作者:Sayak Paul
创建日期 2021/08/08
最后修改日期 2025/01/03
描述: 训练一个多模态模型来预测蕴涵。
在此示例中,我们将构建并训练一个用于预测多模态蕴涵的模型。我们将使用 Google Research 最近引入的多模态蕴涵数据集。
在社交媒体平台上,为了审核和管理内容,我们可能希望近乎实时地找到以下问题的答案:
在自然语言处理中,此任务称为分析文本蕴涵。然而,这仅限于信息来自文本内容的情况。实际上,信息往往不仅来自文本内容,还来自文本、图像、音频、视频等的多模态组合。多模态蕴涵只是将文本蕴涵扩展到各种新的输入模态。
本示例需要 TensorFlow 2.5 或更高版本。此外,BERT 模型 (Devlin 等人) 需要 TensorFlow Hub 和 TensorFlow Text。这些库可以使用以下命令安装:
!pip install -q tensorflow_text
[[34;49mnotice[1;39;49m][39;49m A new release of pip is available: [31;49m24.0[39;49m -> [32;49m24.3.1
[[34;49mnotice[1;39;49m][39;49m To update, run: [32;49mpip install --upgrade pip
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import random
import math
from skimage.io import imread
from skimage.transform import resize
from PIL import Image
import os
os.environ["KERAS_BACKEND"] = "jax" # or tensorflow, or torch
import keras
import keras_hub
from keras.utils import PyDataset
label_map = {"Contradictory": 0, "Implies": 1, "NoEntailment": 2}
原始数据集可在此处获取。它附带图像的 URL,这些图像托管在 Twitter 的照片存储系统(简称 Photo Blob Storage (PBS))上。我们将使用已下载的图像以及原始数据集附带的其他数据。感谢 Nilabhra Roy Chowdhury 参与了图像数据的准备工作。
image_base_path = keras.utils.get_file(
"tweet_images",
"https://github.com/sayakpaul/Multimodal-Entailment-Baseline/releases/download/v1.0.0/tweet_images.tar.gz",
untar=True,
)
df = pd.read_csv(
"https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/csvs/tweets.csv"
).iloc[
0:1000
] # Resources conservation since these are examples and not SOTA
df.sample(10)
id_1 | text_1 | image_1 | id_2 | text_2 | image_2 | 标签 | |
---|---|---|---|---|---|---|---|
815 | 1370730009921343490 | 粘性炸弹是威胁,因为它们有磁铁…… | http://pbs.twimg.com/media/EwXOFrgVIAEkfjR.jpg | 1370731764906295307 | 粘性炸弹是威胁,因为它们有磁铁…… | http://pbs.twimg.com/media/EwXRK_3XEAA6Q6F.jpg | 无蕴涵 |
615 | 1364119737446395905 | #巨蟹座 2.23.21 ♊️❤️✨ #Hor... 每日星座运势 | http://pbs.twimg.com/media/Eu5Te44VgAIo1jZ.jpg | 1365218087906078720 | #巨蟹座 2.26.21 ♊️❤️✨ #Hor... 每日星座运势 | http://pbs.twimg.com/media/EvI6nW4WQAA4_E_.jpg | 无蕴涵 |
624 | 1335542260923068417 | 驯鹿跑回来了,今年的跑步…… | http://pbs.twimg.com/media/Eoi99DyXEAE0AFV.jpg | 1335872932267122689 | 为 2020 年的活动戴上你的红鼻子和鹿角…… | http://pbs.twimg.com/media/Eon5Wk7XUAE-CxN.jpg | 无蕴涵 |
970 | 1345058844439949312 | 需要参与者进行在线调查!\n\n主题…… | http://pbs.twimg.com/media/Eqqb4_MXcAA-Pvu.jpg | 1361211461792632835 | 需要参与者进行关于 Sur... 的顶级研究 | http://pbs.twimg.com/media/EuPz0GwXMAMDklt.jpg | 无蕴涵 |
456 | 1379831489043521545 | 为@NanoBiteTSF 委托\n享受兄弟们和…… | http://pbs.twimg.com/media/EyVf0_VXMAMtRaL.jpg | 1380660763749142531 | 为@NanoBiteTSF 再次委托\n希望你…… | http://pbs.twimg.com/media/EykW0iXXAAA2SBC.jpg | 无蕴涵 |
917 | 1336180735191891968 | (2/10)\n(首尔中区)市场集群 ->\n…… | http://pbs.twimg.com/media/EosRFpGVQAIeuYG.jpg | 1356113330536996866 | (3/11)\n(首尔东大门区)高士泰集群…… | http://pbs.twimg.com/media/EtHhj7QVcAAibvF.jpg | 无蕴涵 |
