作者: 洪宇邱,Ian Stenbit,fchollet,lukewood
创建日期 2024/11/11
上次修改日期 2024/11/11
描述:探索 Stable Diffusion 3 的潜在流形。
生成式图像模型学习视觉世界的“潜在流形”:一个低维向量空间,其中每个点都映射到一个图像。从流形上的一个点回到可显示的图像的过程称为“解码”——在 Stable Diffusion 模型中,这是由“解码器”模型处理的。
这个图像的潜在流形是连续且可插值的,这意味着
然而,Stable Diffusion 不仅仅是一个图像模型,它还是一个自然语言模型。它有两个潜在空间:训练期间编码器学习的图像表示空间,以及使用预训练和训练时微调相结合学习的提示潜在空间。
潜在空间行走或潜在空间探索是采样潜在空间中的一个点并逐渐改变潜在表示的过程。其最常见的应用是生成动画,其中每个采样点都被馈送到解码器并作为最终动画中的一个帧存储。对于高质量的潜在表示,这会生成看起来连贯的动画。这些动画可以提供对潜在空间特征图的洞察,并最终可以改进训练过程。下面显示了一个这样的 GIF
在本指南中,我们将展示如何利用 KerasHub 中的 TextToImage API 执行提示插值和 Stable Diffusion 3 的视觉潜在流形以及文本编码器潜在流形的循环行走。
本指南假设读者对 Stable Diffusion 3 有高级理解。如果您还没有,您应该首先阅读KerasHub 中的 Stable Diffusion 3。
还需要注意的是,预设的“stable_diffusion_3_medium”排除了 T5XXL 文本编码器,因为它需要更多的 GPU 内存。在大多数情况下,性能下降可以忽略不计。包括 T5XXL 在内的权重很快将在 KerasHub 上提供。
!# Use the latest version of KerasHub
!!pip install -Uq git+https://github.com/keras-team/keras-hub.git
import math
import keras
import keras_hub
import matplotlib.pyplot as plt
from keras import ops
from keras import random
from PIL import Image
height, width = 512, 512
num_steps = 28
guidance_scale = 7.0
dtype = "float16"
# Instantiate the Stable Diffusion 3 model and the preprocessor
backbone = keras_hub.models.StableDiffusion3Backbone.from_preset(
"stable_diffusion_3_medium", image_shape=(height, width, 3), dtype=dtype
)
preprocessor = keras_hub.models.StableDiffusion3TextToImagePreprocessor.from_preset(
"stable_diffusion_3_medium"
)
让我们为本示例定义一些辅助函数。
def get_text_embeddings(prompt):
"""Get the text embeddings for a given prompt."""
token_ids = preprocessor.generate_preprocess([prompt])
negative_token_ids = preprocessor.generate_preprocess([""])
(
positive_embeddings,
negative_embeddings,
positive_pooled_embeddings,
negative_pooled_embeddings,
) = backbone.encode_text_step(token_ids, negative_token_ids)
return (
positive_embeddings,
negative_embeddings,
positive_pooled_embeddings,
negative_pooled_embeddings,
)
def decode_to_images(x, height, width):
"""Concatenate and normalize the images to uint8 dtype."""
x = ops.concatenate(x, axis=0)
x = ops.reshape(x, (-1, height, width, 3))
x = ops.clip(ops.divide(ops.add(x, 1.0), 2.0), 0.0, 1.0)
return ops.cast(ops.round(ops.multiply(x, 255.0)), "uint8")
def generate_with_latents_and_embeddings(
latents, embeddings, num_steps, guidance_scale
):
"""Generate images from latents and text embeddings."""
