代码示例 / 自然语言处理 / 使用 BERT 进行语义相似度计算

使用 BERT 进行语义相似度计算

作者: Mohamad Merchant
创建日期 2020/08/15
上次修改日期 2020/08/29
描述:在 SNLI 语料库上微调 BERT 模型进行自然语言推理。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


引言

语义相似度是指确定两个句子在含义上有多相似。本示例演示了如何使用 SNLI(斯坦福自然语言推理)语料库,利用 Transformer 来预测句子的语义相似度。我们将微调一个 BERT 模型,该模型接收两个句子作为输入,并输出这两个句子的相似度得分。

参考文献


设置

注意:请通过 pip install transformers 安装 HuggingFace 的 transformers(版本 >= 2.11.0)。

import numpy as np
import pandas as pd
import tensorflow as tf
import transformers

配置

max_length = 128  # Maximum length of input sentence to the model.
batch_size = 32
epochs = 2

# Labels in our dataset.
labels = ["contradiction", "entailment", "neutral"]

加载数据

!curl -LO https://raw.githubusercontent.com/MohamadMerchant/SNLI/master/data.tar.gz
!tar -xvzf data.tar.gz
# There are more than 550k samples in total; we will use 100k for this example.
train_df = pd.read_csv("SNLI_Corpus/snli_1.0_train.csv", nrows=100000)
valid_df = pd.read_csv("SNLI_Corpus/snli_1.0_dev.csv")
test_df = pd.read_csv("SNLI_Corpus/snli_1.0_test.csv")

# Shape of the data
print(f"Total train samples : {train_df.shape[0]}")
print(f"Total validation samples: {valid_df.shape[0]}")
print(f"Total test samples: {valid_df.shape[0]}")
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 11.1M  100 11.1M    0     0  5231k      0  0:00:02  0:00:02 --:--:-- 5231k
SNLI_Corpus/
SNLI_Corpus/snli_1.0_dev.csv
SNLI_Corpus/snli_1.0_train.csv
SNLI_Corpus/snli_1.0_test.csv

Total train samples : 100000
Total validation samples: 10000
Total test samples: 10000

数据集概述

  • sentence1:提供给配对作者的前提文本。
  • sentence2:配对作者撰写的假设文本。
  • similarity:这是大多数标注者选择的标签。如果不存在多数,则使用标签“ - ”(我们将跳过此类样本)。

以下是我们数据集中“similarity”标签的值

  • 矛盾:句子之间没有相似之处。
  • 蕴含:句子具有相似的含义。
  • 中性:句子是中性的。

让我们看一下数据集中的一组样本

print(f"Sentence1: {train_df.loc[1, 'sentence1']}")
print(f"Sentence2: {train_df.loc[1, 'sentence2']}")
print(f"Similarity: {train_df.loc[1, 'similarity']}")
Sentence1: A person on a horse jumps over a broken down airplane.
Sentence2: A person is at a diner, ordering an omelette.
Similarity: contradiction

预处理

# We have some NaN entries in our train data, we will simply drop them.
print("Number of missing values")
print(train_df.isnull().sum())
train_df.dropna(axis=0, inplace=True)
Number of missing values
similarity    0
sentence1     0
sentence2     3
dtype: int64

训练目标的分布。

print("Train Target Distribution")
print(train_df.similarity.value_counts())
Train Target Distribution
entailment       33384
contradiction    33310
neutral          33193
-                  110
Name: similarity, dtype: int64

验证目标的分布。

print("Validation Target Distribution")
print(valid_df.similarity.value_counts())
Validation Target Distribution
entailment       3329
contradiction    3278
neutral          3235
-                 158
Name: similarity, dtype: int64

值“ - ”出现在我们的训练和验证目标中。我们将跳过这些样本。

train_df = (
    train_df[train_df.similarity != "-"]
    .sample(frac=1.0, random_state=42)
    .reset_index(drop=True)
)
valid_df = (
    valid_df[valid_df.similarity != "-"]
    .sample(frac=1.0, random_state=42)
    .reset_index(drop=True)
)