276 | 1339270210029834241 | 今天,自由的信息传到了卢旺达的基索罗…… | http://pbs.twimg.com/media/EpVK3pfXcAAZ5Du.jpg | 1340881971132698625 | 今天,自由的信息正在传达给人民…… | http://pbs.twimg.com/media/EpvDorkXYAEyz4g.jpg | 蕴含 |
35 | 1360186999836200961 | 阿根廷的比特币 - Google Trends https://t... | http://pbs.twimg.com/media/EuBa3UxXYAMb99_.jpg | 1382778703055228929 | 阿根廷想要#比特币 https://#/9lNxJdxX... | http://pbs.twimg.com/media/EzCbUFNXMAABwPD.jpg | 蕴含 |
762 | 1370824756400959491 | $HSBA.L:长期趋势是积极的,并且…… | http://pbs.twimg.com/media/EwYl2hPWYAE2niq.png | 1374347458126475269 | 尽管技术评级仅为中等,但…… | http://pbs.twimg.com/media/ExKpuwrWgAAktg4.png | 无蕴涵 |
130 | 1373789433607172097 | 我刚刚看了《泰德·拉索》S01 | E05 集…… | http://pbs.twimg.com/media/ExCuNbDXAAQaPiL.jpg | 1374913509662806016 | 我刚刚看了《泰德·拉索》S01 | E06 集…… | http://pbs.twimg.com/media/ExSsjRQWgAUVRPz.jpg | 矛盾 |
我们感兴趣的列如下:
text_1
image_1
text_2
image_2
标签
蕴涵任务的表述如下:
给定(text_1
,image_1
)和(text_2
,image_2
)的对,它们是否相互蕴涵(或不蕴涵或矛盾)?
我们已经下载了图像。`image_1` 以 `id1` 作为其文件名下载,`image2` 以 `id2` 作为其文件名下载。在下一步中,我们将向 `df` 添加两列——`image_1` 和 `image_2` 的文件路径。
images_one_paths = []
images_two_paths = []
for idx in range(len(df)):
current_row = df.iloc[idx]
id_1 = current_row["id_1"]
id_2 = current_row["id_2"]
extentsion_one = current_row["image_1"].split(".")[-1]
extentsion_two = current_row["image_2"].split(".")[-1]
image_one_path = os.path.join(image_base_path, str(id_1) + f".{extentsion_one}")
image_two_path = os.path.join(image_base_path, str(id_2) + f".{extentsion_two}")
images_one_paths.append(image_one_path)
images_two_paths.append(image_two_path)
df["image_1_path"] = images_one_paths
df["image_2_path"] = images_two_paths
# Create another column containing the integer ids of
# the string labels.
df["label_idx"] = df["label"].apply(lambda x: label_map[x])
def visualize(idx):
current_row = df.iloc[idx]
image_1 = plt.imread(current_row["image_1_path"])
image_2 = plt.imread(current_row["image_2_path"])
text_1 = current_row["text_1"]
text_2 = current_row["text_2"]
label = current_row["label"]
plt.subplot(1, 2, 1)
plt.imshow(image_1)
plt.axis("off")
plt.title("Image One")
plt.subplot(1, 2, 2)
plt.imshow(image_1)
plt.axis("off")
plt.title("Image Two")
plt.show()
print(f"Text one: {text_1}")
print(f"Text two: {text_2}")
print(f"Label: {label}")
random_idx = random.choice(range(len(df)))
visualize(random_idx)
random_idx = random.choice(range(len(df)))
visualize(random_idx)
Text one: World #water day reminds that we should follow the #guidelines to save water for us. This Day is an #opportunity to learn more about water related issues, be #inspired to tell others and take action to make a difference. Just remember, every #drop counts.
