代码示例 / 自然语言处理 / 多模态蕴含

多模态蕴涵

作者:Sayak Paul
创建日期 2021/08/08
最后修改日期 2025/01/03
描述:训练多模态模型以预测蕴含关系。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码


简介

在此示例中,我们将构建并训练一个多模态蕴含预测模型。我们将使用 Google Research 最近推出的 多模态蕴含数据集

什么是多模态蕴含?

在社交媒体平台上,为了近实时地审核和管理内容,我们可能希望找到以下问题的答案:

  • 给定的信息是否与其他信息相矛盾?
  • 给定的信息是否暗示了其他信息?

在 NLP 中,此任务称为分析*文本蕴含*。然而,这仅限于信息来自文本内容的情况。实际上,可用的信息通常不仅来自文本内容,还来自文本、图像、音频、视频等的组合。*多模态蕴含*只是文本蕴含向各种新输入模态的扩展。

要求

此示例需要 TensorFlow 2.5 或更高版本。此外,BERT 模型(Devlin 等人)还需要 TensorFlow Hub 和 TensorFlow Text。可以使用以下命令安装这些库:

!pip install -q tensorflow_text
 [notice] A new release of pip is available: 24.0 -> 24.3.1
 [notice] To update, run: pip install --upgrade pip

导入

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import random
import math
from skimage.io import imread
from skimage.transform import resize
from PIL import Image
import os

os.environ["KERAS_BACKEND"] = "jax"  # or tensorflow, or torch

import keras
import keras_hub
from keras.utils import PyDataset

定义标签映射

label_map = {"Contradictory": 0, "Implies": 1, "NoEntailment": 2}

收集数据集

原始数据集可在此处获取。它提供了托管在 Twitter 照片存储系统 Photo Blob Storage(简称 PBS)上的图像 URL(Photo Blob Storage (PBS for short))。我们将使用下载的图像以及原始数据集中包含的其他数据。感谢Nilabhra Roy Chowdhury准备图像数据。

image_base_path = keras.utils.get_file(
    "tweet_images",
    "https://github.com/sayakpaul/Multimodal-Entailment-Baseline/releases/download/v1.0.0/tweet_images.tar.gz",
    untar=True,
)

