作者: Khalid Salama
创建日期 2021/02/15
上次修改日期 2023/11/15
描述: 使用组合和混合维度嵌入来构建内存高效的推荐模型。
此示例演示了两种通过减少嵌入表的大小来构建内存高效推荐模型的技术,同时不牺牲模型的有效性。
我们使用 Movielens 数据集的 1M 版本。该数据集包含约 100 万个来自 6,000 名用户对 4,000 部电影的评分。
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
from zipfile import ZipFile
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
import tensorflow as tf
import keras
from keras import layers
from keras.layers import StringLookup
import matplotlib.pyplot as plt
urlretrieve("http://files.grouplens.org/datasets/movielens/ml-1m.zip", "movielens.zip")
ZipFile("movielens.zip", "r").extractall()
ratings_data = pd.read_csv(
"ml-1m/ratings.dat",
sep="::",
names=["user_id", "movie_id", "rating", "unix_timestamp"],
)
ratings_data["movie_id"] = ratings_data["movie_id"].apply(lambda x: f"movie_{x}")
ratings_data["user_id"] = ratings_data["user_id"].apply(lambda x: f"user_{x}")
ratings_data["rating"] = ratings_data["rating"].apply(lambda x: float(x))
del ratings_data["unix_timestamp"]
print(f"Number of users: {len(ratings_data.user_id.unique())}")
print(f"Number of movies: {len(ratings_data.movie_id.unique())}")
print(f"Number of ratings: {len(ratings_data.index)}")
/var/folders/8n/8w8cqnvj01xd4ghznl11nyn000_93_/T/ipykernel_33554/2288473197.py:4: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
ratings_data = pd.read_csv(
Number of users: 6040
Number of movies: 3706
Number of ratings: 1000209
random_selection = np.random.rand(len(ratings_data.index)) <= 0.85
train_data = ratings_data[random_selection]
eval_data = ratings_data[~random_selection]
train_data.to_csv("train_data.csv", index=False, sep="|", header=False)
eval_data.to_csv("eval_data.csv", index=False, sep="|", header=False)
print(f"Train data split: {len(train_data.index)}")
print(f"Eval data split: {len(eval_data.index)}")
print("Train and eval data files are saved.")
Train data split: 850573
Eval data split: 149636
Train and eval data files are saved.
csv_header = list(ratings_data.columns)
user_vocabulary = list(ratings_data.user_id.unique())
movie_vocabulary = list(ratings_data.movie_id.unique())
target_feature_name = "rating"
learning_rate = 0.001
batch_size = 128
num_epochs = 3
base_embedding_dim = 64
def get_dataset_from_csv(csv_file_path, batch_size=128, shuffle=True):
return tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=csv_header,
label_name=target_feature_name,
num_epochs=1,
header=False,
field_delim="|",
shuffle=shuffle,
)
def run_experiment(model):
# Compile the model.
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.MeanSquaredError(),
metrics=[keras.metrics.MeanAbsoluteError(name="mae")],
)
# Read the training data.
train_dataset = get_dataset_from_csv("train_data.csv", batch_size)
# Read the test data.
eval_dataset = get_dataset_from_csv("eval_data.csv", batch_size, shuffle=False)
# Fit the model with the training data.
history = model.fit(
train_dataset,
epochs=num_epochs,
validation_data=eval_dataset,
)
return history
def embedding_encoder(vocabulary, embedding_dim, num_oov_indices=0, name=None):
return keras.Sequential(
[
StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=num_oov_indices
),
layers.Embedding(
input_dim=len(vocabulary) + num_oov_indices, output_dim=embedding_dim
),
],
name=f"{name}_embedding" if name else None,
)
def create_baseline_model():
# Receive the user as an input.
user_input = layers.Input(name="user_id", shape=(), dtype=tf.string)
# Get user embedding.
user_embedding = embedding_encoder(
vocabulary=user_vocabulary, embedding_dim=base_embedding_dim, name="user"
)(user_input)
# Receive the movie as an input.
movie_input = layers.Input(name="movie_id", shape=(), dtype=tf.string)
# Get embedding.
movie_embedding = embedding_encoder(
vocabulary=movie_vocabulary, embedding_dim=base_embedding_dim, name="movie"
)(movie_input)
# Compute dot product similarity between user and movie embeddings.
logits = layers.Dot(axes=1, name="dot_similarity")(
[user_embedding, movie_embedding]
)