def body_fun(step, latents):
return backbone.denoise_step(
latents,
embeddings,
step,
num_steps,
guidance_scale,
)
latents = ops.fori_loop(0, num_steps, body_fun, latents)
return backbone.decode_step(latents)
def export_as_gif(filename, images, frames_per_second=10, no_rubber_band=False):
if not no_rubber_band:
images += images[2:-1][::-1] # Makes a rubber band: A->B->A
images[0].save(
filename,
save_all=True,
append_images=images[1:],
duration=1000 // frames_per_second,
loop=0,
)
我们将使用自定义潜在变量和嵌入生成图像,因此我们需要实现 generate_with_latents_and_embeddings
函数。此外,编译此函数对于加快生成过程非常重要。
if keras.config.backend() == "torch":
import torch
@torch.no_grad()
def wrapped_function(*args, **kwargs):
return generate_with_latents_and_embeddings(*args, **kwargs)
generate_function = wrapped_function
elif keras.config.backend() == "tensorflow":
import tensorflow as tf
generate_function = tf.function(
generate_with_latents_and_embeddings, jit_compile=True
)
elif keras.config.backend() == "jax":
import itertools
import jax
@jax.jit
def compiled_function(state, *args, **kwargs):
(trainable_variables, non_trainable_variables) = state
mapping = itertools.chain(
zip(backbone.trainable_variables, trainable_variables),
zip(backbone.non_trainable_variables, non_trainable_variables),
)
with keras.StatelessScope(state_mapping=mapping):
return generate_with_latents_and_embeddings(*args, **kwargs)
def wrapped_function(*args, **kwargs):
state = (
[v.value for v in backbone.trainable_variables],
[v.value for v in backbone.non_trainable_variables],
)
return compiled_function(state, *args, **kwargs)
generate_function = wrapped_function
在 Stable Diffusion 3 中,文本提示被编码成多个向量,然后用于指导扩散过程。这些潜在编码向量的形状为 154x4096 和 2048,分别用于正提示和负提示——非常大!当我们将文本提示输入到 Stable Diffusion 3 时,我们从这个潜在流形上的一个点生成图像。
为了探索更多这个流形,我们可以在两个文本编码之间进行插值,并在这些插值点生成图像
prompt_1 = "A cute dog in a beautiful field of lavander colorful flowers "
prompt_1 += "everywhere, perfect lighting, leica summicron 35mm f2.0, kodak "
prompt_1 += "portra 400, film grain"
prompt_2 = prompt_1.replace("dog", "cat")
interpolation_steps = 5
encoding_1 = get_text_embeddings(prompt_1)
encoding_2 = get_text_embeddings(prompt_2)
# Show the size of the latent manifold
print(f"Positive embeddings shape: {encoding_1[0].shape}")
print(f"Negative embeddings shape: {encoding_1[1].shape}")
print(f"Positive pooled embeddings shape: {encoding_1[2].shape}")
print(f"Negative pooled embeddings shape: {encoding_1[3].shape}")
Positive embeddings shape: (1, 154, 4096)
Negative embeddings shape: (1, 154, 4096)
Positive pooled embeddings shape: (1, 2048)
Negative pooled embeddings shape: (1, 2048)
在本例中,我们希望使用球面线性插值 (slerp) 而不是简单的线性插值。Slerp 通常用于计算机图形学中以平滑地动画化旋转,也可以应用于在高维数据点之间进行插值,例如生成模型中使用的潜在向量。
源代码来自 Andrej Karpathy 的 gist:https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355。
对此方法的更详细解释可以在以下网址找到:https://en.wikipedia.org/wiki/Slerp。
def slerp(v1, v2, num):
ori_dtype = v1.dtype
# Cast to float32 for numerical stability.
v1 = ops.cast(v1, "float32")
v2 = ops.cast(v2, "float32")
def interpolation(t, v1, v2, dot_threshold=0.9995):
"""helper function to spherically interpolate two arrays."""
dot = ops.sum(
v1 * v2 / (ops.linalg.norm(ops.ravel(v1)) * ops.linalg.norm(ops.ravel(v2)))
)
if ops.abs(dot) > dot_threshold:
v2 = (1 - t) * v1 + t * v2
else:
theta_0 = ops.arccos(dot)
sin_theta_0 = ops.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = ops.sin(theta_t)
s0 = ops.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v1 + s1 * v2
return v2
t = ops.linspace(0, 1, num)
interpolated = ops.stack([interpolation(t[i], v1, v2) for i in range(num)], axis=0)
return ops.cast(interpolated, ori_dtype)
interpolated_positive_embeddings = slerp(
encoding_1[0], encoding_2[0], interpolation_steps
)
interpolated_positive_pooled_embeddings = slerp(
encoding_1[2], encoding_2[2], interpolation_steps
)
# We don't use negative prompts in this example, so there’s no need to
# interpolate them.
negative_embeddings = encoding_1[1]
negative_pooled_embeddings = encoding_1[3]
插值完编码后,我们可以从每个点生成图像。请注意,为了在生成的图像之间保持一定的稳定性,我们在图像之间保持扩散潜在变量不变。
latents = random.normal((1, height // 8, width // 8, 16), seed=42)
images = []
progbar = keras.utils.Progbar(interpolation_steps)
for i in range(interpolation_steps):
images.append(
generate_function(
latents,
(
interpolated_positive_embeddings[i],
negative_embeddings,
interpolated_positive_pooled_embeddings[i],
negative_pooled_embeddings,
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == interpolation_steps - 1)
现在我们已经生成了一些插值图像,让我们来看一看它们!