读取数据集并应用基本预处理

df = pd.read_csv(
    "https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/csvs/tweets.csv"
).iloc[
    0:1000
]  # Resources conservation since these are examples and not SOTA
df.sample(10)
id_1 text_1 image_1 id_2 text_2 image_2 标签
815 1370730009921343490 Sticky bombs are a threat as they have magnets... http://pbs.twimg.com/media/EwXOFrgVIAEkfjR.jpg 1370731764906295307 Sticky bombs are a threat as they have magnets... http://pbs.twimg.com/media/EwXRK_3XEAA6Q6F.jpg NoEntailment
615 1364119737446395905 Daily Horoscope for #Cancer 2.23.21 ♊️❤️✨ #Hor... http://pbs.twimg.com/media/Eu5Te44VgAIo1jZ.jpg 1365218087906078720 Daily Horoscope for #Cancer 2.26.21 ♊️❤️✨ #Hor... http://pbs.twimg.com/media/EvI6nW4WQAA4_E_.jpg NoEntailment
624 1335542260923068417 The Reindeer Run is back and this year's run i... http://pbs.twimg.com/media/Eoi99DyXEAE0AFV.jpg 1335872932267122689 Get your red nose and antlers on for the 2020 ... http://pbs.twimg.com/media/Eon5Wk7XUAE-CxN.jpg NoEntailment
970 1345058844439949312 Participants needed for online survey!\n\nTopi... http://pbs.twimg.com/media/Eqqb4_MXcAA-Pvu.jpg 1361211461792632835 Participants needed for top-ranked study on Su... http://pbs.twimg.com/media/EuPz0GwXMAMDklt.jpg NoEntailment
456 1379831489043521545 comission for @NanoBiteTSF \nenjoyed bros and ... http://pbs.twimg.com/media/EyVf0_VXMAMtRaL.jpg 1380660763749142531 another comission for @NanoBiteTSF \nhope you ... http://pbs.twimg.com/media/EykW0iXXAAA2SBC.jpg NoEntailment
917 1336180735191891968 (2/10)\n(Seoul Jung-gu) Market cluster ->\n... http://pbs.twimg.com/media/EosRFpGVQAIeuYG.jpg 1356113330536996866 (3/11)\n(Seoul Dongdaemun-gu) Goshitel cluster... http://pbs.twimg.com/media/EtHhj7QVcAAibvF.jpg NoEntailment
276 1339270210029834241 Today the message of freedom goes to Kisoro, R... http://pbs.twimg.com/media/EpVK3pfXcAAZ5Du.jpg 1340881971132698625 Today the message of freedom is going to the p... http://pbs.twimg.com/media/EpvDorkXYAEyz4g.jpg Implies
35 1360186999836200961 Bitcoin in Argentina - Google Trends https://t... http://pbs.twimg.com/media/EuBa3UxXYAMb99_.jpg 1382778703055228929 Argentina wants #Bitcoin https://#/9lNxJdxX... http://pbs.twimg.com/media/EzCbUFNXMAABwPD.jpg Implies
762 1370824756400959491 $HSBA.L: The long term trend is positive and t... http://pbs.twimg.com/media/EwYl2hPWYAE2niq.png 1374347458126475269 Although the technical rating is only medium, ... http://pbs.twimg.com/media/ExKpuwrWgAAktg4.png NoEntailment
130 1373789433607172097 I've just watched episode S01 | E05 of Ted Las... http://pbs.twimg.com/media/ExCuNbDXAAQaPiL.jpg 1374913509662806016 I've just watched episode S01 | E06 of Ted Las... http://pbs.twimg.com/media/ExSsjRQWgAUVRPz.jpg Contradictory

我们感兴趣的列如下:

  • text_1
  • image_1
  • text_2
  • image_2
  • 标签

蕴含任务的表述如下:

给定 (text_1, image_1) 和 (text_2, image_2) 对,它们是否蕴含(或不蕴含或矛盾)彼此?

我们已经下载了图像。image_1 已下载为文件名 id1image2 已下载为文件名 id2。在下一步中,我们将向 df 添加两列:image_1image_2 的文件路径。

images_one_paths = []
images_two_paths = []

for idx in range(len(df)):
    current_row = df.iloc[idx]
    id_1 = current_row["id_1"]
    id_2 = current_row["id_2"]
    extentsion_one = current_row["image_1"].split(".")[-1]
    extentsion_two = current_row["image_2"].split(".")[-1]

    image_one_path = os.path.join(image_base_path, str(id_1) + f".{extentsion_one}")
    image_two_path = os.path.join(image_base_path, str(id_2) + f".{extentsion_two}")

    images_one_paths.append(image_one_path)
    images_two_paths.append(image_two_path)

df["image_1_path"] = images_one_paths
df["image_2_path"] = images_two_paths

# Create another column containing the integer ids of
# the string labels.
df["label_idx"] = df["label"].apply(lambda x: label_map[x])

数据集可视化

def visualize(idx):
    current_row = df.iloc[idx]
    image_1 = plt.imread(current_row["image_1_path"])
    image_2 = plt.imread(current_row["image_2_path"])
    text_1 = current_row["text_1"]
    text_2 = current_row["text_2"]
    label = current_row["label"]

    plt.subplot(1, 2, 1)
    plt.imshow(image_1)
    plt.axis("off")
    plt.title("Image One")
    plt.subplot(1, 2, 2)
    plt.imshow(image_1)
    plt.axis("off")
    plt.title("Image Two")
    plt.show()

    print(f"Text one: {text_1}")
    print(f"Text two: {text_2}")
    print(f"Label: {label}")


