作者: Apoorv Nandan
创建时间 2021/01/13
上次修改时间 2021/01/13
描述:训练一个用于自动语音识别的序列到序列Transformer。
自动语音识别 (ASR) 包括将音频语音片段转录成文本。ASR 可以被视为一个序列到序列问题,其中音频可以表示为特征向量的序列,文本可以表示为字符、单词或子词标记的序列。
在本演示中,我们将使用来自 LibriVox 项目的 LJSpeech 数据集。它包含单个说话者朗读 7 本非虚构书籍片段的短音频剪辑。我们的模型将类似于论文“Attention is All You Need”中提出的原始 Transformer(编码器和解码器)。
参考文献
import re
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
from glob import glob
import tensorflow as tf
import keras
from keras import layers
pattern_wav_name = re.compile(r'([^/\\\.]+)')
在处理解码器的过去目标标记时,我们计算位置嵌入和标记嵌入的总和。
在处理音频特征时,我们应用卷积层对其进行下采样(通过卷积步长)并处理局部关系。
class TokenEmbedding(layers.Layer):
def __init__(self, num_vocab=1000, maxlen=100, num_hid=64):
super().__init__()
self.emb = keras.layers.Embedding(num_vocab, num_hid)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=num_hid)
def call(self, x):
maxlen = tf.shape(x)[-1]
x = self.emb(x)
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
return x + positions
class SpeechFeatureEmbedding(layers.Layer):
def __init__(self, num_hid=64, maxlen=100):
super().__init__()
self.conv1 = keras.layers.Conv1D(
num_hid, 11, strides=2, padding="same", activation="relu"
)
self.conv2 = keras.layers.Conv1D(
num_hid, 11, strides=2, padding="same", activation="relu"
)
self.conv3 = keras.layers.Conv1D(
num_hid, 11, strides=2, padding="same", activation="relu"
)
def call(self, x):
x = self.conv1(x)
x = self.conv2(x)
return self.conv3(x)
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, num_heads, feed_forward_dim, rate=0.1):
super().__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = keras.Sequential(
[
layers.Dense(feed_forward_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training=False):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, num_heads, feed_forward_dim, dropout_rate=0.1):
super().__init__()
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = layers.LayerNormalization(epsilon=1e-6)
self.self_att = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.enc_att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.self_dropout = layers.Dropout(0.5)
self.enc_dropout = layers.Dropout(0.1)
self.ffn_dropout = layers.Dropout(0.1)
self.ffn = keras.Sequential(
[
layers.Dense(feed_forward_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
def causal_attention_mask(self, batch_size, n_dest, n_src, dtype):
"""Masks the upper half of the dot product matrix in self attention.
This prevents flow of information from future tokens to current token.
1's in the lower triangle, counting from the lower right corner.
"""
i = tf.range(n_dest)[:, None]
j = tf.range(n_src)
m = i >= j - n_src + n_dest
mask = tf.cast(m, dtype)
mask = tf.reshape(mask, [1, n_dest, n_src])
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0
)
return tf.tile(mask, mult)
def call(self, enc_out, target):
input_shape = tf.shape(target)
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool)
target_att = self.self_att(target, target, attention_mask=causal_mask)
target_norm = self.layernorm1(target + self.self_dropout(target_att))
enc_out = self.enc_att(target_norm, enc_out)
enc_out_norm = self.layernorm2(self.enc_dropout(enc_out) + target_norm)
ffn_out = self.ffn(enc_out_norm)
ffn_out_norm = self.layernorm3(enc_out_norm + self.ffn_dropout(ffn_out))
return ffn_out_norm
我们的模型将音频频谱图作为输入,并预测一系列字符。在训练期间,我们将目标字符序列向左移动作为输入提供给解码器。在推理期间,解码器使用其自己的过去预测来预测下一个标记。
class Transformer(keras.Model):
def __init__(
self,
num_hid=64,
num_head=2,
num_feed_forward=128,
source_maxlen=100,
target_maxlen=100,
num_layers_enc=4,
num_layers_dec=1,
num_classes=10,
):
super().__init__()
self.loss_metric = keras.metrics.Mean(name="loss")
