作者: Joaquin Jimenez
创建日期 2024/12/10
最后修改 2024/12/10
描述: 训练一个模型以从音乐混合中分离人声轨道。
在本教程中,我们将使用 Keras 3 中的编码器-解码器架构构建一个人声分离模型。
我们使用 MUSDB18 数据集 来训练模型,该数据集提供了音乐混合以及鼓、贝斯、其他和人声的独立轨道。
涵盖的关键概念
该模型架构源自 TFC_TDF_Net 模型,该模型在
W. Choi, M. Kim, J. Chung, D. Lee, and S. Jung, “Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation,” in the 21st International Society for Music Information Retrieval Conference, 2020. 中进行了描述。
参考代码,请参见: GitHub: ws-choi/ISMIR2020_U_Nets_SVS。
数据处理和模型训练例程部分源自: ZFTurbo/Music-Source-Separation-Training。
导入并安装所有必需的依赖项。
!pip install -qq audiomentations soundfile ffmpeg-binaries
!pip install -qq "keras==3.7.0"
!sudo -n apt-get install -y graphviz >/dev/null 2>&1 # Required for plotting the model
import glob
import os
os.environ["KERAS_BACKEND"] = "jax" # or "tensorflow" or "torch"
import random
import subprocess
import tempfile
import typing
from os import path
import audiomentations as aug
import ffmpeg
import keras
import numpy as np
import soundfile as sf
from IPython import display
from keras import callbacks, layers, ops, saving
from matplotlib import pyplot as plt
以下常量定义了音频处理和模型训练的配置参数,包括数据集路径、音频块大小、短时傅里叶变换 (STFT) 参数和训练超参数。
# MUSDB18 dataset configuration
MUSDB_STREAMS = {"mixture": 0, "drums": 1, "bass": 2, "other": 3, "vocals": 4}
TARGET_INSTRUMENTS = {track: MUSDB_STREAMS[track] for track in ("vocals",)}
N_INSTRUMENTS = len(TARGET_INSTRUMENTS)
SOURCE_INSTRUMENTS = tuple(k for k in MUSDB_STREAMS if k != "mixture")
# Audio preprocessing parameters for Short-Time Fourier Transform (STFT)
N_SUBBANDS = 4 # Number of subbands into which frequencies are split
CHUNK_SIZE = 65024 # Number of amplitude samples per audio chunk (~4 seconds)
STFT_N_FFT = 2048 # FFT points used in STFT
STFT_HOP_LENGTH = 512 # Hop length for STFT
# Training hyperparameters
N_CHANNELS = 64 # Base channel count for the model
BATCH_SIZE = 3
ACCUMULATION_STEPS = 2
EFFECTIVE_BATCH_SIZE = BATCH_SIZE * (ACCUMULATION_STEPS or 1)
# Paths
TMP_DIR = path.expanduser("~/.keras/tmp")
DATASET_DIR = path.expanduser("~/.keras/datasets")
MODEL_PATH = path.join(TMP_DIR, f"model_{keras.backend.backend()}.keras")
CSV_LOG_PATH = path.join(TMP_DIR, f"training_{keras.backend.backend()}.csv")
os.makedirs(DATASET_DIR, exist_ok=True)
os.makedirs(TMP_DIR, exist_ok=True)
# Set random seed for reproducibility
keras.utils.set_random_seed(21)
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1734318393.806217 81028 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1734318393.809885 81028 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
MUSDB18 数据集是音乐源分离的标准基准,包含 150 首完整长度的音乐曲目以及独立的鼓、贝斯、其他和人声。数据集以 .mp4 格式存储,每个 .mp4 文件都包含多个音频流(混合和单个轨道)。
以下实用程序函数下载 MUSDB18 并将其 .mp4 文件转换为每个乐器轨道的 .wav 文件,并重新采样至 16 kHz。
def download_musdb18(out_dir=None):
"""Download and extract the MUSDB18 dataset, then convert .mp4 files to .wav files.
MUSDB18 reference:
Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I., & Bittner, R. (2017).
MUSDB18 - a corpus for music separation (1.0.0) [Data set]. Zenodo.
