Cropping3D
类tf_keras.layers.Cropping3D(
cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)
用于 3D 数据(例如空间或时空数据)的裁剪层。
# 示例
>>> input_shape = (2, 28, 28, 10, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
>>> print(y.shape)
(2, 24, 20, 6, 3)
参数
(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)
。((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop))
channels_last
(默认)或 channels_first
之一。输入中维度的顺序。channels_last
对应于形状为 (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
的输入,而 channels_first
对应于形状为 (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
的输入。如果未指定,则使用 TF-Keras 配置文件 ~/.keras/keras.json
中(如果存在)的 image_data_format
值,否则为 'channels_last'。默认为 'channels_last'。输入形状
5D 张量,形状为: - 如果 data_format
为 "channels_last"
:(batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)
- 如果 data_format
为 "channels_first"
:(batch_size, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
输出形状
5D 张量,形状为: - 如果 data_format
为 "channels_last"
:(batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)
- 如果 data_format
为 "channels_first"
:(batch_size, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)