#WorldWaterDay2021 https://#/bQ9Hp53qUj
Text two: Water is an extremely precious resource without which life would be impossible. We need to ensure that water is used judiciously, this #WorldWaterDay, let us pledge to reduce water wastage and conserve it.
#WorldWaterDay2021 https://#/0KWnd8Kn8r
Label: NoEntailment
Text one: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟬: 𝗗𝗬𝗟𝗔𝗡 𝗙𝗜𝗧𝗭𝗦𝗜𝗠𝗢𝗡𝗦
Dylan Fitzsimons is a young passionate greyhound supporter.
He and @Drakesport enjoy a great chat about everything greyhounds!
Listen: https://#/B2XgMp0yaO
#GoGreyhoundRacing #ThisRunsDeep #TalkingDogs https://#/crBiSqHUvp
Text two: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟳: 𝗣𝗜𝗢 𝗕𝗔𝗥𝗥𝗬 🎧
Well known within greyhound circles, Pio Barry shares some wonderful greyhound racing stories with @Drakesport in this podcast episode.
A great chat.
Listen: https://#/mJTVlPHzp0
#TalkingDogs #GoGreyhoundRacing #ThisRunsDeep https://#/QbxtCpLcGm
Label: NoEntailment
数据集存在类别不平衡问题。我们可以在以下单元格中证实这一点。
df["label"].value_counts()
label
NoEntailment 819
Contradictory 92
Implies 89
Name: count, dtype: int64
为了解决这个问题,我们将采用分层抽样。
# 10% for test
train_df, test_df = train_test_split(
df, test_size=0.1, stratify=df["label"].values, random_state=42
)
# 5% for validation
train_df, val_df = train_test_split(
train_df, test_size=0.05, stratify=train_df["label"].values, random_state=42
)
print(f"Total training examples: {len(train_df)}")
print(f"Total validation examples: {len(val_df)}")
print(f"Total test examples: {len(test_df)}")
Total training examples: 855
Total validation examples: 45
Total test examples: 100
Keras Hub 提供了各种 BERT 系列模型。每个模型都带有一个相应的预处理层。您可以从此资源了解有关这些模型及其预处理层的更多信息。
为了使本示例的运行时间相对较短,我们将使用原始 BERT 模型的 base_unacased 变体。
使用 KerasHub 进行文本预处理
text_preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en_uncased",
sequence_length=128,
)
idx = random.choice(range(len(train_df)))
row = train_df.iloc[idx]
sample_text_1, sample_text_2 = row["text_1"], row["text_2"]
print(f"Text 1: {sample_text_1}")
print(f"Text 2: {sample_text_2}")
test_text = [sample_text_1, sample_text_2]
text_preprocessed = text_preprocessor(test_text)
print("Keys : ", list(text_preprocessed.keys()))
print("Shape Token Ids : ", text_preprocessed["token_ids"].shape)
print("Token Ids : ", text_preprocessed["token_ids"][0, :16])
print(" Shape Padding Mask : ", text_preprocessed["padding_mask"].shape)
print("Padding Mask : ", text_preprocessed["padding_mask"][0, :16])
print("Shape Segment Ids : ", text_preprocessed["segment_ids"].shape)
print("Segment Ids : ", text_preprocessed["segment_ids"][0, :16])
An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.
Text 1: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://#/bdEBl2egIc
Text 2: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 (JAT-SBP) Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://#/Q5l2AtA4uq
Keys : ['token_ids', 'padding_mask', 'segment_ids']
Shape Token Ids : (2, 128)
Token Ids : [ 101 1996 1054 14376 8840 11783 16098 1998 6045 2401 2695 1997
8086 2072 2407 2031]
Shape Padding Mask : (2, 128)
Padding Mask : [ True True True True True True True True True True True True
True True True True]
Shape Segment Ids : (2, 128)
Segment Ids : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
我们现在将从数据帧创建 tf.data.Dataset
对象。
请注意,文本输入将作为数据输入管道的一部分进行预处理。但预处理模块也可以是其相应 BERT 模型的一部分。这有助于减少训练/服务偏差,并使我们的模型能够使用原始文本输入。请按照本教程了解如何将预处理模块直接集成到模型中。
def dataframe_to_dataset(dataframe):
columns = ["image_1_path", "image_2_path", "text_1", "text_2", "label_idx"]
ds = UnifiedPyDataset(
dataframe,
batch_size=32,
workers=4,
)
return ds
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
def preprocess_text(text_1, text_2):
output = text_preprocessor([text_1, text_2])
output = {
feature: keras.ops.reshape(output[feature], [-1])
for feature in bert_input_features
}
return output
class UnifiedPyDataset(PyDataset):
"""A Keras-compatible dataset that processes a DataFrame for TensorFlow, JAX, and PyTorch."""