在本教程中,我们将以 gif 的形式导出图像序列,以便可以轻松地查看一些时间上下文。对于第一张和最后一张图像在概念上不匹配的图像序列,我们将 gif 橡皮筋化。
如果您在 Colab 中运行,您可以通过运行以下命令查看您自己的 GIF
from IPython.display import Image as IImage
IImage("dog_to_cat_5.gif")
images = ops.convert_to_numpy(decode_to_images(images, height, width))
export_as_gif(
"dog_to_cat_5.gif",
[Image.fromarray(image) for image in images],
frames_per_second=2,
)
结果可能令人惊讶。通常,在提示之间进行插值会生成看起来连贯的图像,并且通常会演示两个提示内容之间的渐进概念转变。这表明了一个高质量的表示空间,它密切反映了视觉世界的自然结构。
为了最好地可视化这一点,我们应该进行更细粒度的插值,使用更多步骤。
interpolation_steps = 64
batch_size = 4
batches = interpolation_steps // batch_size
interpolated_positive_embeddings = slerp(
encoding_1[0], encoding_2[0], interpolation_steps
)
interpolated_positive_pooled_embeddings = slerp(
encoding_1[2], encoding_2[2], interpolation_steps
)
positive_embeddings_shape = ops.shape(encoding_1[0])
positive_pooled_embeddings_shape = ops.shape(encoding_1[2])
interpolated_positive_embeddings = ops.reshape(
interpolated_positive_embeddings,
(
batches,
batch_size,
positive_embeddings_shape[-2],
positive_embeddings_shape[-1],
),
)
interpolated_positive_pooled_embeddings = ops.reshape(
interpolated_positive_pooled_embeddings,
(batches, batch_size, positive_pooled_embeddings_shape[-1]),
)
negative_embeddings = ops.tile(encoding_1[1], (batch_size, 1, 1))
negative_pooled_embeddings = ops.tile(encoding_1[3], (batch_size, 1))
latents = random.normal((1, height // 8, width // 8, 16), seed=42)
latents = ops.tile(latents, (batch_size, 1, 1, 1))
images = []
progbar = keras.utils.Progbar(batches)
for i in range(batches):
images.append(
generate_function(
latents,
(
interpolated_positive_embeddings[i],
negative_embeddings,
interpolated_positive_pooled_embeddings[i],
negative_pooled_embeddings,
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == batches - 1)
images = ops.convert_to_numpy(decode_to_images(images, height, width))
export_as_gif(
"dog_to_cat_64.gif",
[Image.fromarray(image) for image in images],
frames_per_second=2,
)
生成的 gif 显示了两个提示之间更清晰、更连贯的转变。尝试您自己的提示并进行实验!
