代码示例 / 自然语言处理 / 使用 BERT 进行文本提取

使用 BERT 进行文本提取

作者: Apoorv Nandan
创建日期 2020/05/23
最后修改日期 2020/05/23

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码

描述: 在 SQuAD 上微调来自 HuggingFace Transformers 的预训练 BERT。


简介

本演示使用 SQuAD(斯坦福问答数据集)。在 SQuAD 中,输入包含一个问题和一段用于上下文的段落。目标是在段落中找到回答问题的文本范围。我们使用“完全匹配”指标评估我们在此数据上的性能,该指标衡量预测结果与任何一个地面实况答案完全匹配的百分比。

我们对 BERT 模型进行微调以执行以下任务:

  1. 将上下文和问题作为输入提供给 BERT。
  2. 获取两个维度与 BERT 中隐藏状态维度相同的向量 S 和 T。
  3. 计算每个标记作为答案范围的开始和结束的概率。标记作为答案开始的概率由 S 与 BERT 最后一层中标记的表示的点积给出,然后对所有标记进行 softmax。标记作为答案结束的概率类似地使用向量 T 计算。
  4. 微调 BERT 并在此过程中学习 S 和 T。

参考资料

设置

import os
import re
import json
import string
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tokenizers import BertWordPieceTokenizer
from transformers import BertTokenizer, TFBertModel, BertConfig

max_len = 384
configuration = BertConfig()  # default parameters and configuration for BERT

设置 BERT 分词器

# Save the slow pretrained tokenizer
slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
save_path = "bert_base_uncased/"
if not os.path.exists(save_path):
    os.makedirs(save_path)
slow_tokenizer.save_pretrained(save_path)

# Load the fast tokenizer from saved file
tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True)

加载数据

train_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json"
train_path = keras.utils.get_file("train.json", train_data_url)
eval_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json"
eval_path = keras.utils.get_file("eval.json", eval_data_url)

预处理数据

  1. 遍历 JSON 文件并将每个记录存储为 SquadExample 对象。
  2. 遍历每个 SquadExample 并创建 x_train, y_train, x_eval, y_eval
class SquadExample:
    def __init__(self, question, context, start_char_idx, answer_text, all_answers):
        self.question = question
        self.context = context
        self.start_char_idx = start_char_idx
        self.answer_text = answer_text
        self.all_answers = all_answers
        self.skip = False

    def preprocess(self):
        context = self.context
        question = self.question
        answer_text = self.answer_text
        start_char_idx = self.start_char_idx

        # Clean context, answer and question
        context = " ".join(str(context).split())
        question = " ".join(str(question).split())
        answer = " ".join(str(answer_text).split())

        # Find end character index of answer in context
        end_char_idx = start_char_idx + len(answer)
        if end_char_idx >= len(context):
            self.skip = True
            return

        # Mark the character indexes in context that are in answer
        is_char_in_ans = [0] * len(context)
        for idx in range(start_char_idx, end_char_idx):
            is_char_in_ans[idx] = 1

        # Tokenize context
        tokenized_context = tokenizer.encode(context)

        # Find tokens that were created from answer characters
        ans_token_idx = []
        for idx, (start, end) in enumerate(tokenized_context.offsets):
            if sum(is_char_in_ans[start:end]) > 0:
                ans_token_idx.append(idx)

        if len(ans_token_idx) == 0:
            self.skip = True
            return

        # Find start and end token index for tokens from answer
        start_token_idx = ans_token_idx[0]
        end_token_idx = ans_token_idx[-1]

        # Tokenize question
        tokenized_question = tokenizer.encode(question)

        # Create inputs
        input_ids = tokenized_context.ids + tokenized_question.ids[1:]
        token_type_ids = [0] * len(tokenized_context.ids) + [1] * len(
            tokenized_question.ids[1:]
        )
        attention_mask = [1] * len(input_ids)