对训练、验证和测试标签进行独热编码。

train_df["label"] = train_df["similarity"].apply(
    lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_train = tf.keras.utils.to_categorical(train_df.label, num_classes=3)

valid_df["label"] = valid_df["similarity"].apply(
    lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_val = tf.keras.utils.to_categorical(valid_df.label, num_classes=3)

test_df["label"] = test_df["similarity"].apply(
    lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_test = tf.keras.utils.to_categorical(test_df.label, num_classes=3)

创建自定义数据生成器

class BertSemanticDataGenerator(tf.keras.utils.Sequence):
    """Generates batches of data.

    Args:
        sentence_pairs: Array of premise and hypothesis input sentences.
        labels: Array of labels.
        batch_size: Integer batch size.
        shuffle: boolean, whether to shuffle the data.
        include_targets: boolean, whether to include the labels.

    Returns:
        Tuples `([input_ids, attention_mask, `token_type_ids], labels)`
        (or just `[input_ids, attention_mask, `token_type_ids]`
         if `include_targets=False`)
    """

    def __init__(
        self,
        sentence_pairs,
        labels,
        batch_size=batch_size,
        shuffle=True,
        include_targets=True,
    ):
        self.sentence_pairs = sentence_pairs
        self.labels = labels
        self.shuffle = shuffle
        self.batch_size = batch_size
        self.include_targets = include_targets
        # Load our BERT Tokenizer to encode the text.
        # We will use base-base-uncased pretrained model.
        self.tokenizer = transformers.BertTokenizer.from_pretrained(
            "bert-base-uncased", do_lower_case=True
        )
        self.indexes = np.arange(len(self.sentence_pairs))
        self.on_epoch_end()

    def __len__(self):
        # Denotes the number of batches per epoch.
        return len(self.sentence_pairs) // self.batch_size

    def __getitem__(self, idx):
        # Retrieves the batch of index.
        indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
        sentence_pairs = self.sentence_pairs[indexes]

        # With BERT tokenizer's batch_encode_plus batch of both the sentences are
        # encoded together and separated by [SEP] token.
        encoded = self.tokenizer.batch_encode_plus(
            sentence_pairs.tolist(),
            add_special_tokens=True,
            max_length=max_length,
            return_attention_mask=True,
            return_token_type_ids=True,
            pad_to_max_length=True,
            return_tensors="tf",
        )

        # Convert batch of encoded features to numpy array.
        input_ids = np.array(encoded["input_ids"], dtype="int32")
        attention_masks = np.array(encoded["attention_mask"], dtype="int32")
        token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")

        # Set to true if data generator is used for training/validation.
        if self.include_targets:
            labels = np.array(self.labels[indexes], dtype="int32")
            return [input_ids, attention_masks, token_type_ids], labels
        else:
            return [input_ids, attention_masks, token_type_ids]

    def on_epoch_end(self):
        # Shuffle indexes after each epoch if shuffle is set to True.
        if self.shuffle:
            np.random.RandomState(42).shuffle(self.indexes)

构建模型

# Create the model under a distribution strategy scope.
strategy = tf.distribute.MirroredStrategy()

with strategy.scope():
    # Encoded token ids from BERT tokenizer.
    input_ids = tf.keras.layers.Input(
        shape=(max_length,), dtype=tf.int32, name="input_ids"
    )
    # Attention masks indicates to the model which tokens should be attended to.
    attention_masks = tf.keras.layers.Input(
        shape=(max_length,), dtype=tf.int32, name="attention_masks"
    )
    # Token type ids are binary masks identifying different sequences in the model.
    token_type_ids = tf.keras.layers.Input(
        shape=(max_length,), dtype=tf.int32, name="token_type_ids"
    )
    # Loading pretrained BERT model.
    bert_model = transformers.TFBertModel.from_pretrained("bert-base-uncased")
    # Freeze the BERT model to reuse the pretrained features without modifying them.
    bert_model.trainable = False