我们甚至可以将此概念扩展到多个图像。例如,我们可以在四个提示之间进行插值
prompt_1 = "A watercolor painting of a Golden Retriever at the beach"
prompt_2 = "A still life DSLR photo of a bowl of fruit"
prompt_3 = "The eiffel tower in the style of starry night"
prompt_4 = "An architectural sketch of a skyscraper"
interpolation_steps = 8
batch_size = 4
batches = (interpolation_steps**2) // batch_size
encoding_1 = get_text_embeddings(prompt_1)
encoding_2 = get_text_embeddings(prompt_2)
encoding_3 = get_text_embeddings(prompt_3)
encoding_4 = get_text_embeddings(prompt_4)
positive_embeddings_shape = ops.shape(encoding_1[0])
positive_pooled_embeddings_shape = ops.shape(encoding_1[2])
interpolated_positive_embeddings_12 = slerp(
encoding_1[0], encoding_2[0], interpolation_steps
)
interpolated_positive_embeddings_34 = slerp(
encoding_3[0], encoding_4[0], interpolation_steps
)
interpolated_positive_embeddings = slerp(
interpolated_positive_embeddings_12,
interpolated_positive_embeddings_34,
interpolation_steps,
)
interpolated_positive_embeddings = ops.reshape(
interpolated_positive_embeddings,
(
batches,
batch_size,
positive_embeddings_shape[-2],
positive_embeddings_shape[-1],
),
)
interpolated_positive_pooled_embeddings_12 = slerp(
encoding_1[2], encoding_2[2], interpolation_steps
)
interpolated_positive_pooled_embeddings_34 = slerp(
encoding_3[2], encoding_4[2], interpolation_steps
)
interpolated_positive_pooled_embeddings = slerp(
interpolated_positive_pooled_embeddings_12,
interpolated_positive_pooled_embeddings_34,
interpolation_steps,
)
interpolated_positive_pooled_embeddings = ops.reshape(
interpolated_positive_pooled_embeddings,
(batches, batch_size, positive_pooled_embeddings_shape[-1]),
)
negative_embeddings = ops.tile(encoding_1[1], (batch_size, 1, 1))
negative_pooled_embeddings = ops.tile(encoding_1[3], (batch_size, 1))
latents = random.normal((1, height // 8, width // 8, 16), seed=42)
latents = ops.tile(latents, (batch_size, 1, 1, 1))
images = []
progbar = keras.utils.Progbar(batches)
for i in range(batches):
images.append(
generate_function(
latents,
(
interpolated_positive_embeddings[i],
negative_embeddings,
interpolated_positive_pooled_embeddings[i],
negative_pooled_embeddings,
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == batches - 1)
让我们以网格的形式显示生成的图像,以便更容易理解。
def plot_grid(images, path, grid_size, scale=2):
fig, axs = plt.subplots(
grid_size, grid_size, figsize=(grid_size * scale, grid_size * scale)
)
fig.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
plt.axis("off")
for ax in axs.flat:
ax.axis("off")
for i in range(min(grid_size * grid_size, len(images))):
ax = axs.flat[i]
ax.imshow(images[i])
ax.axis("off")
for i in range(len(images), grid_size * grid_size):
axs.flat[i].axis("off")
axs.flat[i].remove()
plt.savefig(
fname=path,
pad_inches=0,
bbox_inches="tight",
transparent=False,
dpi=60,
)
images = ops.convert_to_numpy(decode_to_images(images, height, width))
plot_grid(images, "4-way-interpolation.jpg", interpolation_steps)
我们也可以在允许扩散潜在变量变化的同时进行插值,方法是删除 seed
参数
images = []
progbar = keras.utils.Progbar(batches)
for i in range(batches):
# Vary diffusion latents for each input.
latents = random.normal((batch_size, height // 8, width // 8, 16))
images.append(
generate_function(
latents,
(
interpolated_positive_embeddings[i],
negative_embeddings,
interpolated_positive_pooled_embeddings[i],
negative_pooled_embeddings,
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == batches - 1)
images = ops.convert_to_numpy(decode_to_images(images, height, width))
plot_grid(images, "4-way-interpolation-varying-latent.jpg", interpolation_steps)
接下来——让我们开始散步!