# Convert to rating scale.
prediction = keras.activations.sigmoid(logits) * 5
# Create the model.
model = keras.Model(
inputs=[user_input, movie_input], outputs=prediction, name="baseline_model"
)
return model
baseline_model = create_baseline_model()
baseline_model.summary()
/Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
return bool(asarray(a1 == a2).all())
Model: "baseline_model"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ user_id │ (None) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ movie_id │ (None) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ user_embedding │ (None, 64) │ 386,560 │ user_id[0][0] │ │ (Sequential) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ movie_embedding │ (None, 64) │ 237,184 │ movie_id[0][0] │ │ (Sequential) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ dot_similarity │ (None, 1) │ 0 │ user_embedding[0][0… │ │ (Dot) │ │ │ movie_embedding[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ sigmoid (Sigmoid) │ (None, 1) │ 0 │ dot_similarity[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ multiply (Multiply) │ (None, 1) │ 0 │ sigmoid[0][0] │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 623,744 (2.38 MB)
Trainable params: 623,744 (2.38 MB)
Non-trainable params: 0 (0.00 B)
请注意,可训练参数的数量为 623,744
history = run_experiment(baseline_model)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "eval"], loc="upper left")
plt.show()
Epoch 1/3
6629/Unknown 17s 3ms/step - loss: 1.4095 - mae: 0.9668
/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self.gen.throw(typ, value, traceback)
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 18s 3ms/step - loss: 1.4087 - mae: 0.9665 - val_loss: 0.9032 - val_mae: 0.7438
Epoch 2/3
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 17s 3ms/step - loss: 0.8296 - mae: 0.7193 - val_loss: 0.7807 - val_mae: 0.6976
Epoch 3/3
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 17s 3ms/step - loss: 0.7305 - mae: 0.6744 - val_loss: 0.7446 - val_mae: 0.6808
商余技术的工作原理如下。对于一组词汇表和嵌入大小 embedding_dim
,我们不是创建 vocabulary_size X embedding_dim
嵌入表,而是创建两个 num_buckets X embedding_dim
嵌入表,其中 num_buckets
比 vocabulary_size
小得多。给定项目 index
的嵌入通过以下步骤生成:
quotient_index
为 index // num_buckets
。remainder_index
为 index % num_buckets
。quotient_index
从第一个嵌入表中查找 quotient_embedding
。remainder_index
从第二个嵌入表中查找 remainder_embedding
。quotient_embedding
* remainder_embedding
。此技术不仅减少了需要存储和训练的嵌入向量的数量,而且还为每个大小为 embedding_dim
的项目生成唯一的嵌入向量。请注意,q_embedding
和 r_embedding
可以使用其他操作组合,例如 Add
和 Concatenate
。
class QREmbedding(keras.layers.Layer):
def __init__(self, vocabulary, embedding_dim, num_buckets, name=None):
super().__init__(name=name)
self.num_buckets = num_buckets
self.index_lookup = StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
self.q_embeddings = layers.Embedding(
num_buckets,
embedding_dim,
)
self.r_embeddings = layers.Embedding(
num_buckets,
embedding_dim,
)
def call(self, inputs):
# Get the item index.
embedding_index = self.index_lookup(inputs)
# Get the quotient index.
quotient_index = tf.math.floordiv(embedding_index, self.num_buckets)
# Get the reminder index.
remainder_index = tf.math.floormod(embedding_index, self.num_buckets)
# Lookup the quotient_embedding using the quotient_index.
quotient_embedding = self.q_embeddings(quotient_index)
# Lookup the remainder_embedding using the remainder_index.
remainder_embedding = self.r_embeddings(remainder_index)
# Use multiplication as a combiner operation
return quotient_embedding * remainder_embedding
在混合维度嵌入技术中,我们为频繁查询的项目训练具有完整维度的嵌入向量,而为不频繁的项目训练具有缩减维度的嵌入向量,再加上一个投影权重矩阵,以将低维度嵌入带入完整维度。
更准确地说,我们定义了具有相似频率的项目的块。对于每个块,都会创建一个 block_vocab_size X block_embedding_dim
嵌入表和 block_embedding_dim X full_embedding_dim
投影权重矩阵。请注意,如果 block_embedding_dim
等于 full_embedding_dim
,则投影权重矩阵将变为单位矩阵。给定一批项目 indices
的嵌入通过以下步骤生成:
indices
查找 block_embedding_dim
嵌入向量,并将它们投影到 full_embedding_dim
。batch_size X full_embedding_dim
张量。batch_size X full_embedding_dim
张量。class MDEmbedding(keras.layers.Layer):
def __init__(
self, blocks_vocabulary, blocks_embedding_dims, base_embedding_dim, name=None
):
super().__init__(name=name)
self.num_blocks = len(blocks_vocabulary)
# Create vocab to block lookup.
keys = []
values = []
for block_idx, block_vocab in enumerate(blocks_vocabulary):
keys.extend(block_vocab)
values.extend([block_idx] * len(block_vocab))
self.vocab_to_block = tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(keys, values), default_value=-1
)
self.block_embedding_encoders = []
self.block_embedding_projectors = []
# Create block embedding encoders and projectors.
for idx in range(self.num_blocks):
vocabulary = blocks_vocabulary[idx]
embedding_dim = blocks_embedding_dims[idx]
block_embedding_encoder = embedding_encoder(
vocabulary, embedding_dim, num_oov_indices=1
)
self.block_embedding_encoders.append(block_embedding_encoder)
if embedding_dim == base_embedding_dim:
self.block_embedding_projectors.append(layers.Lambda(lambda x: x))
else:
self.block_embedding_projectors.append(
layers.Dense(units=base_embedding_dim)
)
def call(self, inputs):