    bert_output = bert_model.bert(
        input_ids, attention_mask=attention_masks, token_type_ids=token_type_ids
    )
    sequence_output = bert_output.last_hidden_state
    pooled_output = bert_output.pooler_output
    # Add trainable layers on top of frozen layers to adapt the pretrained features on the new data.
    bi_lstm = tf.keras.layers.Bidirectional(
        tf.keras.layers.LSTM(64, return_sequences=True)
    )(sequence_output)
    # Applying hybrid pooling approach to bi_lstm sequence output.
    avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm)
    max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm)
    concat = tf.keras.layers.concatenate([avg_pool, max_pool])
    dropout = tf.keras.layers.Dropout(0.3)(concat)
    output = tf.keras.layers.Dense(3, activation="softmax")(dropout)
    model = tf.keras.models.Model(
        inputs=[input_ids, attention_masks, token_type_ids], outputs=output
    )

    model.compile(
        optimizer=tf.keras.optimizers.Adam(),
        loss="categorical_crossentropy",
        metrics=["acc"],
    )


print(f"Strategy: {strategy}")
model.summary()
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=433.0, style=ProgressStyle(description_…
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=536063208.0, style=ProgressStyle(descri…
Strategy: <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7faf9dc63a90>
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_ids (InputLayer)          [(None, 128)]        0                                            
__________________________________________________________________________________________________
attention_masks (InputLayer)    [(None, 128)]        0                                            
__________________________________________________________________________________________________
token_type_ids (InputLayer)     [(None, 128)]        0                                            
__________________________________________________________________________________________________
tf_bert_model (TFBertModel)     ((None, 128, 768), ( 109482240   input_ids[0][0]                  
                                                                 attention_masks[0][0]            
                                                                 token_type_ids[0][0]             
__________________________________________________________________________________________________
bidirectional (Bidirectional)   (None, 128, 128)     426496      tf_bert_model[0][0]              
__________________________________________________________________________________________________
global_average_pooling1d (Globa (None, 128)          0           bidirectional[0][0]              
__________________________________________________________________________________________________
global_max_pooling1d (GlobalMax (None, 128)          0           bidirectional[0][0]              
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 256)          0           global_average_pooling1d[0][0]   
                                                                 global_max_pooling1d[0][0]       
__________________________________________________________________________________________________
dropout_37 (Dropout)            (None, 256)          0           concatenate[0][0]                
__________________________________________________________________________________________________
dense (Dense)                   (None, 3)            771         dropout_37[0][0]                 
==================================================================================================
Total params: 109,909,507
Trainable params: 427,267
Non-trainable params: 109,482,240
__________________________________________________________________________________________________

创建训练和验证数据生成器

train_data = BertSemanticDataGenerator(
    train_df[["sentence1", "sentence2"]].values.astype("str"),
    y_train,
    batch_size=batch_size,
    shuffle=True,
)
valid_data = BertSemanticDataGenerator(
    valid_df[["sentence1", "sentence2"]].values.astype("str"),
    y_val,
    batch_size=batch_size,
    shuffle=False,
)
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=231508.0, style=ProgressStyle(descripti…

训练模型

仅对顶层进行训练以执行“特征提取”,这将允许模型使用预训练模型的表示。

history = model.fit(
    train_data,
    validation_data=valid_data,
    epochs=epochs,
    use_multiprocessing=True,
    workers=-1,
)
Epoch 1/2
3121/3121 [==============================] - 666s 213ms/step - loss: 0.6925 - acc: 0.7049 - val_loss: 0.5294 - val_acc: 0.7899
Epoch 2/2
3121/3121 [==============================] - 661s 212ms/step - loss: 0.5917 - acc: 0.7587 - val_loss: 0.4955 - val_acc: 0.8052