我们的下一个实验将是从特定提示生成的点开始,在潜在流形上进行散步。
walk_steps = 64
batch_size = 4
batches = walk_steps // batch_size
step_size = 0.01
prompt = "The eiffel tower in the style of starry night"
encoding = get_text_embeddings(prompt)
positive_embeddings = encoding[0]
positive_pooled_embeddings = encoding[2]
negative_embeddings = encoding[1]
negative_pooled_embeddings = encoding[3]
# The shape of `positive_embeddings`: (1, 154, 4096)
# The shape of `positive_pooled_embeddings`: (1, 2048)
positive_embeddings_delta = ops.ones_like(positive_embeddings) * step_size
positive_pooled_embeddings_delta = ops.ones_like(positive_pooled_embeddings) * step_size
positive_embeddings_shape = ops.shape(positive_embeddings)
positive_pooled_embeddings_shape = ops.shape(positive_pooled_embeddings)
walked_positive_embeddings = []
walked_positive_pooled_embeddings = []
for step_index in range(walk_steps):
walked_positive_embeddings.append(positive_embeddings)
walked_positive_pooled_embeddings.append(positive_pooled_embeddings)
positive_embeddings += positive_embeddings_delta
positive_pooled_embeddings += positive_pooled_embeddings_delta
walked_positive_embeddings = ops.stack(walked_positive_embeddings, axis=0)
walked_positive_pooled_embeddings = ops.stack(walked_positive_pooled_embeddings, axis=0)
walked_positive_embeddings = ops.reshape(
walked_positive_embeddings,
(
batches,
batch_size,
positive_embeddings_shape[-2],
positive_embeddings_shape[-1],
),
)
walked_positive_pooled_embeddings = ops.reshape(
walked_positive_pooled_embeddings,
(batches, batch_size, positive_pooled_embeddings_shape[-1]),
)
negative_embeddings = ops.tile(encoding_1[1], (batch_size, 1, 1))
negative_pooled_embeddings = ops.tile(encoding_1[3], (batch_size, 1))
latents = random.normal((1, height // 8, width // 8, 16), seed=42)
latents = ops.tile(latents, (batch_size, 1, 1, 1))
images = []
progbar = keras.utils.Progbar(batches)
for i in range(batches):
images.append(
generate_function(
latents,
(
walked_positive_embeddings[i],
negative_embeddings,
walked_positive_pooled_embeddings[i],
negative_pooled_embeddings,
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == batches - 1)
images = ops.convert_to_numpy(decode_to_images(images, height, width))
export_as_gif(
"eiffel-tower-starry-night.gif",
[Image.fromarray(image) for image in images],
frames_per_second=2,
)
也许不出所料,从编码器的潜在流形上走得太远会生成看起来不连贯的图像。通过设置您自己的提示并调整 step_size
来增加或减少散步的幅度,您可以自己尝试。请注意,当散步的幅度变大时,散步通常会导致产生极其嘈杂的图像的区域。
我们的最后一个实验是坚持一个提示并探索扩散模型可以从该提示生成的不同图像。我们通过控制用于播种扩散过程的噪声来做到这一点。
我们创建两个噪声分量 x
和 y
,并从 0 到 2π 进行散步,将 x
分量的余弦和 y
分量的正弦相加以生成噪声。使用这种方法,我们的散步结束时到达了我们开始散步时的相同噪声输入,因此我们得到了一个“可循环”的结果!
walk_steps = 64
batch_size = 4
batches = walk_steps // batch_size
prompt = "An oil paintings of cows in a field next to a windmill in Holland"
encoding = get_text_embeddings(prompt)
walk_latent_x = random.normal((1, height // 8, width // 8, 16))
walk_latent_y = random.normal((1, height // 8, width // 8, 16))
walk_scale_x = ops.cos(ops.linspace(0.0, 2.0, walk_steps) * math.pi)
walk_scale_y = ops.sin(ops.linspace(0.0, 2.0, walk_steps) * math.pi)
latent_x = ops.tensordot(walk_scale_x, walk_latent_x, axes=0)
latent_y = ops.tensordot(walk_scale_y, walk_latent_y, axes=0)
latents = ops.add(latent_x, latent_y)
latents = ops.reshape(latents, (batches, batch_size, height // 8, width // 8, 16))
images = []
progbar = keras.utils.Progbar(batches)
for i in range(batches):
images.append(
generate_function(
latents[i],
(
ops.tile(encoding[0], (batch_size, 1, 1)),
ops.tile(encoding[1], (batch_size, 1, 1)),
ops.tile(encoding[2], (batch_size, 1)),
ops.tile(encoding[3], (batch_size, 1)),
),
ops.convert_to_tensor(num_steps),
ops.convert_to_tensor(guidance_scale),
)
)
progbar.update(i + 1, finalize=i == batches - 1)
images = ops.convert_to_numpy(decode_to_images(images, height, width))
export_as_gif(
"cows.gif",
[Image.fromarray(image) for image in images],
frames_per_second=4,
no_rubber_band=True,
)
尝试使用您自己的提示和不同的参数值!
Stable Diffusion 3 提供的功能远不止简单的文本到图像生成。探索文本编码器的潜在流形和扩散模型的潜在空间是体验该模型强大功能的两种有趣方式,而 KerasHub 让这一切变得简单!