# Get block index for each input item.
block_indicies = self.vocab_to_block.lookup(inputs)
# Initialize output embeddings to zeros.
embeddings = tf.zeros(shape=(tf.shape(inputs)[0], base_embedding_dim))
# Generate embeddings from blocks.
for idx in range(self.num_blocks):
# Lookup embeddings from the current block.
block_embeddings = self.block_embedding_encoders[idx](inputs)
# Project embeddings to base_embedding_dim.
block_embeddings = self.block_embedding_projectors[idx](block_embeddings)
# Create a mask to filter out embeddings of items that do not belong to the current block.
mask = tf.expand_dims(tf.cast(block_indicies == idx, tf.dtypes.float32), 1)
# Set the embeddings for the items not belonging to the current block to zeros.
block_embeddings = block_embeddings * mask
# Add the block embeddings to the final embeddings.
embeddings += block_embeddings
return embeddings
在此实验中,我们将使用商余技术来减少用户嵌入的大小,并使用混合维度技术来减少电影嵌入的大小。
虽然在 论文 中,使用 alpha 幂规则来确定每个块的嵌入维度,但我们只是根据电影流行度的直方图可视化来设置块的数量和每个块的嵌入维度。
movie_frequencies = ratings_data["movie_id"].value_counts()
movie_frequencies.hist(bins=10)
<Axes: >
您可以看到我们可以将电影分为三个块,并分别分配给它们 64、32 和 16 个嵌入维度。您可以随意尝试不同的块数和维度。
sorted_movie_vocabulary = list(movie_frequencies.keys())
movie_blocks_vocabulary = [
sorted_movie_vocabulary[:400], # high popularity movies block
sorted_movie_vocabulary[400:1700], # normal popularity movies block
sorted_movie_vocabulary[1700:], # low popularity movies block
]
movie_blocks_embedding_dims = [64, 32, 16]
user_embedding_num_buckets = len(user_vocabulary) // 50
def create_memory_efficient_model():
# Take the user as an input.
user_input = layers.Input(name="user_id", shape=(), dtype="string")
# Get user embedding.
user_embedding = QREmbedding(
vocabulary=user_vocabulary,
embedding_dim=base_embedding_dim,
num_buckets=user_embedding_num_buckets,
name="user_embedding",
)(user_input)
# Take the movie as an input.
movie_input = layers.Input(name="movie_id", shape=(), dtype="string")
# Get embedding.
movie_embedding = MDEmbedding(
blocks_vocabulary=movie_blocks_vocabulary,
blocks_embedding_dims=movie_blocks_embedding_dims,
base_embedding_dim=base_embedding_dim,
name="movie_embedding",
)(movie_input)
# Compute dot product similarity between user and movie embeddings.
logits = layers.Dot(axes=1, name="dot_similarity")(
[user_embedding, movie_embedding]
)
# Convert to rating scale.
prediction = keras.activations.sigmoid(logits) * 5
# Create the model.
model = keras.Model(
inputs=[user_input, movie_input], outputs=prediction, name="baseline_model"
)
return model
memory_efficient_model = create_memory_efficient_model()
memory_efficient_model.summary()
/Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
return bool(asarray(a1 == a2).all())
Model: "baseline_model"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ user_id │ (None) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ movie_id │ (None) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ user_embedding │ (None, 64) │ 15,360 │ user_id[0][0] │ │ (QREmbedding) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ movie_embedding │ (None, 64) │ 102,608 │ movie_id[0][0] │ │ (MDEmbedding) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ dot_similarity │ (None, 1) │ 0 │ user_embedding[0][0… │ │ (Dot) │ │ │ movie_embedding[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ sigmoid_1 (Sigmoid) │ (None, 1) │ 0 │ dot_similarity[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ multiply_1 │ (None, 1) │ 0 │ sigmoid_1[0][0] │ │ (Multiply) │ │ │ │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 117,968 (460.81 KB)
Trainable params: 117,968 (460.81 KB)
Non-trainable params: 0 (0.00 B)
请注意,可训练参数的数量为 117,968,这比基线模型中的参数数量少 5 倍以上。
history = run_experiment(memory_efficient_model)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "eval"], loc="upper left")
plt.show()
Epoch 1/3
6622/Unknown 6s 891us/step - loss: 1.1938 - mae: 0.8780
/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self.gen.throw(typ, value, traceback)
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 7s 992us/step - loss: 1.1931 - mae: 0.8777 - val_loss: 1.1027 - val_mae: 0.8179
Epoch 2/3
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 7s 1ms/step - loss: 0.8908 - mae: 0.7488 - val_loss: 0.9144 - val_mae: 0.7549
Epoch 3/3
6646/6646 ━━━━━━━━━━━━━━━━━━━━ 7s 980us/step - loss: 0.8419 - mae: 0.7278 - val_loss: 0.8806 - val_mae: 0.7419