代码示例 / 图数据 / 使用 node2vec 进行图表示学习

使用 node2vec 进行图表示学习

作者: Khalid Salama
创建日期 2021/05/15
上次修改日期 2021/05/15
描述: 实现 node2vec 模型,为 MovieLens 数据集中的电影生成嵌入。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码


简介

从结构化为图的对象中学习有用的表示对于各种机器学习 (ML) 应用非常有用,例如社交和通信网络分析、生物医学研究和推荐系统。 图表示学习旨在学习图节点的嵌入,这些嵌入可用于各种 ML 任务,例如节点标签预测(例如,根据文章的引用对其进行分类)和链接预测(例如,向社交网络中的用户推荐兴趣小组)。

node2vec 是一种简单但可扩展且有效的技术,通过优化保留邻域的目标来学习图中节点的低维嵌入。目标是学习相对于图结构,为相邻节点学习相似的嵌入。

假设您的数据项结构化为图(其中项表示为节点,项之间的关系表示为边),node2vec 的工作原理如下:

  1. 使用(有偏的)随机游走生成项序列。
  2. 从这些序列中创建正负训练示例。
  3. 训练 word2vec 模型(skip-gram)来学习项的嵌入。

在本示例中,我们演示了在 MovieLens 数据集的小版本上使用 node2vec 技术来学习电影嵌入。可以通过将电影视为节点,并在用户评价相似的电影之间创建边,将这样的数据集表示为图。学习到的电影嵌入可用于电影推荐或电影类型预测等任务。

此示例需要 networkx 包,可以使用以下命令安装

pip install networkx

设置

import os
from collections import defaultdict
import math
import networkx as nx
import random
from tqdm import tqdm
from zipfile import ZipFile
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt

下载 MovieLens 数据集并准备数据

小版本的 MovieLens 数据集包含大约 100k 条来自 610 位用户对 9,742 部电影的评分。

首先,让我们下载数据集。下载的文件夹将包含三个数据文件:users.csvmovies.csvratings.csv。在本示例中,我们只需要 movies.datratings.dat 数据文件。

urlretrieve(
    "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip", "movielens.zip"
)
ZipFile("movielens.zip", "r").extractall()

然后,我们将数据加载到 Pandas DataFrame 中并执行一些基本预处理。

# Load movies to a DataFrame.
movies = pd.read_csv("ml-latest-small/movies.csv")
# Create a `movieId` string.
movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}")

# Load ratings to a DataFrame.
ratings = pd.read_csv("ml-latest-small/ratings.csv")
# Convert the `ratings` to floating point
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))
# Create the `movie_id` string.
ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}")

print("Movies data shape:", movies.shape)
print("Ratings data shape:", ratings.shape)
Movies data shape: (9742, 3)
Ratings data shape: (100836, 4)

让我们检查 ratings DataFrame 的示例实例。

ratings.head()
userId movieId rating timestamp
0 1 movie_1 4.0 964982703
1 1 movie_3 4.0 964981247
2 1 movie_6 4.0 964982224
3 1 movie_47 5.0 964983815
4 1 movie_50 5.0 964982931

接下来,让我们检查 movies DataFrame 的示例实例。

movies.head()
movieId title genres
0 movie_1 玩具总动员 (1995) 冒险|动画|儿童|喜剧|奇幻
1 movie_2 勇敢者的游戏 (1995) 冒险|儿童|奇幻
2 movie_3 老顽固 (1995) 喜剧|浪漫
3 movie_4 等待梦醒时分 (1995) 喜剧|剧情|浪漫
4 movie_5 新岳父大人续集 (1995) 喜剧

movies DataFrame 实现两个实用函数。

def get_movie_title_by_id(movieId):
    return list(movies[movies.movieId == movieId].title)[0]


def get_movie_id_by_title(title):
    return list(movies[movies.title == title].movieId)[0]

构建电影图

如果两部电影都由同一用户评分 >= min_rating,则我们在图中的两个电影节点之间创建一条边。边的权重将基于两部电影之间的逐点互信息,其计算公式为:log(xy) - log(x) - log(y) + log(D),其中

  • xy 是有多少用户对电影 x 和电影 y 的评分都 >= min_rating
  • x 是有多少用户对电影 x 的评分 >= min_rating
  • y 是有多少用户对电影 y 的评分 >= min_rating
  • D 是电影评分 >= min_rating 的总数。

步骤 1:创建电影之间的加权边。

min_rating = 5
pair_frequency = defaultdict(int)
item_frequency = defaultdict(int)