random_idx = random.choice(range(len(df)))
visualize(random_idx)

random_idx = random.choice(range(len(df)))
visualize(random_idx)

png

Text one: World #water day reminds that we should follow the #guidelines to save water for us. This Day is an #opportunity to learn more about water related issues, be #inspired to tell others and take action to make a difference. Just remember, every #drop counts.
#WorldWaterDay2021 https://#/bQ9Hp53qUj
Text two: Water is an extremely precious resource without which life would be impossible. We need to ensure that water is used judiciously, this #WorldWaterDay, let us pledge to reduce water wastage and conserve it.
#WorldWaterDay2021 https://#/0KWnd8Kn8r
Label: NoEntailment

png

Text one: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟬: 𝗗𝗬𝗟𝗔𝗡 𝗙𝗜𝗧𝗭𝗦𝗜𝗠𝗢𝗡𝗦
Dylan Fitzsimons is a young passionate greyhound supporter. 
He and @Drakesport enjoy a great chat about everything greyhounds!
Listen: https://#/B2XgMp0yaO
#GoGreyhoundRacing #ThisRunsDeep #TalkingDogs https://#/crBiSqHUvp
Text two: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟳: 𝗣𝗜𝗢 𝗕𝗔𝗥𝗥𝗬 🎧
Well known within greyhound circles, Pio Barry shares some wonderful greyhound racing stories with @Drakesport in this podcast episode.
A great chat. 
Listen: https://#/mJTVlPHzp0
#TalkingDogs #GoGreyhoundRacing #ThisRunsDeep https://#/QbxtCpLcGm
Label: NoEntailment

训练/测试集划分

该数据集存在类别不平衡问题。我们可以在下面的单元格中确认这一点。

df["label"].value_counts()
label
NoEntailment     819
Contradictory     92
Implies           89
Name: count, dtype: int64

为了解决这个问题,我们将采用分层抽样。

# 10% for test
train_df, test_df = train_test_split(
    df, test_size=0.1, stratify=df["label"].values, random_state=42
)
# 5% for validation
train_df, val_df = train_test_split(
    train_df, test_size=0.05, stratify=train_df["label"].values, random_state=42
)

print(f"Total training examples: {len(train_df)}")
print(f"Total validation examples: {len(val_df)}")
print(f"Total test examples: {len(test_df)}")
Total training examples: 855
Total validation examples: 45
Total test examples: 100

数据输入管道

Keras Hub 提供了各种 BERT 系列模型。每个模型都带有一个相应的预处理层。您可以在此资源中了解有关这些模型及其预处理层的更多信息。

为了使此示例的运行时相对较短,我们将使用原始 BERT 模型的一个 base_unacased 变体。

使用 KerasHub 进行文本预处理

text_preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
    "bert_base_en_uncased",
    sequence_length=128,
)

对样本输入运行预处理器

idx = random.choice(range(len(train_df)))
row = train_df.iloc[idx]
sample_text_1, sample_text_2 = row["text_1"], row["text_2"]
print(f"Text 1: {sample_text_1}")
print(f"Text 2: {sample_text_2}")

test_text = [sample_text_1, sample_text_2]
text_preprocessed = text_preprocessor(test_text)

print("Keys           : ", list(text_preprocessed.keys()))
print("Shape Token Ids : ", text_preprocessed["token_ids"].shape)
print("Token Ids       : ", text_preprocessed["token_ids"][0, :16])
print(" Shape Padding Mask     : ", text_preprocessed["padding_mask"].shape)
print("Padding Mask     : ", text_preprocessed["padding_mask"][0, :16])
print("Shape Segment Ids : ", text_preprocessed["segment_ids"].shape)
print("Segment Ids       : ", text_preprocessed["segment_ids"][0, :16])
An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.

