AveragePooling1D 类tf_keras.layers.AveragePooling1D(
pool_size=2, strides=None, padding="valid", data_format="channels_last", **kwargs
)
时间数据的平均池化。
通过取 pool_size 定义的窗口内的平均值来下采样输入表示。窗口由 strides 移动。使用“valid”填充选项时,输出的形状为:output_shape = (input_shape - pool_size + 1) / strides)
使用“same”填充选项时,输出的形状为:output_shape = input_shape / strides
例如,对于 strides=1 和 padding="valid"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding='valid')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5]]], dtype=float32)>
例如,对于 strides=2 和 padding="valid"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=2, padding='valid')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[1.5],
[3.5]]], dtype=float32)>
例如,对于 strides=1 和 padding="same"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding='same')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5],
[5.]]], dtype=float32)>
参数
pool_size。"valid" 或 "same"(不区分大小写)之一。"valid" 表示无填充。"same" 会在输入的左/右或上/下进行均匀填充,使得输出与输入具有相同的高度/宽度维度。channels_last(默认)或 channels_first。输入中维度的顺序。channels_last 对应于形状为 (batch, steps, features) 的输入,而 channels_first 对应于形状为 (batch, features, steps) 的输入。输入形状
data_format='channels_last':形状为 (batch_size, steps, features) 的 3D 张量。data_format='channels_first':形状为 (batch_size, features, steps) 的 3D 张量。输出形状
data_format='channels_last':形状为 (batch_size, downsampled_steps, features) 的 3D 张量。data_format='channels_first':形状为 (batch_size, features, downsampled_steps) 的 3D 张量。