作者:Martin Görner
创建日期 2023-12-13
上次修改日期 2023-12-13
描述: 在分享您的深度学习模型时,请使用函数式子类化模式对其进行打包。
Keras 是分享您最前沿的深度学习模型的理想框架,可以在预训练(或非预训练)模型的库中使用。数百万的机器学习工程师精通熟悉的 Keras API,使您的模型可以被全球社区访问,无论他们喜欢哪个后端(Jax、PyTorch 或 TensorFlow)。
Keras API 的优势之一是,它允许用户以编程方式检查或编辑模型,这在基于预训练模型创建新架构或工作流时是必不可少的。
在分发模型时,Keras 团队建议使用 函数式子类化 模式对其进行打包。以这种方式实现的模型结合了两个优点
model = model_collection_xyz.AmazingModel()
本指南解释了如何使用函数式子类化模式,并展示了其在程序化模型内省和模型手术中的优势。它还展示了可共享 Keras 模型的其他两个最佳实践:配置模型以适应最广泛的受支持输入,例如各种尺寸的图像,以及使用字典输入以提高更复杂模型的清晰度。
import keras
import tensorflow as tf # only for tf.data
print("Keras version", keras.version())
print("Keras is running on", keras.config.backend())
Keras version 3.0.1
Keras is running on tensorflow
让我们加载一个 MNIST 数据集,以便我们可以进行训练。
# tf.data is a great API for putting together a data stream.
# It works whether you use the TensorFlow, PyTorch or Jax backend,
# as long as you use it in the data stream only and not inside of a model.
BATCH_SIZE = 256
(x_train, train_labels), (x_test, test_labels) = keras.datasets.mnist.load_data()
train_data = tf.data.Dataset.from_tensor_slices((x_train, train_labels))
train_data = train_data.map(
lambda x, y: (tf.expand_dims(x, axis=-1), y)
) # 1-channel monochrome
train_data = train_data.batch(BATCH_SIZE)
train_data = train_data.cache()
train_data = train_data.shuffle(5000, reshuffle_each_iteration=True)
train_data = train_data.repeat()
test_data = tf.data.Dataset.from_tensor_slices((x_test, test_labels))
test_data = test_data.map(
lambda x, y: (tf.expand_dims(x, axis=-1), y)
) # 1-channel monochrome
test_data = test_data.batch(10000)
test_data = test_data.cache()
STEPS_PER_EPOCH = len(train_labels) // BATCH_SIZE
EPOCHS = 5
该模型被封装在一个类中,以便最终用户可以通过调用构造函数 MnistModel()
而不是调用工厂函数来正常实例化它。
class MnistModel(keras.Model):
def __init__(self, **kwargs):
# Keras Functional model definition. This could have used Sequential as
# well. Sequential is just syntactic sugar for simple functional models.
# 1-channel monochrome input
inputs = keras.layers.Input(shape=(None, None, 1), dtype="uint8")
# pixel format conversion from uint8 to float32
y = keras.layers.Rescaling(1 / 255.0)(inputs)
# 3 convolutional layers
y = keras.layers.Conv2D(
filters=16, kernel_size=3, padding="same", activation="relu"
)(y)
y = keras.layers.Conv2D(
filters=32, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
y = keras.layers.Conv2D(
filters=48, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
# 2 dense layers
y = keras.layers.GlobalAveragePooling2D()(y)
y = keras.layers.Dense(48, activation="relu")(y)
y = keras.layers.Dropout(0.4)(y)
outputs = keras.layers.Dense(
10, activation="softmax", name="classification_head" # 10 classes
)(y)
# A Keras Functional model is created by calling keras.Model(inputs, outputs)
super().__init__(inputs=inputs, outputs=outputs, **kwargs)
让我们实例化并训练这个模型。
model = MnistModel()
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
history = model.fit(
train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=test_data,
)
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 33ms/step - loss: 1.8916 - sparse_categorical_accuracy: 0.2933 - val_loss: 0.4278 - val_sparse_categorical_accuracy: 0.8864
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.5723 - sparse_categorical_accuracy: 0.8201 - val_loss: 0.2703 - val_sparse_categorical_accuracy: 0.9248
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.4063 - sparse_categorical_accuracy: 0.8772 - val_loss: 0.2010 - val_sparse_categorical_accuracy: 0.9400
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.3391 - sparse_categorical_accuracy: 0.8996 - val_loss: 0.1869 - val_sparse_categorical_accuracy: 0.9427
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.2989 - sparse_categorical_accuracy: 0.9120 - val_loss: 0.1513 - val_sparse_categorical_accuracy: 0.9557
请注意,在上面的模型定义中,输入是用未定义的维度指定的:Input(shape=(None, None, 1)
这允许模型接受任何图像尺寸作为输入。但是,这只有在松散定义的形状可以传播到所有层并且仍然确定所有权重的大小时才有效。
model = MnistModel()
model = ModelXYZ(input_size=...)