Text 1: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered  02 bags on 20.02.2021 at Station platform and in T/No.08310 Spl. respectively and  handed over to their actual owner correctly. @RPF_INDIA https://#/bdEBl2egIc
Text 2: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered  02 bags on 20.02.2021 at Station platform and in T/No.08310 (JAT-SBP) Spl. respectively and  handed over to their actual owner correctly. @RPF_INDIA https://#/Q5l2AtA4uq
Keys           :  ['token_ids', 'padding_mask', 'segment_ids']
Shape Token Ids :  (2, 128)
Token Ids       :  [  101  1996  1054 14376  8840 11783 16098  1998  6045  2401  2695  1997
  8086  2072  2407  2031]
 Shape Padding Mask     :  (2, 128)
Padding Mask     :  [ True  True  True  True  True  True  True  True  True  True  True  True
  True  True  True  True]
Shape Segment Ids :  (2, 128)
Segment Ids       :  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

我们现在将从数据框创建tf.data.Dataset对象。

请注意,文本输入将在数据输入管道中进行预处理。但预处理模块也可以是相应 BERT 模型的一部分。这有助于减少训练/服务偏差,并使我们的模型能够处理原始文本输入。请遵循本教程,了解如何将预处理模块直接集成到模型中。

def dataframe_to_dataset(dataframe):
    columns = ["image_1_path", "image_2_path", "text_1", "text_2", "label_idx"]
    ds = UnifiedPyDataset(
        dataframe,
        batch_size=32,
        workers=4,
    )
    return ds

预处理实用程序

bert_input_features = ["padding_mask", "segment_ids", "token_ids"]


def preprocess_text(text_1, text_2):
    output = text_preprocessor([text_1, text_2])
    output = {
        feature: keras.ops.reshape(output[feature], [-1])
        for feature in bert_input_features
    }
    return output

创建最终数据集,方法改编自 PyDataset 文档字符串。

class UnifiedPyDataset(PyDataset):
    """A Keras-compatible dataset that processes a DataFrame for TensorFlow, JAX, and PyTorch."""

    def __init__(
        self,
        df,
        batch_size=32,
        workers=4,
        use_multiprocessing=False,
        max_queue_size=10,
        **kwargs,
    ):
        """
        Args:
            df: pandas DataFrame with data
            batch_size: Batch size for dataset
            workers: Number of workers to use for parallel loading (Keras)
            use_multiprocessing: Whether to use multiprocessing
            max_queue_size: Maximum size of the data queue for parallel loading
        """
        super().__init__(**kwargs)
        self.dataframe = df
        columns = ["image_1_path", "image_2_path", "text_1", "text_2"]

        # image files
        self.image_x_1 = self.dataframe["image_1_path"]
        self.image_x_2 = self.dataframe["image_1_path"]
        self.image_y = self.dataframe["label_idx"]

        # text files
        self.text_x_1 = self.dataframe["text_1"]
        self.text_x_2 = self.dataframe["text_2"]
        self.text_y = self.dataframe["label_idx"]

        # general
        self.batch_size = batch_size
        self.workers = workers
        self.use_multiprocessing = use_multiprocessing
        self.max_queue_size = max_queue_size

    def __getitem__(self, index):
        """
        Fetches a batch of data from the dataset at the given index.
        """

        # Return x, y for batch idx.
        low = index * self.batch_size
        # Cap upper bound at array length; the last batch may be smaller
        # if the total number of items is not a multiple of batch size.

        high_image_1 = min(low + self.batch_size, len(self.image_x_1))
        high_image_2 = min(low + self.batch_size, len(self.image_x_2))

        high_text_1 = min(low + self.batch_size, len(self.text_x_1))
        high_text_2 = min(low + self.batch_size, len(self.text_x_1))

        # images files
        batch_image_x_1 = self.image_x_1[low:high_image_1]
        batch_image_y_1 = self.image_y[low:high_image_1]

        batch_image_x_2 = self.image_x_2[low:high_image_2]
        batch_image_y_2 = self.image_y[low:high_image_2]