"""
ffmpeg.init()
from ffmpeg import FFMPEG_PATH
# Create output directories
os.makedirs((base := out_dir or tempfile.mkdtemp()), exist_ok=True)
if path.exists((out_dir := path.join(base, "musdb18_wav"))):
print("MUSDB18 dataset already downloaded")
return out_dir
# Download and extract the dataset
download_dir = keras.utils.get_file(
fname="musdb18",
origin="https://zenodo.org/records/1117372/files/musdb18.zip",
extract=True,
)
# ffmpeg command template: input, stream index, output
ffmpeg_args = str(FFMPEG_PATH) + " -v error -i {} -map 0:{} -vn -ar 16000 {}"
# Convert each mp4 file to multiple .wav files for each track
for split in ("train", "test"):
songs = os.listdir(path.join(download_dir, split))
for i, song in enumerate(songs):
if i % 10 == 0:
print(f"{split.capitalize()}: {i}/{len(songs)} songs processed")
mp4_path_orig = path.join(download_dir, split, song)
mp4_path = path.join(tempfile.mkdtemp(), split, song.replace(" ", "_"))
os.makedirs(path.dirname(mp4_path), exist_ok=True)
os.rename(mp4_path_orig, mp4_path)
wav_dir = path.join(out_dir, split, path.basename(mp4_path).split(".")[0])
os.makedirs(wav_dir, exist_ok=True)
for track in SOURCE_INSTRUMENTS:
out_path = path.join(wav_dir, f"{track}.wav")
stream_index = MUSDB_STREAMS[track]
args = ffmpeg_args.format(mp4_path, stream_index, out_path).split()
assert subprocess.run(args).returncode == 0, "ffmpeg conversion failed"
return out_dir
# Download and prepare the MUSDB18 dataset
songs = download_musdb18(out_dir=DATASET_DIR)
MUSDB18 dataset already downloaded
我们定义了一个自定义数据集类来生成随机音频块及其相应的标签。数据集执行以下操作
这种方法允许通过随机化和增强创建无限的训练示例。
class Dataset(keras.utils.PyDataset):
def __init__(
self,
songs,
batch_size=BATCH_SIZE,
chunk_size=CHUNK_SIZE,
batches_per_epoch=1000 * ACCUMULATION_STEPS,
augmentation=True,
**kwargs,
):
super().__init__(**kwargs)
self.augmentation = augmentation
self.vocals_augmentations = [
aug.PitchShift(min_semitones=-5, max_semitones=5, p=0.1),
aug.SevenBandParametricEQ(-9, 9, p=0.25),
aug.TanhDistortion(0.1, 0.7, p=0.1),
]
self.other_augmentations = [
aug.PitchShift(p=0.1),
aug.AddGaussianNoise(p=0.1),
]
self.songs = songs
self.sizes = {song: self.get_track_set_size(song) for song in self.songs}
self.batch_size = batch_size
self.chunk_size = chunk_size
self.batches_per_epoch = batches_per_epoch
def get_track_set_size(self, song: str):
"""Return the smallest track length in the given song directory."""
sizes = [len(sf.read(p)[0]) for p in glob.glob(path.join(song, "*.wav"))]
if max(sizes) != min(sizes):
print(f"Warning: {song} has different track lengths")
return min(sizes)
def random_chunk_of_instrument_type(self, instrument: str):
"""Extract a random chunk for the specified instrument from a random song."""
song, size = random.choice(list(self.sizes.items()))
track = path.join(song, f"{instrument}.wav")
if self.chunk_size <= size:
start = np.random.randint(size - self.chunk_size + 1)
audio = sf.read(track, self.chunk_size, start, dtype="float32")[0]
audio_mono = np.mean(audio, axis=1)
else:
# If the track is shorter than chunk_size, pad the signal
audio_mono = np.mean(sf.read(track, dtype="float32")[0], axis=1)
audio_mono = np.pad(audio_mono, ((0, self.chunk_size - size),))
# If the chunk is almost silent, retry
if np.mean(np.abs(audio_mono)) < 0.01:
return self.random_chunk_of_instrument_type(instrument)
return self.data_augmentation(audio_mono, instrument)
def data_augmentation(self, audio: np.ndarray, instrument: str):
"""Apply data augmentation to the audio chunk, if enabled."""