# Filter instances where rating is greater than or equal to min_rating.
rated_movies = ratings[ratings.rating >= min_rating]
# Group instances by user.
movies_grouped_by_users = list(rated_movies.groupby("userId"))
for group in tqdm(
    movies_grouped_by_users,
    position=0,
    leave=True,
    desc="Compute movie rating frequencies",
):
    # Get a list of movies rated by the user.
    current_movies = list(group[1]["movieId"])

    for i in range(len(current_movies)):
        item_frequency[current_movies[i]] += 1
        for j in range(i + 1, len(current_movies)):
            x = min(current_movies[i], current_movies[j])
            y = max(current_movies[i], current_movies[j])
            pair_frequency[(x, y)] += 1
Compute movie rating frequencies: 100%|███████████████████████████████████████████████████████████████████████████| 573/573 [00:00<00:00, 1049.83it/s]

步骤 2:创建具有节点和边的图

为了减少节点之间的边数,我们仅在边的权重大于 min_weight 时才在电影之间添加边。

min_weight = 10
D = math.log(sum(item_frequency.values()))

# Create the movies undirected graph.
movies_graph = nx.Graph()
# Add weighted edges between movies.
# This automatically adds the movie nodes to the graph.
for pair in tqdm(
    pair_frequency, position=0, leave=True, desc="Creating the movie graph"
):
    x, y = pair
    xy_frequency = pair_frequency[pair]
    x_frequency = item_frequency[x]
    y_frequency = item_frequency[y]
    pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D
    weight = pmi * xy_frequency
    # Only include edges with weight >= min_weight.
    if weight >= min_weight:
        movies_graph.add_edge(x, y, weight=weight)
Creating the movie graph: 100%|███████████████████████████████████████████████████████████████████████████| 298586/298586 [00:00<00:00, 552893.62it/s]

让我们显示图中节点的总数和边的总数。请注意,节点的数量少于电影的总数,因为仅添加与其他电影有边的电影。

print("Total number of graph nodes:", movies_graph.number_of_nodes())
print("Total number of graph edges:", movies_graph.number_of_edges())
Total number of graph nodes: 1405
Total number of graph edges: 40043

让我们显示图中节点的平均度数(邻居数)。

degrees = []
for node in movies_graph.nodes:
    degrees.append(movies_graph.degree[node])

print("Average node degree:", round(sum(degrees) / len(degrees), 2))
Average node degree: 57.0

步骤 3:创建词汇表和从标记到整数索引的映射

词汇表是图中的节点(电影 ID)。

vocabulary = ["NA"] + list(movies_graph.nodes)
vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}

实现有偏的随机游走

随机游走从给定节点开始,并随机选择一个邻居节点移动到。如果边是加权的,则根据当前节点与其邻居之间边的权重概率性地选择邻居。此过程会重复 num_steps 次,以生成一个相关节点的序列。

有偏的随机游走通过引入以下两个参数来平衡广度优先采样(仅访问本地邻居)和深度优先采样(访问远距离邻居):

  1. 返回参数 (p):控制在游走中立即重新访问节点的可能性。将其设置为高值会鼓励适度的探索,而将其设置为低值会使游走保持在本地。
  2. 进出参数 (q):允许搜索区分向内向外的节点。将其设置为高值会使随机游走偏向本地节点,而将其设置为低值会使游走偏向访问更远的节点。
def next_step(graph, previous, current, p, q):
    neighbors = list(graph.neighbors(current))

    weights = []
    # Adjust the weights of the edges to the neighbors with respect to p and q.
    for neighbor in neighbors:
        if neighbor == previous:
            # Control the probability to return to the previous node.
            weights.append(graph[current][neighbor]["weight"] / p)
        elif graph.has_edge(neighbor, previous):
            # The probability of visiting a local node.
            weights.append(graph[current][neighbor]["weight"])
        else:
            # Control the probability to move forward.
            weights.append(graph[current][neighbor]["weight"] / q)

    # Compute the probabilities of visiting each neighbor.
    weight_sum = sum(weights)
    probabilities = [weight / weight_sum for weight in weights]
    # Probabilistically select a neighbor to visit.
    next = np.random.choice(neighbors, size=1, p=probabilities)[0]
    return next


def random_walk(graph, num_walks, num_steps, p, q):
    walks = []
    nodes = list(graph.nodes())
    # Perform multiple iterations of the random walk.
    for walk_iteration in range(num_walks):
        random.shuffle(nodes)

        for node in tqdm(
            nodes,
            position=0,
            leave=True,
            desc=f"Random walks iteration {walk_iteration + 1} of {num_walks}",
        ):
            # Start the walk with a random node from the graph.
            walk = [node]
            # Randomly walk for num_steps.
            while len(walk) < num_steps:
                current = walk[-1]
                previous = walk[-2] if len(walk) > 1 else None
                # Compute the next node to visit.
                next = next_step(graph, previous, current, p, q)
                walk.append(next)
            # Replace node ids (movie ids) in the walk with token ids.
            walk = [vocabulary_lookup[token] for token in walk]
            # Add the walk to the generated sequence.
            walks.append(walk)