def __init__(
self,
df,
batch_size=32,
workers=4,
use_multiprocessing=False,
max_queue_size=10,
**kwargs,
):
"""
Args:
df: pandas DataFrame with data
batch_size: Batch size for dataset
workers: Number of workers to use for parallel loading (Keras)
use_multiprocessing: Whether to use multiprocessing
max_queue_size: Maximum size of the data queue for parallel loading
"""
super().__init__(**kwargs)
self.dataframe = df
columns = ["image_1_path", "image_2_path", "text_1", "text_2"]
# image files
self.image_x_1 = self.dataframe["image_1_path"]
self.image_x_2 = self.dataframe["image_1_path"]
self.image_y = self.dataframe["label_idx"]
# text files
self.text_x_1 = self.dataframe["text_1"]
self.text_x_2 = self.dataframe["text_2"]
self.text_y = self.dataframe["label_idx"]
# general
self.batch_size = batch_size
self.workers = workers
self.use_multiprocessing = use_multiprocessing
self.max_queue_size = max_queue_size
def __getitem__(self, index):
"""
Fetches a batch of data from the dataset at the given index.
"""
# Return x, y for batch idx.
low = index * self.batch_size
# Cap upper bound at array length; the last batch may be smaller
# if the total number of items is not a multiple of batch size.
high_image_1 = min(low + self.batch_size, len(self.image_x_1))
high_image_2 = min(low + self.batch_size, len(self.image_x_2))
high_text_1 = min(low + self.batch_size, len(self.text_x_1))
high_text_2 = min(low + self.batch_size, len(self.text_x_1))
# images files
batch_image_x_1 = self.image_x_1[low:high_image_1]
batch_image_y_1 = self.image_y[low:high_image_1]
batch_image_x_2 = self.image_x_2[low:high_image_2]
batch_image_y_2 = self.image_y[low:high_image_2]
# text files
batch_text_x_1 = self.text_x_1[low:high_text_1]
batch_text_y_1 = self.text_y[low:high_text_1]
batch_text_x_2 = self.text_x_2[low:high_text_2]
batch_text_y_2 = self.text_y[low:high_text_2]
# image number 1 inputs
image_1 = [
resize(imread(file_name), (128, 128)) for file_name in batch_image_x_1
]
image_1 = [
( # exeperienced some shapes which were different from others.
np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
if img.shape[2] == 4
else img
)
for img in image_1
]
image_1 = np.array(image_1)
# Both text inputs to the model, return a dict for inputs to BertBackbone
text = {
key: np.array(
[
d[key]
for d in [
preprocess_text(file_path1, file_path2)
for file_path1, file_path2 in zip(
batch_text_x_1, batch_text_x_2
)
]
]
)
for key in ["padding_mask", "token_ids", "segment_ids"]
}
# Image number 2 model inputs
image_2 = [
resize(imread(file_name), (128, 128)) for file_name in batch_image_x_2
]
image_2 = [
( # exeperienced some shapes which were different from others
np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
if img.shape[2] == 4
else img
)
for img in image_2
]
# Stack the list comprehension to an nd.array
image_2 = np.array(image_2)
return (
{
"image_1": image_1,
"image_2": image_2,
"padding_mask": text["padding_mask"],
"segment_ids": text["segment_ids"],
"token_ids": text["token_ids"],
},
# Target lables
np.array(batch_image_y_1),
)
def __len__(self):
"""
Returns the number of batches in the dataset.