def coin_flip(x, probability: float, fn: typing.Callable):
return fn(x) if random.uniform(0, 1) < probability else x
if self.augmentation:
augmentations = (
self.vocals_augmentations
if instrument == "vocals"
else self.other_augmentations
)
# Loudness augmentation
audio *= np.random.uniform(0.5, 1.5, (len(audio),)).astype("float32")
# Random reverse
audio = coin_flip(audio, 0.1, lambda x: np.flip(x))
# Random polarity inversion
audio = coin_flip(audio, 0.5, lambda x: -x)
# Apply selected augmentations
for aug_ in augmentations:
aug_.randomize_parameters(audio, sample_rate=16000)
audio = aug_(audio, sample_rate=16000)
return audio
def random_mix_of_tracks(self) -> dict:
"""Create a random mix of instruments by summing their individual chunks."""
tracks = {}
for instrument in SOURCE_INSTRUMENTS:
# Start with a single random chunk
mixup = [self.random_chunk_of_instrument_type(instrument)]
# Randomly add more chunks of the same instrument (mixup augmentation)
if self.augmentation:
for p in (0.2, 0.02):
if random.uniform(0, 1) < p:
mixup.append(self.random_chunk_of_instrument_type(instrument))
tracks[instrument] = np.mean(mixup, axis=0, dtype="float32")
return tracks
def __len__(self):
return self.batches_per_epoch
def __getitem__(self, idx):
# Generate a batch of random mixtures
batch = [self.random_mix_of_tracks() for _ in range(self.batch_size)]
# Features: sum of all tracks
batch_x = ops.sum(
np.array([list(track_set.values()) for track_set in batch]), axis=1
)
# Labels: isolated target instruments (e.g., vocals)
batch_y = np.array(
[[track_set[t] for t in TARGET_INSTRUMENTS] for track_set in batch]
)
return batch_x, ops.convert_to_tensor(batch_y)
# Create train and validation datasets
train_ds = Dataset(glob.glob(path.join(songs, "train", "*")))
val_ds = Dataset(
glob.glob(path.join(songs, "test", "*")),
batches_per_epoch=int(0.1 * train_ds.batches_per_epoch),
augmentation=False,
)
让我们可视化一个随机的混合音频块及其对应的独立人声。这有助于了解预处理后的输入数据的性质。
def visualize_audio_np(audio: np.ndarray, rate=16000, name="mixup"):
"""Plot and display an audio waveform and also produce an Audio widget."""
plt.figure(figsize=(10, 6))
plt.plot(audio)
plt.title(f"Waveform: {name}")
plt.xlim(0, len(audio))
plt.ylabel("Amplitude")
plt.show()
# plt.savefig(f"tmp/{name}.png")
# Normalize and display audio
audio_norm = (audio - np.min(audio)) / (np.max(audio) - np.min(audio) + 1e-8)
audio_norm = (audio_norm * 2 - 1) * 0.6
display.display(display.Audio(audio_norm, rate=rate))
# sf.write(f"tmp/{name}.wav", audio_norm, rate)
sample_batch_x, sample_batch_y = val_ds[None] # Random batch
visualize_audio_np(ops.convert_to_numpy(sample_batch_x[0]))
visualize_audio_np(ops.convert_to_numpy(sample_batch_y[0, 0]), name="vocals")
该模型在 STFT 表示上运行,而不是原始音频。我们定义一个预处理模型来计算 STFT 和相应的逆变换 (iSTFT)。
def stft(inputs, fft_size=STFT_N_FFT, sequence_stride=STFT_HOP_LENGTH):
"""Compute the STFT for the input audio and return the real and imaginary parts."""
