作者: nkovela1
创建日期 2022/09/19
最后修改日期 2022/09/26
描述: 关于如何在多个 Keras 模型之间共享自定义训练步骤的指南。
本示例演示如何使用“训练器模式”创建自定义训练步骤,然后可以在多个 Keras 模型之间共享该步骤。此模式会覆盖 keras.Model
类的 train_step()
方法,从而允许进行超出普通监督学习的训练循环。
通过将自定义训练步骤放入 Trainer 类定义中,训练器模式也可以轻松地应用于具有更大自定义训练步骤的更复杂模型,例如此端到端 GAN 模型。
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import tensorflow as tf
import keras
# Load MNIST dataset and standardize the data
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
可以通过覆盖 Model
子类的 train_step()
和 test_step()
方法来创建自定义训练和评估步骤。
class MyTrainer(keras.Model):
def __init__(self, model):
super().__init__()
self.model = model
# Create loss and metrics here.
self.loss_fn = keras.losses.SparseCategoricalCrossentropy()
self.accuracy_metric = keras.metrics.SparseCategoricalAccuracy()
@property
def metrics(self):
# List metrics here.
return [self.accuracy_metric]
def train_step(self, data):
x, y = data
with tf.GradientTape() as tape:
y_pred = self.model(x, training=True) # Forward pass
# Compute loss value
loss = self.loss_fn(y, y_pred)
# Compute gradients
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
# Update metrics
for metric in self.metrics:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value.
return {m.name: m.result() for m in self.metrics}
def test_step(self, data):
x, y = data
# Inference step
y_pred = self.model(x, training=False)
# Update metrics
for metric in self.metrics:
metric.update_state(y, y_pred)
return {m.name: m.result() for m in self.metrics}
def call(self, x):
# Equivalent to `call()` of the wrapped keras.Model
x = self.model(x)
return x
让我们定义两个可以共享我们的 Trainer 类及其自定义 train_step()
的不同模型。
# A model defined using Sequential API
model_a = keras.models.Sequential(
[
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation="softmax"),
]
)
# A model defined using Functional API
func_input = keras.Input(shape=(28, 28, 1))
x = keras.layers.Flatten(input_shape=(28, 28))(func_input)
x = keras.layers.Dense(512, activation="relu")(x)
x = keras.layers.Dropout(0.4)(x)
func_output = keras.layers.Dense(10, activation="softmax")(x)
model_b = keras.Model(func_input, func_output)
trainer_1 = MyTrainer(model_a)
trainer_2 = MyTrainer(model_b)
trainer_1.compile(optimizer=keras.optimizers.SGD())
trainer_1.fit(
x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)
trainer_2.compile(optimizer=keras.optimizers.Adam())
trainer_2.fit(
x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)
Epoch 1/5
...
Epoch 4/5
938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 1ms/step - sparse_categorical_accuracy: 0.9770 - val_sparse_categorical_accuracy: 0.9770
Epoch 5/5
938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - sparse_categorical_accuracy: 0.9805 - val_sparse_categorical_accuracy: 0.9789
<keras.src.callbacks.history.History at 0x7efe405fe560>