代码示例 / Keras 快速入门 / 自定义 Conv2D 层的卷积操作

自定义 Conv2D 层的卷积操作

作者: lukewood
创建日期 11/03/2021
最后修改日期 11/03/2021
描述: 本示例展示了如何使用 Conv.convolution_op() API 实现自定义卷积层。

ⓘ 本示例使用 Keras 3

在 Colab 中查看 GitHub 源码


简介

有时您可能需要实现自定义版本的卷积层,如 Conv1DConv2D。Keras 使您无需从头开始实现整个层:您可以重用大多数基础卷积层,只需通过 convolution_op() 方法自定义卷积操作本身即可。

此方法是在 Keras 2.7 中引入的。因此,在使用 convolution_op() API 之前,请确保您运行的是 Keras 2.7.0 或更高版本。


一个简单的 StandardizedConv2D 实现

有两种方法可以使用 Conv.convolution_op() API。第一种方法是重写卷积层子类上的 convolution_op() 方法。使用这种方法,我们可以快速实现一个 StandardizedConv2D,如下所示。

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras
from keras import layers
import numpy as np


class StandardizedConv2DWithOverride(layers.Conv2D):
    def convolution_op(self, inputs, kernel):
        mean, var = tf.nn.moments(kernel, axes=[0, 1, 2], keepdims=True)
        return tf.nn.conv2d(
            inputs,
            (kernel - mean) / tf.sqrt(var + 1e-10),
            padding="VALID",
            strides=list(self.strides),
            name=self.__class__.__name__,
        )

使用 Conv.convolution_op() API 的另一种方法是从卷积层子类的 call() 方法中直接调用 convolution_op() 方法。使用这种方法实现的类似类如下所示。

class StandardizedConv2DWithCall(layers.Conv2D):
    def call(self, inputs):
        mean, var = tf.nn.moments(self.kernel, axes=[0, 1, 2], keepdims=True)
        result = self.convolution_op(
            inputs, (self.kernel - mean) / tf.sqrt(var + 1e-10)
        )
        if self.use_bias:
            result = result + self.bias
        return result

示例用法

这两个层都可以作为 Conv2D 的直接替代品。以下演示在 MNIST 数据集上执行分类。

# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = keras.Sequential(
    [
        keras.layers.Input(shape=input_shape),
        StandardizedConv2DWithCall(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        StandardizedConv2DWithOverride(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

model.summary()
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ standardized_conv2d_with_call   │ (None, 26, 26, 32)        │        320 │
│ (StandardizedConv2DWithCall)    │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ standardized_conv2d_with_overr… │ (None, 11, 11, 64)        │     18,496 │
│ (StandardizedConv2DWithOverrid… │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 10)                │     16,010 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 34,826 (136.04 KB)
 Trainable params: 34,826 (136.04 KB)
 Non-trainable params: 0 (0.00 B)
batch_size = 128
epochs = 5

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=5, validation_split=0.1)
Epoch 1/5
  64/422 ━━━━━━━━━━━━━━━━━━━━  0s 2ms/step - accuracy: 0.4439 - loss: 13.1274

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699557098.952525   26800 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 422/422 ━━━━━━━━━━━━━━━━━━━━ 10s 14ms/step - accuracy: 0.7277 - loss: 4.5649 - val_accuracy: 0.9690 - val_loss: 0.1140
Epoch 2/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.9311 - loss: 0.2493 - val_accuracy: 0.9798 - val_loss: 0.0795
Epoch 3/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9531 - loss: 0.1655 - val_accuracy: 0.9838 - val_loss: 0.0610
Epoch 4/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9652 - loss: 0.1201 - val_accuracy: 0.9847 - val_loss: 0.0577
Epoch 5/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9687 - loss: 0.1059 - val_accuracy: 0.9870 - val_loss: 0.0525

<keras.src.callbacks.history.History at 0x7fed258da200>

结论

Conv.convolution_op() API 提供了一种简单且可读的方式来实现自定义卷积层。使用该 API 的 StandardizedConvolution 实现非常简洁,仅包含四行代码。