real_x, imag_x = ops.stft(inputs, fft_size, sequence_stride, fft_size)
real_x, imag_x = ops.expand_dims(real_x, -1), ops.expand_dims(imag_x, -1)
x = ops.concatenate((real_x, imag_x), axis=-1)
# Drop last freq sample for convenience
return ops.split(x, [x.shape[2] - 1], axis=2)[0]
def inverse_stft(inputs, fft_size=STFT_N_FFT, sequence_stride=STFT_HOP_LENGTH):
"""Compute the inverse STFT for the given STFT input."""
x = inputs
# Pad back dropped freq sample if using torch backend
if keras.backend.backend() == "torch":
x = ops.pad(x, ((0, 0), (0, 0), (0, 1), (0, 0)))
real_x, imag_x = ops.split(x, 2, axis=-1)
real_x = ops.squeeze(real_x, axis=-1)
imag_x = ops.squeeze(imag_x, axis=-1)
return ops.istft((real_x, imag_x), fft_size, sequence_stride, fft_size)
该模型使用具有时频卷积 (TFC) 和时间分布全连接 (TDF) 块的自定义编码器-解码器架构。它们被分组到一个 TimeFrequencyTransformBlock
中,即 Choi 等人原始论文中的 “TFC_TDF”。
然后,我们定义一个具有多个尺度的编码器-解码器网络。每个编码器尺度应用 TFC_TDF 块,然后进行下采样,而解码器尺度在经过上采样的特征和相关的编码器输出的连接上应用 TFC_TDF 块。
@saving.register_keras_serializable()
class TimeDistributedDenseBlock(layers.Layer):
"""Time-Distributed Fully Connected layer block.
Applies frequency-wise dense transformations across time frames with instance
normalization and GELU activation.
"""
def __init__(self, bottleneck_factor, fft_dim, **kwargs):
super().__init__(**kwargs)
self.fft_dim = fft_dim
self.hidden_dim = fft_dim // bottleneck_factor
def build(self, *_):
self.group_norm_1 = layers.GroupNormalization(groups=-1)
self.group_norm_2 = layers.GroupNormalization(groups=-1)
self.dense_1 = layers.Dense(self.hidden_dim, use_bias=False)
self.dense_2 = layers.Dense(self.fft_dim, use_bias=False)
def call(self, x):
# Apply normalization and dense layers frequency-wise
x = ops.gelu(self.group_norm_1(x))
x = ops.swapaxes(x, -1, -2)
x = self.dense_1(x)
x = ops.gelu(self.group_norm_2(ops.swapaxes(x, -1, -2)))
x = ops.swapaxes(x, -1, -2)
x = self.dense_2(x)
return ops.swapaxes(x, -1, -2)
@saving.register_keras_serializable()
class TimeFrequencyConvolution(layers.Layer):
"""Time-Frequency Convolutional layer.
Applies a 2D convolution over time-frequency representations and applies instance
normalization and GELU activation.
"""
def __init__(self, channels, **kwargs):
super().__init__(**kwargs)
self.channels = channels
def build(self, *_):
self.group_norm = layers.GroupNormalization(groups=-1)
self.conv = layers.Conv2D(self.channels, 3, padding="same", use_bias=False)
def call(self, x):
return self.conv(ops.gelu(self.group_norm(x)))
@saving.register_keras_serializable()
class TimeFrequencyTransformBlock(layers.Layer):
"""Implements TFC_TDF block for encoder-decoder architecture.
Repeatedly apply Time-Frequency Convolution and Time-Distributed Dense blocks as
many times as specified by the `length` parameter.
"""
def __init__(
self, channels, length, fft_dim, bottleneck_factor, in_channels=None, **kwargs
):
super().__init__(**kwargs)
self.channels = channels
self.length = length
self.fft_dim = fft_dim
self.bottleneck_factor = bottleneck_factor
self.in_channels = in_channels or channels
self.blocks = []
def build(self, *_):
# Add blocks in a flat list to avoid nested structures
for i in range(self.length):
in_channels = self.channels if i > 0 else self.in_channels
self.blocks.append(TimeFrequencyConvolution(in_channels))
self.blocks.append(
TimeDistributedDenseBlock(self.bottleneck_factor, self.fft_dim)
)
self.blocks.append(TimeFrequencyConvolution(self.channels))
# Residual connection
self.blocks.append(layers.Conv2D(self.channels, 1, 1, use_bias=False))
def call(self, inputs):
x = inputs
# Each block consists of 4 layers:
# 1. Time-Frequency Convolution
# 2. Time-Distributed Dense
# 3. Time-Frequency Convolution
# 4. Residual connection
for i in range(0, len(self.blocks), 4):
tfc_1 = self.blocks[i](x)
tdf = self.blocks[i + 1](x)
tfc_2 = self.blocks[i + 2](tfc_1 + tdf)
x = tfc_2 + self.blocks[i + 3](x) # Residual connection
return x
@saving.register_keras_serializable()
class Downscale(layers.Layer):
"""Downscale time-frequency dimensions using a convolution."""
