829156
Min: 1 Max: 3 Ignored: 0
----------------------------------------------
[ 1, 2) 117 25.00% 25.00% #####
[ 2, 3) 117 25.00% 50.00% #####
[ 3, 3] 234 50.00% 100.00% ##########
Number of training obs by leaf:
Count: 468 Average: 1545.5 StdDev: 2660.15
Min: 5 Max: 6153 Ignored: 0
----------------------------------------------
[ 5, 312) 351 75.00% 75.00% ##########
[ 312, 619) 0 0.00% 75.00%
[ 619, 927) 0 0.00% 75.00%
[ 927, 1234) 0 0.00% 75.00%
[ 1234, 1542) 0 0.00% 75.00%
[ 1542, 1849) 0 0.00% 75.00%
[ 1849, 2157) 0 0.00% 75.00%
[ 2157, 2464) 0 0.00% 75.00%
[ 2464, 2772) 0 0.00% 75.00%
[ 2772, 3079) 0 0.00% 75.00%
[ 3079, 3386) 0 0.00% 75.00%
[ 3386, 3694) 0 0.00% 75.00%
[ 3694, 4001) 0 0.00% 75.00%
[ 4001, 4309) 0 0.00% 75.00%
[ 4309, 4616) 0 0.00% 75.00%
[ 4616, 4924) 0 0.00% 75.00%
[ 4924, 5231) 0 0.00% 75.00%
[ 5231, 5539) 0 0.00% 75.00%
[ 5539, 5846) 0 0.00% 75.00%
[ 5846, 6153] 117 25.00% 100.00% ###
Attribute in nodes:
351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 0:
117 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 1:
234 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 2:
351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 3:
351 : data:0 [CATEGORICAL]
Attribute in nodes with depth <= 5:
351 : data:0 [CATEGORICAL]
Condition type in nodes:
351 : ContainsBitmapCondition
Condition type in nodes with depth <= 0:
117 : ContainsBitmapCondition
Condition type in nodes with depth <= 1:
234 : ContainsBitmapCondition
Condition type in nodes with depth <= 2:
351 : ContainsBitmapCondition
Condition type in nodes with depth <= 3:
351 : ContainsBitmapCondition
Condition type in nodes with depth <= 5:
351 : ContainsBitmapCondition
None
def plot_curve(logs):
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot([log.num_trees for log in logs], [log.evaluation.accuracy for log in logs])
plt.xlabel("Number of trees")
plt.ylabel("Accuracy")
plt.subplot(1, 2, 2)
plt.plot([log.num_trees for log in logs], [log.evaluation.loss for log in logs])
plt.xlabel("Number of trees")
plt.ylabel("Loss")
plt.show()
plot_curve(logs_1)
plot_curve(logs_2)
results = model_1.evaluate(test_ds, return_dict=True, verbose=0)
print("model_1 Evaluation: \n")
for name, value in results.items():
print(f"{name}: {value:.4f}")
results = model_2.evaluate(test_ds, return_dict=True, verbose=0)
print("model_2 Evaluation: \n")
for name, value in results.items():
print(f"{name}: {value:.4f}")
model_1 Evaluation:
loss: 0.0000
Accuracy: 0.8160
recall: 0.7241
precision: 0.8514
auc: 0.8700
model_2 Evaluation:
loss: 0.0000
Accuracy: 0.5440
recall: 0.0029
precision: 1.0000
auc: 0.5026
test_df.reset_index(inplace=True, drop=True)
for index, row in test_df.iterrows():
text = tf.expand_dims(row["text"], axis=0)
preds = model_1.predict_step(text)
preds = tf.squeeze(tf.round(preds))
print(f"Text: {row['text']}")
print(f"Prediction: {int(preds)}")
print(f"Ground Truth : {row['target']}")
if index == 10:
break
Text: DFR EP016 Monthly Meltdown - On Dnbheaven 2015.08.06 http://t.co/EjKRf8N8A8 #Drum and Bass #heavy #nasty http://t.co/SPHWE6wFI5
Prediction: 0
Ground Truth : 0
Text: FedEx no longer to transport bioterror germs in wake of anthrax lab mishaps http://t.co/qZQc8WWwcN via @usatoday
Prediction: 1
Ground Truth : 0
Text: Gunmen kill four in El Salvador bus attack: Suspected Salvadoran gang members killed four people and wounded s... http://t.co/CNtwB6ScZj
Prediction: 1
Ground Truth : 1
Text: @camilacabello97 Internally and externally screaming
Prediction: 0
Ground Truth : 1
Text: Radiation emergency #preparedness starts with knowing to: get inside stay inside and stay tuned http://t.co/RFFPqBAz2F via @CDCgov
Prediction: 1
Ground Truth : 1
Text: Investigators rule catastrophic structural failure resulted in 2014 Virg.. Related Articles: http://t.co/Cy1LFeNyV8
Prediction: 1
Ground Truth : 1
Text: How the West was burned: Thousands of wildfires ablaze in #California alone http://t.co/iCSjGZ9tE1 #climate #energy http://t.co/9FxmN0l0Bd
Prediction: 1
Ground Truth : 1
Text: Map: Typhoon Soudelor's predicted path as it approaches Taiwan; expected to make landfall over southern China by SÛ_ http://t.co/JDVSGVhlIs
Prediction: 1
Ground Truth : 1
Text: Ûª93 blasts accused Yeda Yakub dies in Karachi of heart attack http://t.co/mfKqyxd8XG #Mumbai
Prediction: 1
Ground Truth : 1
Text: My ears are bleeding https://t.co/k5KnNwugwT
Prediction: 0
Ground Truth : 0
Text: @RedCoatJackpot *As it was typical for them their bullets collided and none managed to reach their targets; such was the ''curse'' of a --
Prediction: 0
Ground Truth : 0
TensorFlow 决策森林包提供了强大的模型,这些模型在处理结构化数据时特别有效。在我们的实验中,使用预训练嵌入的梯度提升树模型实现了 81.6% 的测试准确率,而普通的梯度提升树模型的准确率为 54.4%。