        # text files
        batch_text_x_1 = self.text_x_1[low:high_text_1]
        batch_text_y_1 = self.text_y[low:high_text_1]

        batch_text_x_2 = self.text_x_2[low:high_text_2]
        batch_text_y_2 = self.text_y[low:high_text_2]

        # image number 1 inputs
        image_1 = [
            resize(imread(file_name), (128, 128)) for file_name in batch_image_x_1
        ]
        image_1 = [
            (  # exeperienced some shapes which were different from others.
                np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
                if img.shape[2] == 4
                else img
            )
            for img in image_1
        ]
        image_1 = np.array(image_1)

        # Both text inputs to the model, return a dict for inputs to BertBackbone
        text = {
            key: np.array(
                [
                    d[key]
                    for d in [
                        preprocess_text(file_path1, file_path2)
                        for file_path1, file_path2 in zip(
                            batch_text_x_1, batch_text_x_2
                        )
                    ]
                ]
            )
            for key in ["padding_mask", "token_ids", "segment_ids"]
        }

        # Image number 2 model inputs
        image_2 = [
            resize(imread(file_name), (128, 128)) for file_name in batch_image_x_2
        ]
        image_2 = [
            (  # exeperienced some shapes which were different from others
                np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
                if img.shape[2] == 4
                else img
            )
            for img in image_2
        ]
        # Stack the list comprehension to an nd.array
        image_2 = np.array(image_2)

        return (
            {
                "image_1": image_1,
                "image_2": image_2,
                "padding_mask": text["padding_mask"],
                "segment_ids": text["segment_ids"],
                "token_ids": text["token_ids"],
            },
            # Target lables
            np.array(batch_image_y_1),
        )

    def __len__(self):
        """
        Returns the number of batches in the dataset.
        """
        return math.ceil(len(self.dataframe) / self.batch_size)

创建训练、验证和测试数据集

def prepare_dataset(dataframe):
    ds = dataframe_to_dataset(dataframe)
    return ds


train_ds = prepare_dataset(train_df)
validation_ds = prepare_dataset(val_df)
test_ds = prepare_dataset(test_df)

模型构建实用程序

我们的最终模型将接受两个图像及其对应的文本。图像将直接馈入模型,而文本输入将首先进行预处理,然后输入模型。以下是此方法的视觉说明:

模型由以下元素组成:

  • 独立的图像编码器。我们将为此使用在 ImageNet-1k 数据集上预训练的ResNet50V2
  • 独立的图像编码器。为此将使用预训练的 BERT。

在提取完各个嵌入后,它们将被投影到相同的空间。最后,将它们的投影连接起来并馈送到最终分类层。

这是一个多类别分类问题,涉及以下类别:

  • NoEntailment
  • Implies
  • Contradictory

project_embeddings()create_vision_encoder()create_text_encoder() 实用程序参考自此示例

投影实用程序

def project_embeddings(
    embeddings, num_projection_layers, projection_dims, dropout_rate
):
    projected_embeddings = keras.layers.Dense(units=projection_dims)(embeddings)
    for _ in range(num_projection_layers):
        x = keras.ops.nn.gelu(projected_embeddings)
        x = keras.layers.Dense(projection_dims)(x)
        x = keras.layers.Dropout(dropout_rate)(x)
        x = keras.layers.Add()([projected_embeddings, x])
        projected_embeddings = keras.layers.LayerNormalization()(x)
    return projected_embeddings

视觉编码器实用程序

def create_vision_encoder(
    num_projection_layers, projection_dims, dropout_rate, trainable=False
):
    # Load the pre-trained ResNet50V2 model to be used as the base encoder.
    resnet_v2 = keras.applications.ResNet50V2(
        include_top=False, weights="imagenet", pooling="avg"
    )
    # Set the trainability of the base encoder.
    for layer in resnet_v2.layers:
        layer.trainable = trainable

    # Receive the images as inputs.
    image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
    image_2 = keras.Input(shape=(128, 128, 3), name="image_2")