self.num_layers_enc = num_layers_enc
self.num_layers_dec = num_layers_dec
self.target_maxlen = target_maxlen
self.num_classes = num_classes
self.enc_input = SpeechFeatureEmbedding(num_hid=num_hid, maxlen=source_maxlen)
self.dec_input = TokenEmbedding(
num_vocab=num_classes, maxlen=target_maxlen, num_hid=num_hid
)
self.encoder = keras.Sequential(
[self.enc_input]
+ [
TransformerEncoder(num_hid, num_head, num_feed_forward)
for _ in range(num_layers_enc)
]
)
for i in range(num_layers_dec):
setattr(
self,
f"dec_layer_{i}",
TransformerDecoder(num_hid, num_head, num_feed_forward),
)
self.classifier = layers.Dense(num_classes)
def decode(self, enc_out, target):
y = self.dec_input(target)
for i in range(self.num_layers_dec):
y = getattr(self, f"dec_layer_{i}")(enc_out, y)
return y
def call(self, inputs):
source = inputs[0]
target = inputs[1]
x = self.encoder(source)
y = self.decode(x, target)
return self.classifier(y)
@property
def metrics(self):
return [self.loss_metric]
def train_step(self, batch):
"""Processes one batch inside model.fit()."""
source = batch["source"]
target = batch["target"]
dec_input = target[:, :-1]
dec_target = target[:, 1:]
with tf.GradientTape() as tape:
preds = self([source, dec_input])
one_hot = tf.one_hot(dec_target, depth=self.num_classes)
mask = tf.math.logical_not(tf.math.equal(dec_target, 0))
loss = model.compute_loss(None, one_hot, preds, sample_weight=mask)
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
self.loss_metric.update_state(loss)
return {"loss": self.loss_metric.result()}
def test_step(self, batch):
source = batch["source"]
target = batch["target"]
dec_input = target[:, :-1]
dec_target = target[:, 1:]
preds = self([source, dec_input])
one_hot = tf.one_hot(dec_target, depth=self.num_classes)
mask = tf.math.logical_not(tf.math.equal(dec_target, 0))
loss = model.compute_loss(None, one_hot, preds, sample_weight=mask)
self.loss_metric.update_state(loss)
return {"loss": self.loss_metric.result()}
def generate(self, source, target_start_token_idx):
"""Performs inference over one batch of inputs using greedy decoding."""
bs = tf.shape(source)[0]
enc = self.encoder(source)
dec_input = tf.ones((bs, 1), dtype=tf.int32) * target_start_token_idx
dec_logits = []
for i in range(self.target_maxlen - 1):
dec_out = self.decode(enc, dec_input)
logits = self.classifier(dec_out)
logits = tf.argmax(logits, axis=-1, output_type=tf.int32)
last_logit = tf.expand_dims(logits[:, -1], axis=-1)
dec_logits.append(last_logit)
dec_input = tf.concat([dec_input, last_logit], axis=-1)
return dec_input
注意:这需要大约 3.6 GB 的磁盘空间,并且文件提取大约需要 5 分钟。
keras.utils.get_file(
os.path.join(os.getcwd(), "data.tar.gz"),
"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2",
extract=True,
archive_format="tar",
cache_dir=".",
)
saveto = "./datasets/LJSpeech-1.1"
wavs = glob("{}/**/*.wav".format(saveto), recursive=True)
id_to_text = {}
with open(os.path.join(saveto, "metadata.csv"), encoding="utf-8") as f:
for line in f:
id = line.strip().split("|")[0]
text = line.strip().split("|")[2]
id_to_text[id] = text
def get_data(wavs, id_to_text, maxlen=50):
"""returns mapping of audio paths and transcription texts"""
data = []
for w in wavs:
id = pattern_wav_name.split(w)[-4]
if len(id_to_text[id]) < maxlen:
data.append({"audio": w, "text": id_to_text[id]})
return data
Downloading data from https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
2748572632/2748572632 ━━━━━━━━━━━━━━━━━━━━ 18s 0us/step
class VectorizeChar:
def __init__(self, max_len=50):
self.vocab = (
["-", "#", "<", ">"]
+ [chr(i + 96) for i in range(1, 27)]
+ [" ", ".", ",", "?"]