"""
return math.ceil(len(self.dataframe) / self.batch_size)
创建训练集、验证集和测试集
def prepare_dataset(dataframe):
ds = dataframe_to_dataset(dataframe)
return ds
train_ds = prepare_dataset(train_df)
validation_ds = prepare_dataset(val_df)
test_ds = prepare_dataset(test_df)
我们的最终模型将接受两张图像及其对应的文本。图像将直接输入模型,而文本输入将首先进行预处理,然后才能进入模型。以下是此方法的视觉说明:
该模型由以下元素组成:
提取单独的嵌入后,它们将被投影到相同的空间中。最后,它们的投影将被连接并馈送到最终的分类层。
这是一个多分类问题,涉及以下类别:
`project_embeddings()`、`create_vision_encoder()` 和 `create_text_encoder()` 工具参考自此示例。
投影工具
def project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
):
projected_embeddings = keras.layers.Dense(units=projection_dims)(embeddings)
for _ in range(num_projection_layers):
x = keras.ops.nn.gelu(projected_embeddings)
x = keras.layers.Dense(projection_dims)(x)
x = keras.layers.Dropout(dropout_rate)(x)
x = keras.layers.Add()([projected_embeddings, x])
projected_embeddings = keras.layers.LayerNormalization()(x)
return projected_embeddings
视觉编码器工具
def create_vision_encoder(
num_projection_layers, projection_dims, dropout_rate, trainable=False
):
# Load the pre-trained ResNet50V2 model to be used as the base encoder.
resnet_v2 = keras.applications.ResNet50V2(
include_top=False, weights="imagenet", pooling="avg"
)
# Set the trainability of the base encoder.
for layer in resnet_v2.layers:
layer.trainable = trainable
# Receive the images as inputs.
image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
image_2 = keras.Input(shape=(128, 128, 3), name="image_2")
# Preprocess the input image.
preprocessed_1 = keras.applications.resnet_v2.preprocess_input(image_1)
preprocessed_2 = keras.applications.resnet_v2.preprocess_input(image_2)
# Generate the embeddings for the images using the resnet_v2 model
# concatenate them.
embeddings_1 = resnet_v2(preprocessed_1)
embeddings_2 = resnet_v2(preprocessed_2)
embeddings = keras.layers.Concatenate()([embeddings_1, embeddings_2])
# Project the embeddings produced by the model.
outputs = project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
)
# Create the vision encoder model.
return keras.Model([image_1, image_2], outputs, name="vision_encoder")
文本编码器工具
def create_text_encoder(
num_projection_layers, projection_dims, dropout_rate, trainable=False
):
# Load the pre-trained BERT BackBone using KerasHub.
bert = keras_hub.models.BertBackbone.from_preset(
"bert_base_en_uncased", num_classes=3
)
# Set the trainability of the base encoder.
bert.trainable = trainable
# Receive the text as inputs.
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
inputs = {
feature: keras.Input(shape=(256,), dtype="int32", name=feature)
for feature in bert_input_features
}
# Generate embeddings for the preprocessed text using the BERT model.
embeddings = bert(inputs)["pooled_output"]
# Project the embeddings produced by the model.
outputs = project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
)
# Create the text encoder model.
return keras.Model(inputs, outputs, name="text_encoder")
多模态模型工具
def create_multimodal_model(
num_projection_layers=1,
projection_dims=256,
dropout_rate=0.1,
vision_trainable=False,
text_trainable=False,
):
# Receive the images as inputs.
image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
image_2 = keras.Input(shape=(128, 128, 3), name="image_2")
# Receive the text as inputs.
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
text_inputs = {
feature: keras.Input(shape=(256,), dtype="int32", name=feature)
for feature in bert_input_features
}
text_inputs = list(text_inputs.values())
# Create the encoders.
vision_encoder = create_vision_encoder(
num_projection_layers, projection_dims, dropout_rate, vision_trainable
)
text_encoder = create_text_encoder(
num_projection_layers, projection_dims, dropout_rate, text_trainable
)
# Fetch the embedding projections.
vision_projections = vision_encoder([image_1, image_2])
text_projections = text_encoder(text_inputs)
