代码示例 / 快速 Keras 技巧 / Trainer 模式

Trainer 模式

作者: nkovela1
创建日期 2022/09/19
最后修改日期 2022/09/26
描述: 关于如何跨多个 Keras 模型共享自定义训练步骤的指南。

ⓘ 本示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


简介

此示例演示了如何使用“Trainer 模式”创建自定义训练步骤,然后可以在多个 Keras 模型之间共享。此模式会覆盖 keras.Model 类的 train_step() 方法,从而实现超越纯监督学习的训练循环。

通过将自定义训练步骤放在 Trainer 类定义中,Trainer 模式还可以轻松适应更复杂的模型,其中包含更大的自定义训练步骤,例如 这个端到端的 GAN 模型


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras

# Load MNIST dataset and standardize the data
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

定义 Trainer 类

通过覆盖 Model 子类的 train_step()test_step() 方法,可以创建自定义训练和评估步骤。

class MyTrainer(keras.Model):
    def __init__(self, model):
        super().__init__()
        self.model = model
        # Create loss and metrics here.
        self.loss_fn = keras.losses.SparseCategoricalCrossentropy()
        self.accuracy_metric = keras.metrics.SparseCategoricalAccuracy()

    @property
    def metrics(self):
        # List metrics here.
        return [self.accuracy_metric]

    def train_step(self, data):
        x, y = data
        with tf.GradientTape() as tape:
            y_pred = self.model(x, training=True)  # Forward pass
            # Compute loss value
            loss = self.loss_fn(y, y_pred)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)

        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))

        # Update metrics
        for metric in self.metrics:
            metric.update_state(y, y_pred)

        # Return a dict mapping metric names to current value.
        return {m.name: m.result() for m in self.metrics}

    def test_step(self, data):
        x, y = data

        # Inference step
        y_pred = self.model(x, training=False)

        # Update metrics
        for metric in self.metrics:
            metric.update_state(y, y_pred)
        return {m.name: m.result() for m in self.metrics}

    def call(self, x):
        # Equivalent to `call()` of the wrapped keras.Model
        x = self.model(x)
        return x

定义多个模型以共享自定义训练步骤

我们来定义两个可以共享我们的 Trainer 类及其自定义 train_step() 的不同模型。

# A model defined using Sequential API
model_a = keras.models.Sequential(
    [
        keras.layers.Flatten(input_shape=(28, 28)),
        keras.layers.Dense(256, activation="relu"),
        keras.layers.Dropout(0.2),
        keras.layers.Dense(10, activation="softmax"),
    ]
)

# A model defined using Functional API
func_input = keras.Input(shape=(28, 28, 1))
x = keras.layers.Flatten(input_shape=(28, 28))(func_input)
x = keras.layers.Dense(512, activation="relu")(x)
x = keras.layers.Dropout(0.4)(x)
func_output = keras.layers.Dense(10, activation="softmax")(x)

model_b = keras.Model(func_input, func_output)

从模型创建 Trainer 类对象

trainer_1 = MyTrainer(model_a)
trainer_2 = MyTrainer(model_b)

编译并对 MNIST 数据集拟合模型。

trainer_1.compile(optimizer=keras.optimizers.SGD())
trainer_1.fit(
    x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)

trainer_2.compile(optimizer=keras.optimizers.Adam())
trainer_2.fit(
    x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)
Epoch 1/5
...
Epoch 4/5
 938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 1ms/step - sparse_categorical_accuracy: 0.9770 - val_sparse_categorical_accuracy: 0.9770
Epoch 5/5
 938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - sparse_categorical_accuracy: 0.9805 - val_sparse_categorical_accuracy: 0.9789

<keras.src.callbacks.history.History at 0x7efe405fe560>