conv_cls = layers.Conv2D
def __init__(self, channels, scale, **kwargs):
super().__init__(**kwargs)
self.channels = channels
self.scale = scale
def build(self, *_):
self.conv = self.conv_cls(self.channels, self.scale, self.scale, use_bias=False)
self.norm = layers.GroupNormalization(groups=-1)
def call(self, inputs):
return self.norm(ops.gelu(self.conv(inputs)))
@saving.register_keras_serializable()
class Upscale(Downscale):
"""Upscale time-frequency dimensions using a transposed convolution."""
conv_cls = layers.Conv2DTranspose
def build_model(
inputs,
n_instruments=N_INSTRUMENTS,
n_subbands=N_SUBBANDS,
channels=N_CHANNELS,
fft_dim=(STFT_N_FFT // 2) // N_SUBBANDS,
n_scales=4,
scale=(2, 2),
block_size=2,
growth=128,
bottleneck_factor=2,
**kwargs,
):
"""Build the TFC_TDF encoder-decoder model for source separation."""
# Compute STFT
x = stft(inputs)
# Split mixture into subbands as separate channels
mix = ops.reshape(x, (-1, x.shape[1], x.shape[2] // n_subbands, 2 * n_subbands))
first_conv_out = layers.Conv2D(channels, 1, 1, use_bias=False)(mix)
x = first_conv_out
# Encoder path
encoder_outs = []
for _ in range(n_scales):
x = TimeFrequencyTransformBlock(
channels, block_size, fft_dim, bottleneck_factor
)(x)
encoder_outs.append(x)
fft_dim, channels = fft_dim // scale[0], channels + growth
x = Downscale(channels, scale)(x)
# Bottleneck
x = TimeFrequencyTransformBlock(channels, block_size, fft_dim, bottleneck_factor)(x)
# Decoder path
for _ in range(n_scales):
fft_dim, channels = fft_dim * scale[0], channels - growth
x = ops.concatenate([Upscale(channels, scale)(x), encoder_outs.pop()], axis=-1)
x = TimeFrequencyTransformBlock(
channels, block_size, fft_dim, bottleneck_factor, in_channels=x.shape[-1]
)(x)
# Residual connection and final convolutions
x = ops.concatenate([mix, x * first_conv_out], axis=-1)
x = layers.Conv2D(channels, 1, 1, use_bias=False, activation="gelu")(x)
x = layers.Conv2D(n_instruments * n_subbands * 2, 1, 1, use_bias=False)(x)
# Reshape back to instrument-wise STFT
x = ops.reshape(x, (-1, x.shape[1], x.shape[2] * n_subbands, n_instruments, 2))
x = ops.transpose(x, (0, 3, 1, 2, 4))
x = ops.reshape(x, (-1, n_instruments, x.shape[2], x.shape[3] * 2))
return keras.Model(inputs=inputs, outputs=x, **kwargs)
我们定义
spectral_loss
: STFT 域中的平均绝对误差。sdr
: 信号失真比,一种常见的源分离指标。def prediction_to_wave(x, n_instruments=N_INSTRUMENTS):
"""Convert STFT predictions back to waveform."""
x = ops.reshape(x, (-1, x.shape[2], x.shape[3] // 2, 2))
x = inverse_stft(x)
return ops.reshape(x, (-1, n_instruments, x.shape[1]))
def target_to_stft(y):
"""Convert target waveforms to their STFT representations."""