微调

此步骤必须仅在特征提取模型在新数据上训练收敛后执行。

这是一个可选的最后一步,其中 bert_model 被解冻并以非常低的学习率重新训练。这可以通过逐步调整预训练特征以适应新数据来提供有意义的改进。

# Unfreeze the bert_model.
bert_model.trainable = True
# Recompile the model to make the change effective.
model.compile(
    optimizer=tf.keras.optimizers.Adam(1e-5),
    loss="categorical_crossentropy",
    metrics=["accuracy"],
)
model.summary()
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_ids (InputLayer)          [(None, 128)]        0                                            
__________________________________________________________________________________________________
attention_masks (InputLayer)    [(None, 128)]        0                                            
__________________________________________________________________________________________________
token_type_ids (InputLayer)     [(None, 128)]        0                                            
__________________________________________________________________________________________________
tf_bert_model (TFBertModel)     ((None, 128, 768), ( 109482240   input_ids[0][0]                  
                                                                 attention_masks[0][0]            
                                                                 token_type_ids[0][0]             
__________________________________________________________________________________________________
bidirectional (Bidirectional)   (None, 128, 128)     426496      tf_bert_model[0][0]              
__________________________________________________________________________________________________
global_average_pooling1d (Globa (None, 128)          0           bidirectional[0][0]              
__________________________________________________________________________________________________
global_max_pooling1d (GlobalMax (None, 128)          0           bidirectional[0][0]              
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 256)          0           global_average_pooling1d[0][0]   
                                                                 global_max_pooling1d[0][0]       
__________________________________________________________________________________________________
dropout_37 (Dropout)            (None, 256)          0           concatenate[0][0]                
__________________________________________________________________________________________________
dense (Dense)                   (None, 3)            771         dropout_37[0][0]                 
==================================================================================================
Total params: 109,909,507
Trainable params: 109,909,507
Non-trainable params: 0
__________________________________________________________________________________________________

端到端训练整个模型

history = model.fit(
    train_data,
    validation_data=valid_data,
    epochs=epochs,
    use_multiprocessing=True,
    workers=-1,
)
Epoch 1/2
3121/3121 [==============================] - 1574s 504ms/step - loss: 0.4698 - accuracy: 0.8181 - val_loss: 0.3787 - val_accuracy: 0.8598
Epoch 2/2
3121/3121 [==============================] - 1569s 503ms/step - loss: 0.3516 - accuracy: 0.8702 - val_loss: 0.3416 - val_accuracy: 0.8757

在测试集上评估模型

test_data = BertSemanticDataGenerator(
    test_df[["sentence1", "sentence2"]].values.astype("str"),
    y_test,
    batch_size=batch_size,
    shuffle=False,
)
model.evaluate(test_data, verbose=1)
312/312 [==============================] - 55s 177ms/step - loss: 0.3697 - accuracy: 0.8629

[0.3696725070476532, 0.8628805875778198]

自定义句子的推理

def check_similarity(sentence1, sentence2):
    sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
    test_data = BertSemanticDataGenerator(
        sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False,
    )

    proba = model.predict(test_data[0])[0]
    idx = np.argmax(proba)
    proba = f"{proba[idx]: .2f}%"
    pred = labels[idx]
    return pred, proba

检查一些示例句子对的结果。

sentence1 = "Two women are observing something together."
sentence2 = "Two women are standing with their eyes closed."
check_similarity(sentence1, sentence2)
('contradiction', ' 0.91%')

检查一些示例句子对的结果。

sentence1 = "A smiling costumed woman is holding an umbrella"
sentence2 = "A happy woman in a fairy costume holds an umbrella"
check_similarity(sentence1, sentence2)
('neutral', ' 0.88%')

检查一些示例句子对的结果

sentence1 = "A soccer game with multiple males playing"
sentence2 = "Some men are playing a sport"
check_similarity(sentence1, sentence2)
('entailment', ' 0.94%')

HuggingFace 上的可用示例

训练后的模型 演示
Generic badge Generic badge