)
self.max_len = max_len
self.char_to_idx = {}
for i, ch in enumerate(self.vocab):
self.char_to_idx[ch] = i
def __call__(self, text):
text = text.lower()
text = text[: self.max_len - 2]
text = "<" + text + ">"
pad_len = self.max_len - len(text)
return [self.char_to_idx.get(ch, 1) for ch in text] + [0] * pad_len
def get_vocabulary(self):
return self.vocab
max_target_len = 200 # all transcripts in out data are < 200 characters
data = get_data(wavs, id_to_text, max_target_len)
vectorizer = VectorizeChar(max_target_len)
print("vocab size", len(vectorizer.get_vocabulary()))
def create_text_ds(data):
texts = [_["text"] for _ in data]
text_ds = [vectorizer(t) for t in texts]
text_ds = tf.data.Dataset.from_tensor_slices(text_ds)
return text_ds
def path_to_audio(path):
# spectrogram using stft
audio = tf.io.read_file(path)
audio, _ = tf.audio.decode_wav(audio, 1)
audio = tf.squeeze(audio, axis=-1)
stfts = tf.signal.stft(audio, frame_length=200, frame_step=80, fft_length=256)
x = tf.math.pow(tf.abs(stfts), 0.5)
# normalisation
means = tf.math.reduce_mean(x, 1, keepdims=True)
stddevs = tf.math.reduce_std(x, 1, keepdims=True)
x = (x - means) / stddevs
audio_len = tf.shape(x)[0]
# padding to 10 seconds
pad_len = 2754
paddings = tf.constant([[0, pad_len], [0, 0]])
x = tf.pad(x, paddings, "CONSTANT")[:pad_len, :]
return x
def create_audio_ds(data):
flist = [_["audio"] for _ in data]
audio_ds = tf.data.Dataset.from_tensor_slices(flist)
audio_ds = audio_ds.map(path_to_audio, num_parallel_calls=tf.data.AUTOTUNE)
return audio_ds
def create_tf_dataset(data, bs=4):
audio_ds = create_audio_ds(data)
text_ds = create_text_ds(data)
ds = tf.data.Dataset.zip((audio_ds, text_ds))
ds = ds.map(lambda x, y: {"source": x, "target": y})
ds = ds.batch(bs)
ds = ds.prefetch(tf.data.AUTOTUNE)
return ds
split = int(len(data) * 0.99)
train_data = data[:split]
test_data = data[split:]
ds = create_tf_dataset(train_data, bs=64)
val_ds = create_tf_dataset(test_data, bs=4)
vocab size 34
class DisplayOutputs(keras.callbacks.Callback):
def __init__(
self, batch, idx_to_token, target_start_token_idx=27, target_end_token_idx=28
):
"""Displays a batch of outputs after every epoch
Args:
batch: A test batch containing the keys "source" and "target"
idx_to_token: A List containing the vocabulary tokens corresponding to their indices
target_start_token_idx: A start token index in the target vocabulary
target_end_token_idx: An end token index in the target vocabulary
"""
self.batch = batch
self.target_start_token_idx = target_start_token_idx
self.target_end_token_idx = target_end_token_idx
self.idx_to_char = idx_to_token
def on_epoch_end(self, epoch, logs=None):
if epoch % 5 != 0:
return
source = self.batch["source"]
target = self.batch["target"].numpy()
bs = tf.shape(source)[0]
preds = self.model.generate(source, self.target_start_token_idx)
preds = preds.numpy()
for i in range(bs):
target_text = "".join([self.idx_to_char[_] for _ in target[i, :]])
prediction = ""
for idx in preds[i, :]:
prediction += self.idx_to_char[idx]
if idx == self.target_end_token_idx:
break
print(f"target: {target_text.replace('-','')}")
print(f"prediction: {prediction}\n")
class CustomSchedule(keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
init_lr=0.00001,
lr_after_warmup=0.001,
final_lr=0.00001,
warmup_epochs=15,
decay_epochs=85,
steps_per_epoch=203,
):
super().__init__()
self.init_lr = init_lr
self.lr_after_warmup = lr_after_warmup
self.final_lr = final_lr