        # Pad and create attention masks.
        # Skip if truncation is needed
        padding_length = max_len - len(input_ids)
        if padding_length > 0:  # pad
            input_ids = input_ids + ([0] * padding_length)
            attention_mask = attention_mask + ([0] * padding_length)
            token_type_ids = token_type_ids + ([0] * padding_length)
        elif padding_length < 0:  # skip
            self.skip = True
            return

        self.input_ids = input_ids
        self.token_type_ids = token_type_ids
        self.attention_mask = attention_mask
        self.start_token_idx = start_token_idx
        self.end_token_idx = end_token_idx
        self.context_token_to_char = tokenized_context.offsets


with open(train_path) as f:
    raw_train_data = json.load(f)

with open(eval_path) as f:
    raw_eval_data = json.load(f)


def create_squad_examples(raw_data):
    squad_examples = []
    for item in raw_data["data"]:
        for para in item["paragraphs"]:
            context = para["context"]
            for qa in para["qas"]:
                question = qa["question"]
                answer_text = qa["answers"][0]["text"]
                all_answers = [_["text"] for _ in qa["answers"]]
                start_char_idx = qa["answers"][0]["answer_start"]
                squad_eg = SquadExample(
                    question, context, start_char_idx, answer_text, all_answers
                )
                squad_eg.preprocess()
                squad_examples.append(squad_eg)
    return squad_examples


def create_inputs_targets(squad_examples):
    dataset_dict = {
        "input_ids": [],
        "token_type_ids": [],
        "attention_mask": [],
        "start_token_idx": [],
        "end_token_idx": [],
    }
    for item in squad_examples:
        if item.skip == False:
            for key in dataset_dict:
                dataset_dict[key].append(getattr(item, key))
    for key in dataset_dict:
        dataset_dict[key] = np.array(dataset_dict[key])

    x = [
        dataset_dict["input_ids"],
        dataset_dict["token_type_ids"],
        dataset_dict["attention_mask"],
    ]
    y = [dataset_dict["start_token_idx"], dataset_dict["end_token_idx"]]
    return x, y


train_squad_examples = create_squad_examples(raw_train_data)
x_train, y_train = create_inputs_targets(train_squad_examples)
print(f"{len(train_squad_examples)} training points created.")

eval_squad_examples = create_squad_examples(raw_eval_data)
x_eval, y_eval = create_inputs_targets(eval_squad_examples)
print(f"{len(eval_squad_examples)} evaluation points created.")
87599 training points created.
10570 evaluation points created.

使用 BERT 和函数式 API 创建问答模型

def create_model():
    ## BERT encoder
    encoder = TFBertModel.from_pretrained("bert-base-uncased")

    ## QA Model
    input_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    token_type_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    attention_mask = layers.Input(shape=(max_len,), dtype=tf.int32)
    embedding = encoder(
        input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
    )[0]

    start_logits = layers.Dense(1, name="start_logit", use_bias=False)(embedding)
    start_logits = layers.Flatten()(start_logits)

    end_logits = layers.Dense(1, name="end_logit", use_bias=False)(embedding)
    end_logits = layers.Flatten()(end_logits)

    start_probs = layers.Activation(keras.activations.softmax)(start_logits)
    end_probs = layers.Activation(keras.activations.softmax)(end_logits)

    model = keras.Model(
        inputs=[input_ids, token_type_ids, attention_mask],
        outputs=[start_probs, end_probs],
    )
    loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False)
    optimizer = keras.optimizers.Adam(lr=5e-5)
    model.compile(optimizer=optimizer, loss=[loss, loss])
    return model

此代码最好在 Google Colab TPU 运行时上运行。使用 Colab TPU,每个时期将花费 5-6 分钟。

use_tpu = True
if use_tpu:
    # Create distribution strategy
    tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
    strategy = tf.distribute.TPUStrategy(tpu)

    # Create model
    with strategy.scope():
        model = create_model()
else:
    model = create_model()

model.summary()
INFO:absl:Entering into master device scope: /job:worker/replica:0/task:0/device:CPU:0

INFO:tensorflow:Initializing the TPU system: grpc://10.48.159.170:8470

INFO:tensorflow:Clearing out eager caches

INFO:tensorflow:Finished initializing TPU system.