    return walks

使用有偏的随机游走生成训练数据

您可以探索 pq 的不同配置,以获得不同的相关电影结果。

# Random walk return parameter.
p = 1
# Random walk in-out parameter.
q = 1
# Number of iterations of random walks.
num_walks = 5
# Number of steps of each random walk.
num_steps = 10
walks = random_walk(movies_graph, num_walks, num_steps, p, q)

print("Number of walks generated:", len(walks))
Random walks iteration 1 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 291.76it/s]
Random walks iteration 2 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.56it/s]
Random walks iteration 3 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 294.52it/s]
Random walks iteration 4 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 304.06it/s]
Random walks iteration 5 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.15it/s]

Number of walks generated: 7025

生成正负示例

为了训练 skip-gram 模型,我们使用生成的游走来创建正负训练示例。每个示例都包含以下特征:

  1. target:游走序列中的一部电影。
  2. context:游走序列中的另一部电影。
  3. weight:这两部电影在游走序列中出现的次数。
  4. label:如果这两部电影是从游走序列中采样的,则标签为 1,否则(即,如果随机采样)标签为 0。

生成示例

def generate_examples(sequences, window_size, num_negative_samples, vocabulary_size):
    example_weights = defaultdict(int)
    # Iterate over all sequences (walks).
    for sequence in tqdm(
        sequences,
        position=0,
        leave=True,
        desc=f"Generating positive and negative examples",
    ):
        # Generate positive and negative skip-gram pairs for a sequence (walk).
        pairs, labels = keras.preprocessing.sequence.skipgrams(
            sequence,
            vocabulary_size=vocabulary_size,
            window_size=window_size,
            negative_samples=num_negative_samples,
        )
        for idx in range(len(pairs)):
            pair = pairs[idx]
            label = labels[idx]
            target, context = min(pair[0], pair[1]), max(pair[0], pair[1])
            if target == context:
                continue
            entry = (target, context, label)
            example_weights[entry] += 1

    targets, contexts, labels, weights = [], [], [], []
    for entry in example_weights:
        weight = example_weights[entry]
        target, context, label = entry
        targets.append(target)
        contexts.append(context)
        labels.append(label)
        weights.append(weight)

    return np.array(targets), np.array(contexts), np.array(labels), np.array(weights)


num_negative_samples = 4
targets, contexts, labels, weights = generate_examples(
    sequences=walks,
    window_size=num_steps,
    num_negative_samples=num_negative_samples,
    vocabulary_size=len(vocabulary),
)
Generating positive and negative examples: 100%|██████████████████████████████████████████████████████████████████| 7025/7025 [00:11<00:00, 617.64it/s]

让我们显示输出的形状

print(f"Targets shape: {targets.shape}")
print(f"Contexts shape: {contexts.shape}")
print(f"Labels shape: {labels.shape}")
print(f"Weights shape: {weights.shape}")
Targets shape: (881412,)
Contexts shape: (881412,)
Labels shape: (881412,)
Weights shape: (881412,)

将数据转换为 tf.data.Dataset 对象

batch_size = 1024


def create_dataset(targets, contexts, labels, weights, batch_size):
    inputs = {
        "target": targets,
        "context": contexts,
    }
    dataset = tf.data.Dataset.from_tensor_slices((inputs, labels, weights))
    dataset = dataset.shuffle(buffer_size=batch_size * 2)
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.prefetch(tf.data.AUTOTUNE)
    return dataset


dataset = create_dataset(
    targets=targets,
    contexts=contexts,
    labels=labels,
    weights=weights,
    batch_size=batch_size,
)

训练 skip-gram 模型

我们的 skip-gram 是一个简单的二元分类模型,其工作原理如下:

  1. 查找 target 电影的嵌入。
  2. 查找 context 电影的嵌入。
  3. 计算这两个嵌入之间的点积。
  4. 将结果(经过 sigmoid 激活后)与标签进行比较。
  5. 使用二元交叉熵损失。
learning_rate = 0.001
embedding_dim = 50
num_epochs = 10

实现模型

def create_model(vocabulary_size, embedding_dim):

    inputs = {
        "target": layers.Input(name="target", shape=(), dtype="int32"),
        "context": layers.Input(name="context", shape=(), dtype="int32"),
    }
    # Initialize item embeddings.
    embed_item = layers.Embedding(
        input_dim=vocabulary_size,
        output_dim=embedding_dim,
        embeddings_initializer="he_normal",
        embeddings_regularizer=keras.regularizers.l2(1e-6),
        name="item_embeddings",
    )
    # Lookup embeddings for target.
    target_embeddings = embed_item(inputs["target"])
    # Lookup embeddings for context.
    context_embeddings = embed_item(inputs["context"])
    # Compute dot similarity between target and context embeddings.
    logits = layers.Dot(axes=1, normalize=False, name="dot_similarity")(
        [target_embeddings, context_embeddings]
    )
    # Create the model.
    model = keras.Model(inputs=inputs, outputs=logits)
    return model