self.warmup_epochs = warmup_epochs
self.decay_epochs = decay_epochs
self.steps_per_epoch = steps_per_epoch
def calculate_lr(self, epoch):
"""linear warm up - linear decay"""
warmup_lr = (
self.init_lr
+ ((self.lr_after_warmup - self.init_lr) / (self.warmup_epochs - 1)) * epoch
)
decay_lr = tf.math.maximum(
self.final_lr,
self.lr_after_warmup
- (epoch - self.warmup_epochs)
* (self.lr_after_warmup - self.final_lr)
/ self.decay_epochs,
)
return tf.math.minimum(warmup_lr, decay_lr)
def __call__(self, step):
epoch = step // self.steps_per_epoch
epoch = tf.cast(epoch, "float32")
return self.calculate_lr(epoch)
batch = next(iter(val_ds))
# The vocabulary to convert predicted indices into characters
idx_to_char = vectorizer.get_vocabulary()
display_cb = DisplayOutputs(
batch, idx_to_char, target_start_token_idx=2, target_end_token_idx=3
) # set the arguments as per vocabulary index for '<' and '>'
model = Transformer(
num_hid=200,
num_head=2,
num_feed_forward=400,
target_maxlen=max_target_len,
num_layers_enc=4,
num_layers_dec=1,
num_classes=34,
)
loss_fn = keras.losses.CategoricalCrossentropy(
from_logits=True,
label_smoothing=0.1,
)
learning_rate = CustomSchedule(
init_lr=0.00001,
lr_after_warmup=0.001,
final_lr=0.00001,
warmup_epochs=15,
decay_epochs=85,
steps_per_epoch=len(ds),
)
optimizer = keras.optimizers.Adam(learning_rate)
model.compile(optimizer=optimizer, loss=loss_fn)
history = model.fit(ds, validation_data=val_ds, callbacks=[display_cb], epochs=1)
1/203 [37m━━━━━━━━━━━━━━━━━━━━ 9:20:11 166s/step - loss: 2.2387
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700071380.331418 678094 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
203/203 ━━━━━━━━━━━━━━━━━━━━ 0s 947ms/step - loss: 1.8285target: <the relations between lee and marina oswald are of great importance in any attempt to understand oswald#s possible motivation.>
prediction: <the the he at the t the an of t te the ale t he t te ar the in the the s the s tan as t the t as re the te the ast he and t the s s the thee thed the the thes the s te te he t the of in anae o the or
target: <he was in consequence put out of the protection of their internal law, end quote. their code was a subject of some curiosity.>
prediction: <the the he at the t the an of t te the ale t he t te ar the in the the s the s tan as t the t as re the te the ast he and t the s s the thee thed the the thes the s te te he t the of in anae o the or
target: <that is why i occasionally leave this scene of action for a few days>
prediction: <the the he at the t the an of t te the ale t he t te ar the in the the s the s tan ase athe t as re the te the ast he and t the s s the thee thed the the thes the s te te he t the of in anse o the or
target: <it probably contributed greatly to the general dissatisfaction which he exhibited with his environment,>
prediction: <the the he at the t the an of t te the ale t he t te ar the in the the s the s tan as t the t as re the te the ast he and t the s s the thee thed the the thes the s te te he t the of in anae o the or
203/203 ━━━━━━━━━━━━━━━━━━━━ 428s 1s/step - loss: 1.8276 - val_loss: 1.5233
在实践中,您应该训练大约 100 个或更多轮次。
在第 35 轮左右的一些预测文本可能如下所示
target: <as they sat in the car, frazier asked oswald where his lunch was>
prediction: <as they sat in the car frazier his lunch ware mis lunch was>
target: <under the entry for may one, nineteen sixty,>
prediction: <under the introus for may monee, nin the sixty,>