    # Preprocess the input image.
    preprocessed_1 = keras.applications.resnet_v2.preprocess_input(image_1)
    preprocessed_2 = keras.applications.resnet_v2.preprocess_input(image_2)

    # Generate the embeddings for the images using the resnet_v2 model
    # concatenate them.
    embeddings_1 = resnet_v2(preprocessed_1)
    embeddings_2 = resnet_v2(preprocessed_2)
    embeddings = keras.layers.Concatenate()([embeddings_1, embeddings_2])

    # Project the embeddings produced by the model.
    outputs = project_embeddings(
        embeddings, num_projection_layers, projection_dims, dropout_rate
    )
    # Create the vision encoder model.
    return keras.Model([image_1, image_2], outputs, name="vision_encoder")

文本编码器实用程序

def create_text_encoder(
    num_projection_layers, projection_dims, dropout_rate, trainable=False
):
    # Load the pre-trained BERT BackBone using KerasHub.
    bert = keras_hub.models.BertBackbone.from_preset(
        "bert_base_en_uncased", num_classes=3
    )

    # Set the trainability of the base encoder.
    bert.trainable = trainable

    # Receive the text as inputs.
    bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
    inputs = {
        feature: keras.Input(shape=(256,), dtype="int32", name=feature)
        for feature in bert_input_features
    }

    # Generate embeddings for the preprocessed text using the BERT model.
    embeddings = bert(inputs)["pooled_output"]

    # Project the embeddings produced by the model.
    outputs = project_embeddings(
        embeddings, num_projection_layers, projection_dims, dropout_rate
    )
    # Create the text encoder model.
    return keras.Model(inputs, outputs, name="text_encoder")

多模态模型实用程序

def create_multimodal_model(
    num_projection_layers=1,
    projection_dims=256,
    dropout_rate=0.1,
    vision_trainable=False,
    text_trainable=False,
):
    # Receive the images as inputs.
    image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
    image_2 = keras.Input(shape=(128, 128, 3), name="image_2")

    # Receive the text as inputs.
    bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
    text_inputs = {
        feature: keras.Input(shape=(256,), dtype="int32", name=feature)
        for feature in bert_input_features
    }
    text_inputs = list(text_inputs.values())
    # Create the encoders.
    vision_encoder = create_vision_encoder(
        num_projection_layers, projection_dims, dropout_rate, vision_trainable
    )
    text_encoder = create_text_encoder(
        num_projection_layers, projection_dims, dropout_rate, text_trainable
    )

    # Fetch the embedding projections.
    vision_projections = vision_encoder([image_1, image_2])
    text_projections = text_encoder(text_inputs)

    # Concatenate the projections and pass through the classification layer.
    concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
    outputs = keras.layers.Dense(3, activation="softmax")(concatenated)
    return keras.Model([image_1, image_2, *text_inputs], outputs)


multimodal_model = create_multimodal_model()
keras.utils.plot_model(multimodal_model, show_shapes=True)

png

您还可以通过将 plot_model()expand_nested 参数设置为 True 来检查各个编码器的结构。建议您尝试构建此模型所涉及的不同超参数,并观察最终性能如何受到影响。


编译和训练模型

multimodal_model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

history = multimodal_model.fit(train_ds, validation_data=validation_ds, epochs=1)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)