y = ops.reshape(y, (-1, CHUNK_SIZE))
y_real, y_imag = ops.stft(y, STFT_N_FFT, STFT_HOP_LENGTH, STFT_N_FFT)
y_real, y_imag = y_real[..., :-1], y_imag[..., :-1]
y = ops.stack([y_real, y_imag], axis=-1)
return ops.reshape(y, (-1, N_INSTRUMENTS, y.shape[1], y.shape[2] * 2))
@saving.register_keras_serializable()
def sdr(y_true, y_pred):
"""Signal-to-Distortion Ratio metric."""
y_pred = prediction_to_wave(y_pred)
# Add epsilon for numerical stability
num = ops.sum(ops.square(y_true), axis=-1) + 1e-8
den = ops.sum(ops.square(y_true - y_pred), axis=-1) + 1e-8
return 10 * ops.log10(num / den)
@saving.register_keras_serializable()
def spectral_loss(y_true, y_pred):
"""Mean absolute error in the STFT domain."""
y_true = target_to_stft(y_true)
return ops.mean(ops.absolute(y_true - y_pred))
# Load or create the model
if path.exists(MODEL_PATH):
model = saving.load_model(MODEL_PATH)
else:
model = build_model(keras.Input(sample_batch_x.shape[1:]), name="tfc_tdf_net")
# Display the model architecture
model.summary()
img = keras.utils.plot_model(model, path.join(TMP_DIR, "model.png"), show_shapes=True)
display.display(img)
Model: "tfc_tdf_net"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩ │ input_layer │ (None, 65024) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ stft (STFT) │ [(None, 128, │ 0 │ input_layer[0][0] │ │ │ 1025), (None, │ │ │ │ │ 128, 1025)] │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ expand_dims │ (None, 128, 1025, │ 0 │ stft[0][0] │ │ (ExpandDims) │ 1) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ expand_dims_1 │ (None, 128, 1025, │ 0 │ stft[0][1] │ │ (ExpandDims) │ 1) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate │ (None, 128, 1025, │ 0 │ expand_dims[0][0… │ │ (Concatenate) │ 2) │ │ expand_dims_1[0]… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ split (Split) │ [(None, 128, │ 0 │ concatenate[0][0] │ │ │ 1024, 2), (None, │ │ │ │ │ 128, 1, 2)] │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ reshape (Reshape) │ (None, 128, 256, │ 0 │ split[0][0] │ │ │ 8) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ conv2d (Conv2D) │ (None, 128, 256, │ 512 │ reshape[0][0] │ │ │ 64) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 128, 256, │ 287,744 │ conv2d[0][0] │ │ (TimeFrequencyTran… │ 64) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ downscale │ (None, 64, 128, │ 49,536 │ time_frequency_t… │ │ (Downscale) │ 192) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 64, 128, │ 1,436,672 │ downscale[0][0] │ │ (TimeFrequencyTran… │ 192) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ downscale_1 │ (None, 32, 64, │ 246,400 │ time_frequency_t… │ │ (Downscale) │ 320) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 32, 64, │ 3,904,512 │ downscale_1[0][0] │ │ (TimeFrequencyTran… │ 320) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ downscale_2 │ (None, 16, 32, │ 574,336 │ time_frequency_t… │ │ (Downscale) │ 448) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 16, 32, │ 7,635,968 │ downscale_2[0][0] │ │ (TimeFrequencyTran… │ 448) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ downscale_3 │ (None, 8, 16, │ 1,033,344 │ time_frequency_t… │ │ (Downscale) │ 576) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 8, 16, │ 12,617,216 │ downscale_3[0][0] │ │ (TimeFrequencyTran… │ 576) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ upscale (Upscale) │ (None, 16, 32, │ 1,033,088 │ time_frequency_t… │ │ │ 448) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate_1 │ (None, 16, 32, │ 0 │ upscale[0][0], │ │ (Concatenate) │ 896) │ │ time_frequency_t… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 