Keras 为每个模型维护一个可通过编程方式访问的层图。它可以用于内省,并通过 model.layers
或 layer.layers
属性访问。实用函数 model.summary()
也在内部使用此机制。
model = MnistModel()
# Model summary works
model.summary()
# Recursively walking the layer graph works as well
def walk_layers(layer):
if hasattr(layer, "layers"):
for layer in layer.layers:
walk_layers(layer)
else:
print(layer.name)
print("\nWalking model layers:\n")
walk_layers(model)
Model: "mnist_model_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ input_layer_1 (InputLayer) │ (None, None, None, 1) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ rescaling_1 (Rescaling) │ (None, None, None, 1) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_3 (Conv2D) │ (None, None, None, 16) │ 160 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_4 (Conv2D) │ (None, None, None, 32) │ 18,464 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_5 (Conv2D) │ (None, None, None, 48) │ 55,344 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ global_average_pooling2d_1 │ (None, 48) │ 0 │ │ (GlobalAveragePooling2D) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_1 (Dense) │ (None, 48) │ 2,352 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_1 (Dropout) │ (None, 48) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ classification_head (Dense) │ (None, 10) │ 490 │ └─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 76,810 (300.04 KB)
Trainable params: 76,810 (300.04 KB)
Non-trainable params: 0 (0.00 B)
Walking model layers:
input_layer_1
rescaling_1
conv2d_3
conv2d_4
conv2d_5
global_average_pooling2d_1
dense_1
dropout_1
classification_head
最终用户可能希望从您的库中实例化模型,但在使用前对其进行修改。函数式模型具有可编程访问的层图。可以通过切片和拼接图并创建新的函数式模型来编辑。
另一种方法是 Fork 模型代码并进行修改,但这会迫使用户无限期地维护他们的 Fork。
示例:实例化模型,但将分类头更改为执行二进制分类,“0”或“非 0”,而不是原始的 10 路数字分类。
model = MnistModel()
input = model.input
# cut before the classification head
y = model.get_layer("classification_head").input
# add a new classification head
output = keras.layers.Dense(
1, # single class for binary classification
activation="sigmoid",
name="binary_classification_head",
)(y)
# create a new functional model
binary_model = keras.Model(input, output)
binary_model.summary()
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ input_layer_2 (InputLayer) │ (None, None, None, 1) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ rescaling_2 (Rescaling) │ (None, None, None, 1) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_6 (Conv2D) │ (None, None, None, 16) │ 160 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_7 (Conv2D) │ (None, None, None, 32) │ 18,464 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_8 (Conv2D) │ (None, None, None, 48) │ 55,344 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ global_average_pooling2d_2 │ (None, 48) │ 0 │ │ (GlobalAveragePooling2D) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_2 (Dense) │ (None, 48) │ 2,352 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_2 (Dropout) │ (None, 48) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ binary_classification_head │ (None, 1) │ 49 │ │ (Dense) │ │ │ └─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 76,369 (298.32 KB)
Trainable params: 76,369 (298.32 KB)
Non-trainable params: 0 (0.00 B)
我们现在可以将新模型训练为二进制分类器。
# new dataset with 0 / 1 labels (1 = digit '0', 0 = all other digits)
bin_train_data = train_data.map(
lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8))
)
bin_test_data = test_data.map(
lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8))
)
# appropriate loss and metric for binary classification
binary_model.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["binary_accuracy"]
)
history = binary_model.fit(
bin_train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=bin_test_data,
)
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 33ms/step - binary_accuracy: 0.8926 - loss: 0.3635 - val_binary_accuracy: 0.9235 - val_loss: 0.1777
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9411 - loss: 0.1620 - val_binary_accuracy: 0.9766 - val_loss: 0.0748
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9751 - loss: 0.0794 - val_binary_accuracy: 0.9884 - val_loss: 0.0414
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9848 - loss: 0.0480 - val_binary_accuracy: 0.9915 - val_loss: 0.0292
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9910 - loss: 0.0326 - val_binary_accuracy: 0.9917 - val_loss: 0.0286
在具有多个输入的更复杂模型中,将输入构建为字典可以提高可读性和可用性。这对于函数式模型来说很容易做到
class MnistDictModel(keras.Model):
def __init__(self, **kwargs):
#
# The input is a dictionary
#
inputs = {
"image": keras.layers.Input(
shape=(None, None, 1), # 1-channel monochrome
dtype="uint8",
name="image",
)
}
# pixel format conversion from uint8 to float32
y = keras.layers.Rescaling(1 / 255.0)(inputs["image"])
# 3 conv layers
y = keras.layers.Conv2D(
filters=16, kernel_size=3, padding="same", activation="relu"
)(y)
y = keras.layers.Conv2D(
filters=32, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
y = keras.layers.Conv2D(
filters=48, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
# 2 dense layers
y = keras.layers.GlobalAveragePooling2D()(y)
y = keras.layers.Dense(48, activation="relu")(y)
y = keras.layers.Dropout(0.4)(y)
outputs = keras.layers.Dense(
10, activation="softmax", name="classification_head" # 10 classes
)(y)
# A Keras Functional model is created by calling keras.Model(inputs, outputs)
super().__init__(inputs=inputs, outputs=outputs, **kwargs)
我们现在可以训练以字典形式构建的输入的模型。
model = MnistDictModel()
# reformat the dataset as a dictionary
dict_train_data = train_data.map(lambda x, y: ({"image": x}, y))
dict_test_data = test_data.map(lambda x, y: ({"image": x}, y))
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
history = model.fit(
dict_train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=dict_test_data,
)
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 34ms/step - loss: 1.8702 - sparse_categorical_accuracy: 0.3175 - val_loss: 0.4505 - val_sparse_categorical_accuracy: 0.8779
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 32ms/step - loss: 0.5991 - sparse_categorical_accuracy: 0.8131 - val_loss: 0.2582 - val_sparse_categorical_accuracy: 0.9245
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 32ms/step - loss: 0.3916 - sparse_categorical_accuracy: 0.8846 - val_loss: 0.1938 - val_sparse_categorical_accuracy: 0.9422
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 33ms/step - loss: 0.3109 - sparse_categorical_accuracy: 0.9089 - val_loss: 0.1450 - val_sparse_categorical_accuracy: 0.9566
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 32ms/step - loss: 0.2775 - sparse_categorical_accuracy: 0.9197 - val_loss: 0.1316 - val_sparse_categorical_accuracy: 0.9608