1/27 [37m━━━━━━━━━━━━━━━━━━━━ 45:45 106s/step - accuracy: 0.0625 - loss: 1.6335

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



2/27 ━ [37m━━━━━━━━━━━━━━━━━━━ 42:14 101s/step - accuracy: 0.2422 - loss: 1.9508

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



3/27 ━━ [37m━━━━━━━━━━━━━━━━━━ 38:49 97s/step - accuracy: 0.3524 - loss: 2.0126

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



4/27 ━━ [37m━━━━━━━━━━━━━━━━━━ 37:09 97s/step - accuracy: 0.4284 - loss: 1.9870

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



5/27 ━━━ [37m━━━━━━━━━━━━━━━━━ 35:08 96s/step - accuracy: 0.4815 - loss: 1.9855

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



6/27 ━━━━ [37m━━━━━━━━━━━━━━━━ 31:56 91s/step - accuracy: 0.5210 - loss: 1.9939



7/27 ━━━━━ [37m━━━━━━━━━━━━━━━ 29:30 89s/step - accuracy: 0.5512 - loss: 1.9980



8/27 ━━━━━ [37m━━━━━━━━━━━━━━━ 27:12 86s/step - accuracy: 0.5750 - loss: 2.0061



9/27 ━━━━━━ [37m━━━━━━━━━━━━━━ 25:15 84s/step - accuracy: 0.5956 - loss: 1.9959



10/27 ━━━━━━━ [37m━━━━━━━━━━━━━ 23:33 83s/step - accuracy: 0.6120 - loss: 1.9738

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



11/27 ━━━━━━━━ [37m━━━━━━━━━━━━ 22:09 83s/step - accuracy: 0.6251 - loss: 1.9579

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



12/27 ━━━━━━━━ [37m━━━━━━━━━━━━ 20:59 84s/step - accuracy: 0.6357 - loss: 1.9524

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



13/27 ━━━━━━━━━ [37m━━━━━━━━━━━ 19:44 85s/step - accuracy: 0.6454 - loss: 1.9439

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



14/27 ━━━━━━━━━━ [37m━━━━━━━━━━ 18:22 85s/step - accuracy: 0.6540 - loss: 1.9346

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))']
  warnings.warn(msg)



15/27 ━━━━━━━━━━━ [37m━━━━━━━━━ 16:52 84s/step - accuracy: 0.6621 - loss: 1.9213

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



16/27 ━━━━━━━━━━━ [37m━━━━━━━━━ 15:29 85s/step - accuracy: 0.6693 - loss: 1.9101

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



17/27 ━━━━━━━━━━━━ [37m━━━━━━━━ 14:08 85s/step - accuracy: 0.6758 - loss: 1.9021

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



18/27 ━━━━━━━━━━━━━ [37m━━━━━━━ 12:45 85s/step - accuracy: 0.6819 - loss: 1.8916

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



19/27 ━━━━━━━━━━━━━━ [37m━━━━━━ 11:24 86s/step - accuracy: 0.6874 - loss: 1.8851

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



20/27 ━━━━━━━━━━━━━━ [37m━━━━━━ 10:00 86s/step - accuracy: 0.6925 - loss: 1.8791

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



21/27 ━━━━━━━━━━━━━━━ [37m━━━━━ 8:36 86s/step - accuracy: 0.6976 - loss: 1.8699

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



22/27 ━━━━━━━━━━━━━━━━ [37m━━━━ 7:11 86s/step - accuracy: 0.7020 - loss: 1.8623

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



23/27 ━━━━━━━━━━━━━━━━━ [37m━━━ 5:46 87s/step - accuracy: 0.7061 - loss: 1.8573

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



24/27 ━━━━━━━━━━━━━━━━━ [37m━━━ 4:20 87s/step - accuracy: 0.7100 - loss: 1.8534

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



25/27 ━━━━━━━━━━━━━━━━━━ [37m━━ 2:54 87s/step - accuracy: 0.7136 - loss: 1.8494

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



26/27 ━━━━━━━━━━━━━━━━━━━ [37m━ 1:27 87s/step - accuracy: 0.7170 - loss: 1.8449

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)



27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 88s/step - accuracy: 0.7201 - loss: 1.8414

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
  warnings.warn(

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
  warnings.warn(

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))']
  warnings.warn(msg)



27/27 ━━━━━━━━━━━━━━━━━━━━ 2508s 92s/step - accuracy: 0.7231 - loss: 1.8382 - val_accuracy: 0.8222 - val_loss: 1.7304


评估模型

_, acc = multimodal_model.evaluate(test_ds)
print(f"Accuracy on the test set: {round(acc * 100, 2)}%.")
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
  warnings.warn(