16, 32, │ 15,065,600 │ concatenate_1[0]… │ │ (TimeFrequencyTran… │ 448) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ upscale_1 (Upscale) │ (None, 32, 64, │ 574,080 │ time_frequency_t… │ │ │ 320) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate_2 │ (None, 32, 64, │ 0 │ upscale_1[0][0], │ │ (Concatenate) │ 640) │ │ time_frequency_t… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 32, 64, │ 7,695,872 │ concatenate_2[0]… │ │ (TimeFrequencyTran… │ 320) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ upscale_2 (Upscale) │ (None, 64, 128, │ 246,144 │ time_frequency_t… │ │ │ 192) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate_3 │ (None, 64, 128, │ 0 │ upscale_2[0][0], │ │ (Concatenate) │ 384) │ │ time_frequency_t… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 64, 128, │ 2,802,176 │ concatenate_3[0]… │ │ (TimeFrequencyTran… │ 192) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ upscale_3 (Upscale) │ (None, 128, 256, │ 49,280 │ time_frequency_t… │ │ │ 64) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate_4 │ (None, 128, 256, │ 0 │ upscale_3[0][0], │ │ (Concatenate) │ 128) │ │ time_frequency_t… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ time_frequency_tra… │ (None, 128, 256, │ 439,808 │ concatenate_4[0]… │ │ (TimeFrequencyTran… │ 64) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ multiply (Multiply) │ (None, 128, 256, │ 0 │ time_frequency_t… │ │ │ 64) │ │ conv2d[0][0] │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ concatenate_5 │ (None, 128, 256, │ 0 │ reshape[0][0], │ │ (Concatenate) │ 72) │ │ multiply[0][0] │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ conv2d_59 (Conv2D) │ (None, 128, 256, │ 4,608 │ concatenate_5[0]… │ │ │ 64) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ conv2d_60 (Conv2D) │ (None, 128, 256, │ 512 │ conv2d_59[0][0] │ │ │ 8) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ reshape_1 (Reshape) │ (None, 128, 1024, │ 0 │ conv2d_60[0][0] │ │ │ 1, 2) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ transpose │ (None, 1, 128, │ 0 │ reshape_1[0][0] │ │ (Transpose) │ 1024, 2) │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ reshape_2 (Reshape) │ (None, 1, 128, │ 0 │ transpose[0][0] │ │ │ 2048) │ │ │ └─────────────────────┴───────────────────┴────────────┴───────────────────┘
Total params: 222,789,634 (849.88 MB)
Trainable params: 55,697,408 (212.47 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 167,092,226 (637.41 MB)
# Compile the model
optimizer = keras.optimizers.Adam(5e-05, gradient_accumulation_steps=ACCUMULATION_STEPS)
model.compile(optimizer=optimizer, loss=spectral_loss, metrics=[sdr])
# Define callbacks
cbs = [
callbacks.ModelCheckpoint(MODEL_PATH, "val_sdr", save_best_only=True, mode="max"),
callbacks.ReduceLROnPlateau(factor=0.95, patience=2),
callbacks.CSVLogger(CSV_LOG_PATH),
]
if not path.exists(MODEL_PATH):
model.fit(train_ds, validation_data=val_ds, epochs=10, callbacks=cbs, shuffle=False)
else:
# Demonstration of a single epoch of training when model already exists
model.fit(train_ds, validation_data=val_ds, epochs=1, shuffle=False, verbose=2)
2000/2000 - 490s - 245ms/step - loss: 0.2977 - sdr: 5.6497 - val_loss: 0.1720 - val_sdr: 6.0508
在验证数据集上评估模型并可视化预测的人声。
model.evaluate(val_ds, verbose=2)
y_pred = model.predict(sample_batch_x, verbose=2)
y_pred = prediction_to_wave(y_pred)
visualize_audio_np(ops.convert_to_numpy(y_pred[0, 0]), name="vocals_pred")
200/200 - 8s - 41ms/step - loss: 0.1747 - sdr: 5.9374
1/1 - 4s - 4s/step
我们使用应用于 MUSDB18 数据集的自定义块的编码器-解码器架构构建并训练了一个人声分离模型。我们演示了基于 STFT 的预处理、数据增强和源分离指标 (SDR)。
下一步