# Concatenate the projections and pass through the classification layer.
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
outputs = keras.layers.Dense(3, activation="softmax")(concatenated)
return keras.Model([image_1, image_2, *text_inputs], outputs)
multimodal_model = create_multimodal_model()
keras.utils.plot_model(multimodal_model, show_shapes=True)
您也可以通过将 `plot_model()` 的 `expand_nested` 参数设置为 `True` 来检查各个编码器的结构。我们鼓励您尝试构建此模型中涉及的不同超参数,并观察最终性能如何受到影响。
multimodal_model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
history = multimodal_model.fit(train_ds, validation_data=validation_ds, epochs=1)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
1/27 [37m━━━━━━━━━━━━━━━━━━━━ 45:45 106s/步 - 准确率:0.0625 - 损失:1.6335
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
2/27 ━ [37m━━━━━━━━━━━━━━━━━━━ 42:14 101s/步 - 准确率:0.2422 - 损失:1.9508
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
3/27 ━━ [37m━━━━━━━━━━━━━━━━━━ 38:49 97s/步 - 准确率:0.3524 - 损失:2.0126
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
4/27 ━━ [37m━━━━━━━━━━━━━━━━━━ 37:09 97s/步 - 准确率:0.4284 - 损失:1.9870
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
5/27 ━━━ [37m━━━━━━━━━━━━━━━━━ 35:08 96s/步 - 准确率:0.4815 - 损失:1.9855
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
6/27 ━━━━ [37m━━━━━━━━━━━━━━━━ 31:56 91s/步 - 准确率:0.5210 - 损失:1.9939
7/27 ━━━━━ [37m━━━━━━━━━━━━━━━ 29:30 89s/步 - 准确率:0.5512 - 损失:1.9980
8/27 ━━━━━ [37m━━━━━━━━━━━━━━━ 27:12 86s/步 - 准确率:0.5750 - 损失:2.0061
9/27 ━━━━━━ [37m━━━━━━━━━━━━━━ 25:15 84s/步 - 准确率:0.5956 - 损失:1.9959
10/27 ━━━━━━━ [37m━━━━━━━━━━━━━ 23:33 83s/步 - 准确率:0.6120 - 损失:1.9738
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
11/27 ━━━━━━━━ [37m━━━━━━━━━━━━ 22:09 83s/步 - 准确率:0.6251 - 损失:1.9579
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
12/27 ━━━━━━━━ [37m━━━━━━━━━━━━ 20:59 84s/步 - 准确率:0.6357 - 损失:1.9524
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
13/27 ━━━━━━━━━ [37m━━━━━━━━━━━ 19:44 85s/步 - 准确率:0.6454 - 损失:1.9439
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
14/27 ━━━━━━━━━━ [37m━━━━━━━━━━ 18:22 85s/步 - 准确率:0.6540 - 损失:1.9346
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))']
warnings.warn(msg)
15/27 ━━━━━━━━━━━ [37m━━━━━━━━━ 16:52 84s/步 - 准确率:0.6621 - 损失:1.9213
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
16/27 ━━━━━━━━━━━ [37m━━━━━━━━━ 15:29 85s/步 - 准确率:0.6693 - 损失:1.9101
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
17/27 ━━━━━━━━━━━━ [37m━━━━━━━━ 14:08 85s/步 - 准确率:0.6758 - 损失:1.9021
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
18/27 ━━━━━━━━━━━━━ [37m━━━━━━━ 12:45 85s/步 - 准确率:0.6819 - 损失:1.8916
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
19/27 ━━━━━━━━━━━━━━ [37m━━━━━━ 11:24 86s/步 - 准确率:0.6874 - 损失:1.8851
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
20/27 ━━━━━━━━━━━━━━ [37m━━━━━━ 10:00 86s/步 - 准确率:0.6925 - 损失:1.8791
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
21/27 ━━━━━━━━━━━━━━━ [37m━━━━━ 8:36 86s/步 - 准确率:0.6976 - 损失:1.8699
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
22/27 ━━━━━━━━━━━━━━━━ [37m━━━━ 7:11 86s/步 - 准确率:0.7020 - 损失:1.8623
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
23/27 ━━━━━━━━━━━━━━━━━ [37m━━━ 5:46 87s/步 - 准确率:0.7061 - 损失:1.8573
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
24/27 ━━━━━━━━━━━━━━━━━ [37m━━━ 4:20 87s/步 - 准确率:0.7100 - 损失:1.8534
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
25/27 ━━━━━━━━━━━━━━━━━━ [37m━━ 2:54 87s/步 - 准确率:0.7136 - 损失:1.8494
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
26/27 ━━━━━━━━━━━━━━━━━━━ [37m━ 1:27 87s/步 - 准确率:0.7170 - 损失:1.8449
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 88s/步 - 准确率:0.7201 - 损失:1.8414
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))']
warnings.warn(msg)
27/27 ━━━━━━━━━━━━━━━━━━━━ 2508s 92s/步 - 准确率:0.7231 - 损失:1.8382 - val_accuracy: 0.8222 - val_loss: 1.7304
_, acc = multimodal_model.evaluate(test_ds)
print(f"Accuracy on the test set: {round(acc * 100, 2)}%.")