训练模型

我们实例化模型并对其进行编译。

model = create_model(len(vocabulary), embedding_dim)
model.compile(
    optimizer=keras.optimizers.Adam(learning_rate),
    loss=keras.losses.BinaryCrossentropy(from_logits=True),
)

让我们绘制模型。

keras.utils.plot_model(
    model,
    show_shapes=True,
    show_dtype=True,
    show_layer_names=True,
)

png

现在我们在 dataset 上训练模型。

history = model.fit(dataset, epochs=num_epochs)
Epoch 1/10
860/860 [==============================] - 5s 5ms/step - loss: 2.4527
Epoch 2/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3431
Epoch 3/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3351
Epoch 4/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3301
Epoch 5/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3259
Epoch 6/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3223
Epoch 7/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3191
Epoch 8/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3160
Epoch 9/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3130
Epoch 10/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3104

最后,我们绘制学习历史记录。

plt.plot(history.history["loss"])
plt.ylabel("loss")
plt.xlabel("epoch")
plt.show()

png


分析学习到的嵌入。

movie_embeddings = model.get_layer("item_embeddings").get_weights()[0]
print("Embeddings shape:", movie_embeddings.shape)
Embeddings shape: (1406, 50)

定义一个包含一些名为 query_movies 的电影的列表。

query_movies = [
    "Matrix, The (1999)",
    "Star Wars: Episode IV - A New Hope (1977)",
    "Lion King, The (1994)",
    "Terminator 2: Judgment Day (1991)",
    "Godfather, The (1972)",
]

获取 query_movies 中电影的嵌入。

query_embeddings = []

for movie_title in query_movies:
    movieId = get_movie_id_by_title(movie_title)
    token_id = vocabulary_lookup[movieId]
    movie_embedding = movie_embeddings[token_id]
    query_embeddings.append(movie_embedding)

query_embeddings = np.array(query_embeddings)

计算 query_movies 的嵌入与所有其他电影之间的余弦相似度,然后为每个电影选择前 k 个。

similarities = tf.linalg.matmul(
    tf.math.l2_normalize(query_embeddings),
    tf.math.l2_normalize(movie_embeddings),
    transpose_b=True,
)

_, indices = tf.math.top_k(similarities, k=5)
indices = indices.numpy().tolist()

显示 query_movies 中最相关的电影。

for idx, title in enumerate(query_movies):
    print(title)
    print("".rjust(len(title), "-"))
    similar_tokens = indices[idx]
    for token in similar_tokens:
        similar_movieId = vocabulary[token]
        similar_title = get_movie_title_by_id(similar_movieId)
        print(f"- {similar_title}")
    print()
Matrix, The (1999)
------------------
- Matrix, The (1999)
- Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
- Schindler's List (1993)
- Star Wars: Episode IV - A New Hope (1977)
- Lord of the Rings: The Fellowship of the Ring, The (2001)
Star Wars: Episode IV - A New Hope (1977)
-----------------------------------------
- Star Wars: Episode IV - A New Hope (1977)
- Schindler's List (1993)
- Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
- Matrix, The (1999)
- Pulp Fiction (1994)
Lion King, The (1994)
---------------------
- Lion King, The (1994)
- Jurassic Park (1993)
- Independence Day (a.k.a. ID4) (1996)
- Beauty and the Beast (1991)
- Mrs. Doubtfire (1993)
Terminator 2: Judgment Day (1991)
---------------------------------
- Schindler's List (1993)
- Jurassic Park (1993)
- Terminator 2: Judgment Day (1991)
- Star Wars: Episode IV - A New Hope (1977)
- Back to the Future (1985)
Godfather, The (1972)
---------------------
- Apocalypse Now (1979)
- Fargo (1996)
- Godfather, The (1972)
- Schindler's List (1993)
- Casablanca (1942)

使用 Embedding Projector 可视化嵌入

import io

out_v = io.open("embeddings.tsv", "w", encoding="utf-8")
out_m = io.open("metadata.tsv", "w", encoding="utf-8")

for idx, movie_id in enumerate(vocabulary[1:]):
    movie_title = list(movies[movies.movieId == movie_id].title)[0]
    vector = movie_embeddings[idx]
    out_v.write("\t".join([str(x) for x in vector]) + "\n")
    out_m.write(movie_title + "\n")

out_v.close()
out_m.close()

下载 embeddings.tsvmetadata.tsv 以在 Embedding Projector 中分析获得的嵌入。

HuggingFace 上提供的示例

训练模型 演示
Generic badge Generic badge