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
  warnings.warn(

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
  warnings.warn(msg)

1/4 ━━━━━ [37m━━━━━━━━━━━━━━━ 5:32 111s/step - accuracy: 0.7812 - loss: 1.9384



2/4 ━━━━━━━━━━ [37m━━━━━━━━━━ 2:10 65s/step - accuracy: 0.7969 - loss: 1.8931



3/4 ━━━━━━━━━━━━━━━ [37m━━━━━ 1:05 65s/step - accuracy: 0.8056 - loss: 1.8200

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))']
  warnings.warn(msg)



4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 49s/step - accuracy: 0.8092 - loss: 1.8075



4/4 ━━━━━━━━━━━━━━━━━━━━ 256s 49s/step - accuracy: 0.8113 - loss: 1.8000

Accuracy on the test set: 82.0%.

关于训练的附加说明

纳入正则化:

训练日志表明模型开始过拟合,并且可能受益于正则化。Dropout(Srivastava 等人)是一种简单而强大的正则化技术,我们可以在模型中使用它。但我们应该如何应用它呢?

我们总是可以在模型的不同层之间引入 Dropout(keras.layers.Dropout)。但这里有另一个食谱。我们的模型需要来自两种不同数据模态的输入。如果在推理过程中任一模态不存在怎么办?为了解决这个问题,我们可以在连接之前,将 Dropout 应用于各个投影。

vision_projections = keras.layers.Dropout(rate)(vision_projections)
text_projections = keras.layers.Dropout(rate)(text_projections)
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])

关注重要内容:

图像的所有部分都同等地对应于其文本对应物吗?可能不是。为了让我们的模型只关注与相应文本部分密切相关的图像中最重要部分,我们可以使用“交叉注意力”。

# Embeddings.
vision_projections = vision_encoder([image_1, image_2])
text_projections = text_encoder(text_inputs)

# Cross-attention (Luong-style).
query_value_attention_seq = keras.layers.Attention(use_scale=True, dropout=0.2)(
    [vision_projections, text_projections]
)
# Concatenate.
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
contextual = keras.layers.Concatenate()([concatenated, query_value_attention_seq])

要了解这一点,请参阅此笔记本

处理类别不平衡:

该数据集存在类别不平衡问题。检查上述模型的混淆矩阵会发现,它在少数类别上的表现不佳。如果我们使用了加权损失,训练将得到更好的指导。您可以查看此笔记本,该笔记本在模型训练期间考虑了类别不平衡。

仅使用文本输入:

另外,如果我们只为蕴含任务纳入文本输入怎么办?由于社交媒体平台上遇到的文本输入的性质,仅使用文本输入会损害最终性能。在类似的训练设置下,仅使用文本输入,我们在同一测试集上的 top-1 准确率可以达到 67.14%。有关详细信息,请参阅此笔记本

最后,这里有一个比较针对蕴含任务的不同方法的表格:

类型 标准
交叉熵
损失加权
交叉熵
Focal Loss
多模态 77.86% 67.86% 86.43%
仅文本 67.14% 11.43% 37.86%

您可以在此存储库中了解有关这些数字的实验是如何进行的。


最后说明

  • 我们在本示例中使用的架构对于可用的训练数据量来说太大了。它将受益于更多数据。
  • 我们使用了原始 BERT 模型的一个较小变体。使用更大的变体,性能很有可能得到改善。TensorFlow Hub 提供了许多不同的 BERT 模型供您尝试。
  • 我们保持预训练模型冻结。在多模态蕴含任务上对它们进行微调可能会带来更好的性能。
  • 我们为多模态蕴含任务构建了一个简单的基线模型。已经提出了各种方法来解决蕴含问题。这个演示文稿来自Recognizing Multimodal Entailment教程,提供了全面的概述。

您可以使用托管在Hugging Face Hub上的训练模型,并在Hugging Face Spaces上尝试演示。