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
1/4 ━━━━━ [37m━━━━━━━━━━━━━━━ 5:32 111s/步 - 准确率:0.7812 - 损失:1.9384
2/4 ━━━━━━━━━━ [37m━━━━━━━━━━ 2:10 65s/步 - 准确率:0.7969 - 损失:1.8931
3/4 ━━━━━━━━━━━━━━━ [37m━━━━━ 1:05 65s/步 - 准确率:0.8056 - 损失:1.8200
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))']
warnings.warn(msg)
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 49s/步 - 准确率:0.8092 - 损失:1.8075
4/4 ━━━━━━━━━━━━━━━━━━━━ 256s 49s/步 - 准确率:0.8113 - 损失:1.8000
Accuracy on the test set: 82.0%.
加入正则化:
训练日志表明模型开始过拟合,可能受益于正则化。Dropout (Srivastava 等人) 是一种简单而强大的正则化技术,我们可以在模型中使用它。但是我们应该如何在这里应用它呢?
我们总是可以在模型的不同层之间引入 Dropout (keras.layers.Dropout
)。但这里还有另一种方法。我们的模型需要来自两种不同数据模态的输入。如果推理期间其中一种模态不存在怎么办?为了解决这个问题,我们可以在单独的投影中引入 Dropout,就在它们被连接之前:
vision_projections = keras.layers.Dropout(rate)(vision_projections)
text_projections = keras.layers.Dropout(rate)(text_projections)
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
关注重要之处:
图像的所有部分是否与其文本对应部分同样重要?可能并非如此。为了让我们的模型只关注图像中与相应文本部分密切相关的最重要部分,我们可以使用“交叉注意力”。
# Embeddings.
vision_projections = vision_encoder([image_1, image_2])
text_projections = text_encoder(text_inputs)
# Cross-attention (Luong-style).
query_value_attention_seq = keras.layers.Attention(use_scale=True, dropout=0.2)(
[vision_projections, text_projections]
)
# Concatenate.
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
contextual = keras.layers.Concatenate()([concatenated, query_value_attention_seq])
要查看实际效果,请参阅此笔记本。
处理类别不平衡:
数据集存在类别不平衡问题。调查上述模型的混淆矩阵显示,它在少数类别上的表现不佳。如果我们使用加权损失,训练会更有指导性。您可以查看此笔记本,该笔记本在模型训练期间考虑了类别不平衡。
仅使用文本输入:
此外,如果我们只使用文本输入进行蕴涵任务会怎样?由于社交媒体平台上遇到的文本输入的性质,仅使用文本输入会损害最终性能。在类似的训练设置下,仅使用文本输入,我们在同一测试集上获得了 67.14% 的 top-1 准确率。有关详细信息,请参阅此笔记本。
最后,这里有一个比较蕴涵任务不同方法的表格:
类型 | 标准 交叉熵 |
损失加权 交叉熵 |
焦点损失 |
---|---|---|---|
多模态 | 77.86% | 67.86% | 86.43% |
仅文本 | 67.14% | 11.43% | 37.86% |
您可以查看此仓库,了解更多关于如何进行实验以获得这些数字的信息。
您可以使用托管在 Hugging Face Hub 上的训练模型,并在 Hugging Face Spaces 上尝试演示。