INFO:tensorflow:Found TPU system:

INFO:tensorflow:*** Num TPU Cores: 8

INFO:tensorflow:*** Num TPU Workers: 1

INFO:tensorflow:*** Num TPU Cores Per Worker: 8

Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
input_3 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
input_2 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
tf_bert_model (TFBertModel)     ((None, 384, 768), ( 109482240   input_1[0][0]                    
__________________________________________________________________________________________________
start_logit (Dense)             (None, 384, 1)       768         tf_bert_model[0][0]              
__________________________________________________________________________________________________
end_logit (Dense)               (None, 384, 1)       768         tf_bert_model[0][0]              
__________________________________________________________________________________________________
flatten (Flatten)               (None, 384)          0           start_logit[0][0]                
__________________________________________________________________________________________________
flatten_1 (Flatten)             (None, 384)          0           end_logit[0][0]                  
__________________________________________________________________________________________________
activation_7 (Activation)       (None, 384)          0           flatten[0][0]                    
__________________________________________________________________________________________________
activation_8 (Activation)       (None, 384)          0           flatten_1[0][0]                  
==================================================================================================
Total params: 109,483,776
Trainable params: 109,483,776
Non-trainable params: 0
__________________________________________________________________________________________________

创建评估回调

此回调将在每个时期结束后使用验证数据计算完全匹配得分。

def normalize_text(text):
    text = text.lower()

    # Remove punctuations
    exclude = set(string.punctuation)
    text = "".join(ch for ch in text if ch not in exclude)

    # Remove articles
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    text = re.sub(regex, " ", text)

    # Remove extra white space
    text = " ".join(text.split())
    return text


class ExactMatch(keras.callbacks.Callback):
    """
    Each `SquadExample` object contains the character level offsets for each token
    in its input paragraph. We use them to get back the span of text corresponding
    to the tokens between our predicted start and end tokens.
    All the ground-truth answers are also present in each `SquadExample` object.
    We calculate the percentage of data points where the span of text obtained
    from model predictions matches one of the ground-truth answers.
    """

    def __init__(self, x_eval, y_eval):
        self.x_eval = x_eval
        self.y_eval = y_eval

    def on_epoch_end(self, epoch, logs=None):
        pred_start, pred_end = self.model.predict(self.x_eval)
        count = 0
        eval_examples_no_skip = [_ for _ in eval_squad_examples if _.skip == False]
        for idx, (start, end) in enumerate(zip(pred_start, pred_end)):
            squad_eg = eval_examples_no_skip[idx]
            offsets = squad_eg.context_token_to_char
            start = np.argmax(start)
            end = np.argmax(end)
            if start >= len(offsets):
                continue
            pred_char_start = offsets[start][0]
            if end < len(offsets):
                pred_char_end = offsets[end][1]
                pred_ans = squad_eg.context[pred_char_start:pred_char_end]
            else:
                pred_ans = squad_eg.context[pred_char_start:]

            normalized_pred_ans = normalize_text(pred_ans)
            normalized_true_ans = [normalize_text(_) for _ in squad_eg.all_answers]
            if normalized_pred_ans in normalized_true_ans:
                count += 1
        acc = count / len(self.y_eval[0])
        print(f"\nepoch={epoch+1}, exact match score={acc:.2f}")

训练和评估

exact_match_callback = ExactMatch(x_eval, y_eval)
model.fit(
    x_train,
    y_train,
    epochs=1,  # For demonstration, 3 epochs are recommended
    verbose=2,
    batch_size=64,
    callbacks=[exact_match_callback],
)
epoch=1, exact match score=0.78
1346/1346 - 350s - activation_7_loss: 1.3488 - loss: 2.5905 - activation_8_loss: 1.2417

<tensorflow.python.keras.callbacks.History at 0x7fc78b4458d0>